llvm-project/llvm/utils/TableGen/VarLenCodeEmitterGen.cpp
Erik Jonsson fabcadf2eb
Let M68kMCCodeEmitter set Scratch size. (#69898)
The Scratch buffer passed to getBinaryCodeForInst needs to be able to
hold any value returned by getMachineOpValue or other custom encoders.
It's better to let the caller of getBinaryCodeForInst set the size of
Scratch as it's impossible for VarLenCodeEmitterGen to know what the
smallest needed size is.

VarLenCodeEmitterGen now calculates its smallest needed Scratch bit
width based on the slice operations and zero extends Scratch if it's too
small. This only guarantees that Scratch has enough bits for the
generated code not for getMachineOpValue or custom encoders.

The smallest internal APInt representation uses one uint64_t word so
there is no point in using a smaller size.
2023-10-26 14:43:38 +02:00

528 lines
19 KiB
C++

//===- VarLenCodeEmitterGen.cpp - CEG for variable-length insts -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The CodeEmitterGen component for variable-length instructions.
//
// The basic CodeEmitterGen is almost exclusively designed for fixed-
// length instructions. A good analogy for its encoding scheme is how printf
// works: The (immutable) formatting string represent the fixed values in the
// encoded instruction. Placeholders (i.e. %something), on the other hand,
// represent encoding for instruction operands.
// ```
// printf("1101 %src 1001 %dst", <encoded value for operand `src`>,
// <encoded value for operand `dst`>);
// ```
// VarLenCodeEmitterGen in this file provides an alternative encoding scheme
// that works more like a C++ stream operator:
// ```
// OS << 0b1101;
// if (Cond)
// OS << OperandEncoding0;
// OS << 0b1001 << OperandEncoding1;
// ```
// You are free to concatenate arbitrary types (and sizes) of encoding
// fragments on any bit position, bringing more flexibilities on defining
// encoding for variable-length instructions.
//
// In a more specific way, instruction encoding is represented by a DAG type
// `Inst` field. Here is an example:
// ```
// dag Inst = (descend 0b1101, (operand "$src", 4), 0b1001,
// (operand "$dst", 4));
// ```
// It represents the following instruction encoding:
// ```
// MSB LSB
// 1101<encoding for operand src>1001<encoding for operand dst>
// ```
// For more details about DAG operators in the above snippet, please
// refer to \file include/llvm/Target/Target.td.
//
// VarLenCodeEmitter will convert the above DAG into the same helper function
// generated by CodeEmitter, `MCCodeEmitter::getBinaryCodeForInstr` (except
// for few details).
//
//===----------------------------------------------------------------------===//
#include "VarLenCodeEmitterGen.h"
#include "CodeGenHwModes.h"
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "InfoByHwMode.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <algorithm>
using namespace llvm;
namespace {
class VarLenCodeEmitterGen {
RecordKeeper &Records;
// Representaton of alternative encodings used for HwModes.
using AltEncodingTy = int;
// Mode identifier when only one encoding is defined.
const AltEncodingTy Universal = -1;
// The set of alternative instruction encodings with a descriptive
// name suffix to improve readability of the generated code.
std::map<AltEncodingTy, std::string> Modes;
DenseMap<Record *, DenseMap<AltEncodingTy, VarLenInst>> VarLenInsts;
// Emit based values (i.e. fixed bits in the encoded instructions)
void emitInstructionBaseValues(
raw_ostream &OS,
ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, AltEncodingTy Mode);
std::string getInstructionCases(Record *R, CodeGenTarget &Target);
std::string getInstructionCaseForEncoding(Record *R, AltEncodingTy Mode,
const VarLenInst &VLI,
CodeGenTarget &Target, int I);
public:
explicit VarLenCodeEmitterGen(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS);
};
} // end anonymous namespace
// Get the name of custom encoder or decoder, if there is any.
// Returns `{encoder name, decoder name}`.
static std::pair<StringRef, StringRef> getCustomCoders(ArrayRef<Init *> Args) {
std::pair<StringRef, StringRef> Result;
for (const auto *Arg : Args) {
const auto *DI = dyn_cast<DagInit>(Arg);
if (!DI)
continue;
const Init *Op = DI->getOperator();
if (!isa<DefInit>(Op))
continue;
// syntax: `(<encoder | decoder> "function name")`
StringRef OpName = cast<DefInit>(Op)->getDef()->getName();
if (OpName != "encoder" && OpName != "decoder")
continue;
if (!DI->getNumArgs() || !isa<StringInit>(DI->getArg(0)))
PrintFatalError("expected '" + OpName +
"' directive to be followed by a custom function name.");
StringRef FuncName = cast<StringInit>(DI->getArg(0))->getValue();
if (OpName == "encoder")
Result.first = FuncName;
else
Result.second = FuncName;
}
return Result;
}
VarLenInst::VarLenInst(const DagInit *DI, const RecordVal *TheDef)
: TheDef(TheDef), NumBits(0U), HasDynamicSegment(false) {
buildRec(DI);
for (const auto &S : Segments)
NumBits += S.BitWidth;
}
void VarLenInst::buildRec(const DagInit *DI) {
assert(TheDef && "The def record is nullptr ?");
std::string Op = DI->getOperator()->getAsString();
if (Op == "ascend" || Op == "descend") {
bool Reverse = Op == "descend";
int i = Reverse ? DI->getNumArgs() - 1 : 0;
int e = Reverse ? -1 : DI->getNumArgs();
int s = Reverse ? -1 : 1;
for (; i != e; i += s) {
const Init *Arg = DI->getArg(i);
if (const auto *BI = dyn_cast<BitsInit>(Arg)) {
if (!BI->isComplete())
PrintFatalError(TheDef->getLoc(),
"Expecting complete bits init in `" + Op + "`");
Segments.push_back({BI->getNumBits(), BI});
} else if (const auto *BI = dyn_cast<BitInit>(Arg)) {
if (!BI->isConcrete())
PrintFatalError(TheDef->getLoc(),
"Expecting concrete bit init in `" + Op + "`");
Segments.push_back({1, BI});
} else if (const auto *SubDI = dyn_cast<DagInit>(Arg)) {
buildRec(SubDI);
} else {
PrintFatalError(TheDef->getLoc(), "Unrecognized type of argument in `" +
Op + "`: " + Arg->getAsString());
}
}
} else if (Op == "operand") {
// (operand <operand name>, <# of bits>,
// [(encoder <custom encoder>)][, (decoder <custom decoder>)])
if (DI->getNumArgs() < 2)
PrintFatalError(TheDef->getLoc(),
"Expecting at least 2 arguments for `operand`");
HasDynamicSegment = true;
const Init *OperandName = DI->getArg(0), *NumBits = DI->getArg(1);
if (!isa<StringInit>(OperandName) || !isa<IntInit>(NumBits))
PrintFatalError(TheDef->getLoc(), "Invalid argument types for `operand`");
auto NumBitsVal = cast<IntInit>(NumBits)->getValue();
if (NumBitsVal <= 0)
PrintFatalError(TheDef->getLoc(), "Invalid number of bits for `operand`");
auto [CustomEncoder, CustomDecoder] =
getCustomCoders(DI->getArgs().slice(2));
Segments.push_back({static_cast<unsigned>(NumBitsVal), OperandName,
CustomEncoder, CustomDecoder});
} else if (Op == "slice") {
// (slice <operand name>, <high / low bit>, <low / high bit>,
// [(encoder <custom encoder>)][, (decoder <custom decoder>)])
if (DI->getNumArgs() < 3)
PrintFatalError(TheDef->getLoc(),
"Expecting at least 3 arguments for `slice`");
HasDynamicSegment = true;
Init *OperandName = DI->getArg(0), *HiBit = DI->getArg(1),
*LoBit = DI->getArg(2);
if (!isa<StringInit>(OperandName) || !isa<IntInit>(HiBit) ||
!isa<IntInit>(LoBit))
PrintFatalError(TheDef->getLoc(), "Invalid argument types for `slice`");
auto HiBitVal = cast<IntInit>(HiBit)->getValue(),
LoBitVal = cast<IntInit>(LoBit)->getValue();
if (HiBitVal < 0 || LoBitVal < 0)
PrintFatalError(TheDef->getLoc(), "Invalid bit range for `slice`");
bool NeedSwap = false;
unsigned NumBits = 0U;
if (HiBitVal < LoBitVal) {
NeedSwap = true;
NumBits = static_cast<unsigned>(LoBitVal - HiBitVal + 1);
} else {
NumBits = static_cast<unsigned>(HiBitVal - LoBitVal + 1);
}
auto [CustomEncoder, CustomDecoder] =
getCustomCoders(DI->getArgs().slice(3));
if (NeedSwap) {
// Normalization: Hi bit should always be the second argument.
Init *const NewArgs[] = {OperandName, LoBit, HiBit};
Segments.push_back({NumBits,
DagInit::get(DI->getOperator(), nullptr, NewArgs, {}),
CustomEncoder, CustomDecoder});
} else {
Segments.push_back({NumBits, DI, CustomEncoder, CustomDecoder});
}
}
}
void VarLenCodeEmitterGen::run(raw_ostream &OS) {
CodeGenTarget Target(Records);
auto Insts = Records.getAllDerivedDefinitions("Instruction");
auto NumberedInstructions = Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
// Create the corresponding VarLenInst instance.
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
// Setup alternative encodings according to HwModes
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
const CodeGenHwModes &HWM = Target.getHwModes();
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
for (auto &KV : EBM) {
AltEncodingTy Mode = KV.first;
Modes.insert({Mode, "_" + HWM.getMode(Mode).Name.str()});
Record *EncodingDef = KV.second;
RecordVal *RV = EncodingDef->getValue("Inst");
DagInit *DI = cast<DagInit>(RV->getValue());
VarLenInsts[R].insert({Mode, VarLenInst(DI, RV)});
}
continue;
}
}
RecordVal *RV = R->getValue("Inst");
DagInit *DI = cast<DagInit>(RV->getValue());
VarLenInsts[R].insert({Universal, VarLenInst(DI, RV)});
}
if (Modes.empty())
Modes.insert({Universal, ""}); // Base case, skip suffix.
// Emit function declaration
OS << "void " << Target.getName()
<< "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " APInt &Inst,\n"
<< " APInt &Scratch,\n"
<< " const MCSubtargetInfo &STI) const {\n";
// Emit instruction base values
for (const auto &Mode : Modes)
emitInstructionBaseValues(OS, NumberedInstructions, Target, Mode.first);
if (Modes.size() > 1) {
OS << " unsigned Mode = STI.getHwMode();\n";
}
for (const auto &Mode : Modes) {
// Emit helper function to retrieve base values.
OS << " auto getInstBits" << Mode.second
<< " = [&](unsigned Opcode) -> APInt {\n"
<< " unsigned NumBits = Index" << Mode.second << "[Opcode][0];\n"
<< " if (!NumBits)\n"
<< " return APInt::getZeroWidth();\n"
<< " unsigned Idx = Index" << Mode.second << "[Opcode][1];\n"
<< " ArrayRef<uint64_t> Data(&InstBits" << Mode.second << "[Idx], "
<< "APInt::getNumWords(NumBits));\n"
<< " return APInt(NumBits, Data);\n"
<< " };\n";
}
// Map to accumulate all the cases.
std::map<std::string, std::vector<std::string>> CaseMap;
// Construct all cases statement for each opcode
for (Record *R : Insts) {
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
std::string InstName =
(R->getValueAsString("Namespace") + "::" + R->getName()).str();
std::string Case = getInstructionCases(R, Target);
CaseMap[Case].push_back(std::move(InstName));
}
// Emit initial function code
OS << " const unsigned opcode = MI.getOpcode();\n"
<< " switch (opcode) {\n";
// Emit each case statement
for (const auto &C : CaseMap) {
const std::string &Case = C.first;
const auto &InstList = C.second;
ListSeparator LS("\n");
for (const auto &InstName : InstList)
OS << LS << " case " << InstName << ":";
OS << " {\n";
OS << Case;
OS << " break;\n"
<< " }\n";
}
// Default case: unhandled opcode
OS << " default:\n"
<< " std::string msg;\n"
<< " raw_string_ostream Msg(msg);\n"
<< " Msg << \"Not supported instr: \" << MI;\n"
<< " report_fatal_error(Msg.str().c_str());\n"
<< " }\n";
OS << "}\n\n";
}
static void emitInstBits(raw_ostream &IS, raw_ostream &SS, const APInt &Bits,
unsigned &Index) {
if (!Bits.getNumWords()) {
IS.indent(4) << "{/*NumBits*/0, /*Index*/0},";
return;
}
IS.indent(4) << "{/*NumBits*/" << Bits.getBitWidth() << ", "
<< "/*Index*/" << Index << "},";
SS.indent(4);
for (unsigned I = 0; I < Bits.getNumWords(); ++I, ++Index)
SS << "UINT64_C(" << utostr(Bits.getRawData()[I]) << "),";
}
void VarLenCodeEmitterGen::emitInstructionBaseValues(
raw_ostream &OS, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, AltEncodingTy Mode) {
std::string IndexArray, StorageArray;
raw_string_ostream IS(IndexArray), SS(StorageArray);
IS << " static const unsigned Index" << Modes[Mode] << "[][2] = {\n";
SS << " static const uint64_t InstBits" << Modes[Mode] << "[] = {\n";
unsigned NumFixedValueWords = 0U;
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo")) {
IS.indent(4) << "{/*NumBits*/0, /*Index*/0},\n";
continue;
}
const auto InstIt = VarLenInsts.find(R);
if (InstIt == VarLenInsts.end())
PrintFatalError(R, "VarLenInst not found for this record");
auto ModeIt = InstIt->second.find(Mode);
if (ModeIt == InstIt->second.end())
ModeIt = InstIt->second.find(Universal);
if (ModeIt == InstIt->second.end()) {
IS.indent(4) << "{/*NumBits*/0, /*Index*/0},\t"
<< "// " << R->getName() << " no encoding\n";
continue;
}
const VarLenInst &VLI = ModeIt->second;
unsigned i = 0U, BitWidth = VLI.size();
// Start by filling in fixed values.
APInt Value(BitWidth, 0);
auto SI = VLI.begin(), SE = VLI.end();
// Scan through all the segments that have fixed-bits values.
while (i < BitWidth && SI != SE) {
unsigned SegmentNumBits = SI->BitWidth;
if (const auto *BI = dyn_cast<BitsInit>(SI->Value)) {
for (unsigned Idx = 0U; Idx != SegmentNumBits; ++Idx) {
auto *B = cast<BitInit>(BI->getBit(Idx));
Value.setBitVal(i + Idx, B->getValue());
}
}
if (const auto *BI = dyn_cast<BitInit>(SI->Value))
Value.setBitVal(i, BI->getValue());
i += SegmentNumBits;
++SI;
}
emitInstBits(IS, SS, Value, NumFixedValueWords);
IS << '\t' << "// " << R->getName() << "\n";
if (Value.getNumWords())
SS << '\t' << "// " << R->getName() << "\n";
}
IS.indent(4) << "{/*NumBits*/0, /*Index*/0}\n };\n";
SS.indent(4) << "UINT64_C(0)\n };\n";
OS << IS.str() << SS.str();
}
std::string VarLenCodeEmitterGen::getInstructionCases(Record *R,
CodeGenTarget &Target) {
auto It = VarLenInsts.find(R);
if (It == VarLenInsts.end())
PrintFatalError(R, "Parsed encoding record not found");
const auto &Map = It->second;
// Is this instructions encoding universal (same for all modes)?
// Allways true if there is only one mode.
if (Map.size() == 1 && Map.begin()->first == Universal) {
// Universal, just pick the first mode.
AltEncodingTy Mode = Modes.begin()->first;
const auto &Encoding = Map.begin()->second;
return getInstructionCaseForEncoding(R, Mode, Encoding, Target, 6);
}
std::string Case;
Case += " switch (Mode) {\n";
Case += " default: llvm_unreachable(\"Unhandled Mode\");\n";
for (const auto &Mode : Modes) {
Case += " case " + itostr(Mode.first) + ": {\n";
const auto &It = Map.find(Mode.first);
if (It == Map.end()) {
Case +=
" llvm_unreachable(\"Undefined encoding in this mode\");\n";
} else {
Case +=
getInstructionCaseForEncoding(R, It->first, It->second, Target, 8);
}
Case += " break;\n";
Case += " }\n";
}
Case += " }\n";
return Case;
}
std::string VarLenCodeEmitterGen::getInstructionCaseForEncoding(
Record *R, AltEncodingTy Mode, const VarLenInst &VLI, CodeGenTarget &Target,
int I) {
CodeGenInstruction &CGI = Target.getInstruction(R);
std::string Case;
raw_string_ostream SS(Case);
// Populate based value.
SS.indent(I) << "Inst = getInstBits" << Modes[Mode] << "(opcode);\n";
// Process each segment in VLI.
size_t Offset = 0U;
unsigned HighScratchAccess = 0U;
for (const auto &ES : VLI) {
unsigned NumBits = ES.BitWidth;
const Init *Val = ES.Value;
// If it's a StringInit or DagInit, it's a reference to an operand
// or part of an operand.
if (isa<StringInit>(Val) || isa<DagInit>(Val)) {
StringRef OperandName;
unsigned LoBit = 0U;
if (const auto *SV = dyn_cast<StringInit>(Val)) {
OperandName = SV->getValue();
} else {
// Normalized: (slice <operand name>, <high bit>, <low bit>)
const auto *DV = cast<DagInit>(Val);
OperandName = cast<StringInit>(DV->getArg(0))->getValue();
LoBit = static_cast<unsigned>(cast<IntInit>(DV->getArg(2))->getValue());
}
auto OpIdx = CGI.Operands.ParseOperandName(OperandName);
unsigned FlatOpIdx = CGI.Operands.getFlattenedOperandNumber(OpIdx);
StringRef CustomEncoder =
CGI.Operands[OpIdx.first].EncoderMethodNames[OpIdx.second];
if (ES.CustomEncoder.size())
CustomEncoder = ES.CustomEncoder;
SS.indent(I) << "Scratch.clearAllBits();\n";
SS.indent(I) << "// op: " << OperandName.drop_front(1) << "\n";
if (CustomEncoder.empty())
SS.indent(I) << "getMachineOpValue(MI, MI.getOperand("
<< utostr(FlatOpIdx) << ")";
else
SS.indent(I) << CustomEncoder << "(MI, /*OpIdx=*/" << utostr(FlatOpIdx);
SS << ", /*Pos=*/" << utostr(Offset) << ", Scratch, Fixups, STI);\n";
SS.indent(I) << "Inst.insertBits("
<< "Scratch.extractBits(" << utostr(NumBits) << ", "
<< utostr(LoBit) << ")"
<< ", " << Offset << ");\n";
HighScratchAccess = std::max(HighScratchAccess, NumBits + LoBit);
}
Offset += NumBits;
}
StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
if (!PostEmitter.empty())
SS.indent(I) << "Inst = " << PostEmitter << "(MI, Inst, STI);\n";
// Resize the scratch buffer if it's to small.
std::string ScratchResizeStr;
if (VLI.size() && !VLI.isFixedValueOnly()) {
raw_string_ostream RS(ScratchResizeStr);
RS.indent(I) << "if (Scratch.getBitWidth() < " << HighScratchAccess
<< ") { Scratch = Scratch.zext(" << HighScratchAccess
<< "); }\n";
}
return ScratchResizeStr + Case;
}
namespace llvm {
void emitVarLenCodeEmitter(RecordKeeper &R, raw_ostream &OS) {
VarLenCodeEmitterGen(R).run(OS);
}
} // end namespace llvm