llvm-project/llvm/lib/Target/AMDGPU/AMDGPUSubtarget.cpp
Matt Arsenault 70cd9f5b77 AMDGPU/GlobalISel: Start implementing computeKnownBitsForTargetInstr
Handle workitem intrinsics. There isn't really away to adequately test
this right now, since none of the known bits users are fine grained
enough to test the edge conditions. This triggers a number of
instances of the new 64-bit to 32-bit shift combine in the existing
tests.
2020-08-24 09:53:27 -04:00

926 lines
30 KiB
C++

//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
#include "AMDGPU.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenSubtargetInfo.inc"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#undef AMDGPUSubtarget
#include "R600GenSubtargetInfo.inc"
static cl::opt<bool> DisablePowerSched(
"amdgpu-disable-power-sched",
cl::desc("Disable scheduling to minimize mAI power bursts"),
cl::init(false));
static cl::opt<bool> EnableVGPRIndexMode(
"amdgpu-vgpr-index-mode",
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
cl::init(false));
GCNSubtarget::~GCNSubtarget() = default;
R600Subtarget &
R600Subtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
SmallString<256> FullFS("+promote-alloca,");
FullFS += FS;
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
HasMulU24 = getGeneration() >= EVERGREEN;
HasMulI24 = hasCaymanISA();
return *this;
}
GCNSubtarget &
GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
// Determine default and user-specified characteristics
//
// We want to be able to turn these off, but making this a subtarget feature
// for SI has the unhelpful behavior that it unsets everything else if you
// disable it.
//
// Similarly we want enable-prt-strict-null to be on by default and not to
// unset everything else if it is disabled
// Assuming ECC is enabled is the conservative default.
SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,+sram-ecc,+xnack,");
if (isAmdHsaOS()) // Turn on FlatForGlobal for HSA.
FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
// Disable mutually exclusive bits.
if (FS.find_lower("+wavefrontsize") != StringRef::npos) {
if (FS.find_lower("wavefrontsize16") == StringRef::npos)
FullFS += "-wavefrontsize16,";
if (FS.find_lower("wavefrontsize32") == StringRef::npos)
FullFS += "-wavefrontsize32,";
if (FS.find_lower("wavefrontsize64") == StringRef::npos)
FullFS += "-wavefrontsize64,";
}
FullFS += FS;
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
// We don't support FP64 for EG/NI atm.
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
// Unless +-flat-for-global is specified, turn on FlatForGlobal for all OS-es
// on VI and newer hardware to avoid assertion failures due to missing ADDR64
// variants of MUBUF instructions.
if (!hasAddr64() && !FS.contains("flat-for-global")) {
FlatForGlobal = true;
}
// Set defaults if needed.
if (MaxPrivateElementSize == 0)
MaxPrivateElementSize = 4;
if (LDSBankCount == 0)
LDSBankCount = 32;
if (TT.getArch() == Triple::amdgcn) {
if (LocalMemorySize == 0)
LocalMemorySize = 32768;
// Do something sensible for unspecified target.
if (!HasMovrel && !HasVGPRIndexMode)
HasMovrel = true;
}
// Don't crash on invalid devices.
if (WavefrontSizeLog2 == 0)
WavefrontSizeLog2 = 5;
HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
// Disable XNACK on targets where it is not enabled by default unless it is
// explicitly requested.
if (!FS.contains("+xnack") && DoesNotSupportXNACK && EnableXNACK) {
ToggleFeature(AMDGPU::FeatureXNACK);
EnableXNACK = false;
}
// ECC is on by default, but turn it off if the hardware doesn't support it
// anyway. This matters for the gfx9 targets with d16 loads, but don't support
// ECC.
if (DoesNotSupportSRAMECC && EnableSRAMECC) {
ToggleFeature(AMDGPU::FeatureSRAMECC);
EnableSRAMECC = false;
}
return *this;
}
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) :
TargetTriple(TT),
Has16BitInsts(false),
HasMadMixInsts(false),
HasMadMacF32Insts(false),
HasDsSrc2Insts(false),
HasSDWA(false),
HasVOP3PInsts(false),
HasMulI24(true),
HasMulU24(true),
HasInv2PiInlineImm(false),
HasFminFmaxLegacy(true),
EnablePromoteAlloca(false),
HasTrigReducedRange(false),
MaxWavesPerEU(10),
LocalMemorySize(0),
WavefrontSizeLog2(0)
{ }
GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const GCNTargetMachine &TM) :
AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
AMDGPUSubtarget(TT),
TargetTriple(TT),
Gen(TT.getOS() == Triple::AMDHSA ? SEA_ISLANDS : SOUTHERN_ISLANDS),
InstrItins(getInstrItineraryForCPU(GPU)),
LDSBankCount(0),
MaxPrivateElementSize(0),
FastFMAF32(false),
FastDenormalF32(false),
HalfRate64Ops(false),
FlatForGlobal(false),
AutoWaitcntBeforeBarrier(false),
CodeObjectV3(false),
UnalignedScratchAccess(false),
UnalignedAccessMode(false),
HasApertureRegs(false),
EnableXNACK(false),
DoesNotSupportXNACK(false),
EnableCuMode(false),
TrapHandler(false),
EnableLoadStoreOpt(false),
EnableUnsafeDSOffsetFolding(false),
EnableSIScheduler(false),
EnableDS128(false),
EnablePRTStrictNull(false),
DumpCode(false),
FP64(false),
GCN3Encoding(false),
CIInsts(false),
GFX8Insts(false),
GFX9Insts(false),
GFX10Insts(false),
GFX10_3Insts(false),
GFX7GFX8GFX9Insts(false),
SGPRInitBug(false),
HasSMemRealTime(false),
HasIntClamp(false),
HasFmaMixInsts(false),
HasMovrel(false),
HasVGPRIndexMode(false),
HasScalarStores(false),
HasScalarAtomics(false),
HasSDWAOmod(false),
HasSDWAScalar(false),
HasSDWASdst(false),
HasSDWAMac(false),
HasSDWAOutModsVOPC(false),
HasDPP(false),
HasDPP8(false),
HasR128A16(false),
HasGFX10A16(false),
HasG16(false),
HasNSAEncoding(false),
GFX10_BEncoding(false),
HasDLInsts(false),
HasDot1Insts(false),
HasDot2Insts(false),
HasDot3Insts(false),
HasDot4Insts(false),
HasDot5Insts(false),
HasDot6Insts(false),
HasMAIInsts(false),
HasPkFmacF16Inst(false),
HasAtomicFaddInsts(false),
EnableSRAMECC(false),
DoesNotSupportSRAMECC(false),
HasNoSdstCMPX(false),
HasVscnt(false),
HasGetWaveIdInst(false),
HasSMemTimeInst(false),
HasRegisterBanking(false),
HasVOP3Literal(false),
HasNoDataDepHazard(false),
FlatAddressSpace(false),
FlatInstOffsets(false),
FlatGlobalInsts(false),
FlatScratchInsts(false),
ScalarFlatScratchInsts(false),
AddNoCarryInsts(false),
HasUnpackedD16VMem(false),
LDSMisalignedBug(false),
HasMFMAInlineLiteralBug(false),
UnalignedBufferAccess(false),
UnalignedDSAccess(false),
ScalarizeGlobal(false),
HasVcmpxPermlaneHazard(false),
HasVMEMtoScalarWriteHazard(false),
HasSMEMtoVectorWriteHazard(false),
HasInstFwdPrefetchBug(false),
HasVcmpxExecWARHazard(false),
HasLdsBranchVmemWARHazard(false),
HasNSAtoVMEMBug(false),
HasOffset3fBug(false),
HasFlatSegmentOffsetBug(false),
FeatureDisable(false),
InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
TLInfo(TM, *this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
InstSelector.reset(new AMDGPUInstructionSelector(
*this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
}
unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
if (getGeneration() < GFX10)
return 1;
switch (Opcode) {
case AMDGPU::V_LSHLREV_B64:
case AMDGPU::V_LSHLREV_B64_gfx10:
case AMDGPU::V_LSHL_B64:
case AMDGPU::V_LSHRREV_B64:
case AMDGPU::V_LSHRREV_B64_gfx10:
case AMDGPU::V_LSHR_B64:
case AMDGPU::V_ASHRREV_I64:
case AMDGPU::V_ASHRREV_I64_gfx10:
case AMDGPU::V_ASHR_I64:
return 1;
}
return 2;
}
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
const Function &F) const {
if (NWaves == 1)
return getLocalMemorySize();
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
if (!WorkGroupsPerCu)
return 0;
unsigned MaxWaves = getMaxWavesPerEU();
return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
}
// FIXME: Should return min,max range.
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
const Function &F) const {
const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
if (!MaxWorkGroupsPerCu)
return 0;
const unsigned WaveSize = getWavefrontSize();
// FIXME: Do we need to account for alignment requirement of LDS rounding the
// size up?
// Compute restriction based on LDS usage
unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
// This can be queried with more LDS than is possible, so just assume the
// worst.
if (NumGroups == 0)
return 1;
NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
// Round to the number of waves.
const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
// Clamp to the maximum possible number of waves.
MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
// FIXME: Needs to be a multiple of the group size?
//MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
"computed invalid occupancy");
return MaxWaves;
}
unsigned
AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
switch (CC) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
return std::make_pair(1, getWavefrontSize());
default:
return std::make_pair(1u, getMaxFlatWorkGroupSize());
}
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
const Function &F) const {
// Default minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Default =
getDefaultFlatWorkGroupSize(F.getCallingConv());
// Requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-flat-work-group-size", Default);
// Make sure requested minimum is less than requested maximum.
if (Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinFlatWorkGroupSize())
return Default;
if (Requested.second > getMaxFlatWorkGroupSize())
return Default;
return Requested;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
const Function &F) const {
// Default minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
// Default/requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
// If minimum/maximum flat work group sizes were explicitly requested using
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
// number of waves per execution unit to values implied by requested
// minimum/maximum flat work group sizes.
unsigned MinImpliedByFlatWorkGroupSize =
getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
Default.first = MinImpliedByFlatWorkGroupSize;
bool RequestedFlatWorkGroupSize =
F.hasFnAttribute("amdgpu-flat-work-group-size");
// Requested minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-waves-per-eu", Default, true);
// Make sure requested minimum is less than requested maximum.
if (Requested.second && Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinWavesPerEU() ||
Requested.second > getMaxWavesPerEU())
return Default;
// Make sure requested values are compatible with values implied by requested
// minimum/maximum flat work group sizes.
if (RequestedFlatWorkGroupSize &&
Requested.first < MinImpliedByFlatWorkGroupSize)
return Default;
return Requested;
}
static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
auto Node = Kernel.getMetadata("reqd_work_group_size");
if (Node && Node->getNumOperands() == 3)
return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
return std::numeric_limits<unsigned>::max();
}
unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
unsigned Dimension) const {
unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
if (ReqdSize != std::numeric_limits<unsigned>::max())
return ReqdSize - 1;
return getFlatWorkGroupSizes(Kernel).second - 1;
}
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
Function *Kernel = I->getParent()->getParent();
unsigned MinSize = 0;
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
bool IdQuery = false;
// If reqd_work_group_size is present it narrows value down.
if (auto *CI = dyn_cast<CallInst>(I)) {
const Function *F = CI->getCalledFunction();
if (F) {
unsigned Dim = UINT_MAX;
switch (F->getIntrinsicID()) {
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_x:
Dim = 0;
break;
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_y:
Dim = 1;
break;
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_z:
Dim = 2;
break;
default:
break;
}
if (Dim <= 3) {
unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
if (ReqdSize != std::numeric_limits<unsigned>::max())
MinSize = MaxSize = ReqdSize;
}
}
}
if (!MaxSize)
return false;
// Range metadata is [Lo, Hi). For ID query we need to pass max size
// as Hi. For size query we need to pass Hi + 1.
if (IdQuery)
MinSize = 0;
else
++MaxSize;
MDBuilder MDB(I->getContext());
MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
APInt(32, MaxSize));
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
return true;
}
uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
Align &MaxAlign) const {
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const DataLayout &DL = F.getParent()->getDataLayout();
uint64_t ExplicitArgBytes = 0;
MaxAlign = Align(1);
for (const Argument &Arg : F.args()) {
const bool IsByRef = Arg.hasByRefAttr();
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
if (!Alignment)
Alignment = DL.getABITypeAlign(ArgTy);
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
MaxAlign = max(MaxAlign, Alignment);
}
return ExplicitArgBytes;
}
unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
Align &MaxAlign) const {
uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
const Align Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
R600GenSubtargetInfo(TT, GPU, /*TuneCPU*/GPU, FS),
AMDGPUSubtarget(TT),
InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
FMA(false),
CaymanISA(false),
CFALUBug(false),
HasVertexCache(false),
R600ALUInst(false),
FP64(false),
TexVTXClauseSize(0),
Gen(R600),
TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)),
InstrItins(getInstrItineraryForCPU(GPU)) { }
void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// Track register pressure so the scheduler can try to decrease
// pressure once register usage is above the threshold defined by
// SIRegisterInfo::getRegPressureSetLimit()
Policy.ShouldTrackPressure = true;
// Enabling both top down and bottom up scheduling seems to give us less
// register spills than just using one of these approaches on its own.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
if (!enableSIScheduler())
Policy.ShouldTrackLaneMasks = true;
}
bool GCNSubtarget::hasMadF16() const {
return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16) != -1;
}
bool GCNSubtarget::useVGPRIndexMode() const {
return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
}
unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= AMDGPUSubtarget::GFX10)
return getMaxWavesPerEU();
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)
return 10;
if (SGPRs <= 88)
return 9;
if (SGPRs <= 100)
return 8;
return 7;
}
if (SGPRs <= 48)
return 10;
if (SGPRs <= 56)
return 9;
if (SGPRs <= 64)
return 8;
if (SGPRs <= 72)
return 7;
if (SGPRs <= 80)
return 6;
return 5;
}
unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
unsigned MaxWaves = getMaxWavesPerEU();
unsigned Granule = getVGPRAllocGranule();
if (VGPRs < Granule)
return MaxWaves;
unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
}
unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
if (getGeneration() >= AMDGPUSubtarget::GFX10)
return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
if (MFI.hasFlatScratchInit()) {
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
return 4; // FLAT_SCRATCH, VCC (in that order).
}
if (isXNACKEnabled())
return 4; // XNACK, VCC (in that order).
return 2; // VCC.
}
unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
unsigned NumSGPRs,
unsigned NumVGPRs) const {
unsigned Occupancy =
std::min(getMaxWavesPerEU(),
getOccupancyWithLocalMemSize(LDSSize, F));
if (NumSGPRs)
Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
if (NumVGPRs)
Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
return Occupancy;
}
unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of SGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
// Check if maximum number of SGPRs was explicitly requested using
// "amdgpu-num-sgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-sgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-sgpr", MaxNumSGPRs);
// Make sure requested value does not violate subtarget's specifications.
if (Requested && (Requested <= getReservedNumSGPRs(MF)))
Requested = 0;
// If more SGPRs are required to support the input user/system SGPRs,
// increase to accommodate them.
//
// FIXME: This really ends up using the requested number of SGPRs + number
// of reserved special registers in total. Theoretically you could re-use
// the last input registers for these special registers, but this would
// require a lot of complexity to deal with the weird aliasing.
unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
if (Requested && Requested < InputNumSGPRs)
Requested = InputNumSGPRs;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumSGPRs = Requested;
}
if (hasSGPRInitBug())
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
MaxAddressableNumSGPRs);
}
unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of VGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
// Check if maximum number of VGPRs was explicitly requested using
// "amdgpu-num-vgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-vgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-vgpr", MaxNumVGPRs);
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumVGPRs = Requested;
}
return MaxNumVGPRs;
}
void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
int UseOpIdx, SDep &Dep) const {
if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
!Def->isInstr() || !Use->isInstr())
return;
MachineInstr *DefI = Def->getInstr();
MachineInstr *UseI = Use->getInstr();
if (DefI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
unsigned Lat = 0;
for (++I; I != E && I->isBundledWithPred(); ++I) {
if (I->modifiesRegister(Reg, TRI))
Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
else if (Lat)
--Lat;
}
Dep.setLatency(Lat);
} else if (UseI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
if (I->readsRegister(Reg, TRI))
break;
--Lat;
}
Dep.setLatency(Lat);
}
}
namespace {
struct FillMFMAShadowMutation : ScheduleDAGMutation {
const SIInstrInfo *TII;
ScheduleDAGMI *DAG;
FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
bool isSALU(const SUnit *SU) const {
const MachineInstr *MI = SU->getInstr();
return MI && TII->isSALU(*MI) && !MI->isTerminator();
}
bool isVALU(const SUnit *SU) const {
const MachineInstr *MI = SU->getInstr();
return MI && TII->isVALU(*MI);
}
bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const {
if (Pred->NodeNum < Succ->NodeNum)
return true;
SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred});
for (unsigned I = 0; I < Succs.size(); ++I) {
for (const SDep &SI : Succs[I]->Succs) {
const SUnit *SU = SI.getSUnit();
if (SU != Succs[I] && llvm::find(Succs, SU) == Succs.end())
Succs.push_back(SU);
}
}
SmallPtrSet<const SUnit*, 32> Visited;
while (!Preds.empty()) {
const SUnit *SU = Preds.pop_back_val();
if (llvm::find(Succs, SU) != Succs.end())
return false;
Visited.insert(SU);
for (const SDep &SI : SU->Preds)
if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit()))
Preds.push_back(SI.getSUnit());
}
return true;
}
// Link as much SALU intructions in chain as possible. Return the size
// of the chain. Links up to MaxChain instructions.
unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
SmallPtrSetImpl<SUnit *> &Visited) const {
SmallVector<SUnit *, 8> Worklist({To});
unsigned Linked = 0;
while (!Worklist.empty() && MaxChain-- > 0) {
SUnit *SU = Worklist.pop_back_val();
if (!Visited.insert(SU).second)
continue;
LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
if (SU->addPred(SDep(From, SDep::Artificial), false))
++Linked;
for (SDep &SI : From->Succs) {
SUnit *SUv = SI.getSUnit();
if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU))
SUv->addPred(SDep(SU, SDep::Artificial), false);
}
for (SDep &SI : SU->Succs) {
SUnit *Succ = SI.getSUnit();
if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ))
Worklist.push_back(Succ);
}
}
return Linked;
}
void apply(ScheduleDAGInstrs *DAGInstrs) override {
const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
if (!ST.hasMAIInsts() || DisablePowerSched)
return;
DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
if (!TSchedModel || DAG->SUnits.empty())
return;
// Scan for MFMA long latency instructions and try to add a dependency
// of available SALU instructions to give them a chance to fill MFMA
// shadow. That is desirable to fill MFMA shadow with SALU instructions
// rather than VALU to prevent power consumption bursts and throttle.
auto LastSALU = DAG->SUnits.begin();
auto E = DAG->SUnits.end();
SmallPtrSet<SUnit*, 32> Visited;
for (SUnit &SU : DAG->SUnits) {
MachineInstr &MAI = *SU.getInstr();
if (!TII->isMAI(MAI) ||
MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32 ||
MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32)
continue;
unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
dbgs() << "Need " << Lat
<< " instructions to cover latency.\n");
// Find up to Lat independent scalar instructions as early as
// possible such that they can be scheduled after this MFMA.
for ( ; Lat && LastSALU != E; ++LastSALU) {
if (Visited.count(&*LastSALU))
continue;
if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU))
continue;
Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
}
}
}
};
} // namespace
void GCNSubtarget::getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
else
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
if (TM.getTargetTriple().getArch() == Triple::amdgcn)
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
else
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
}