
*** to conform to clang-format’s LLVM style. This kind of mass change has *** two obvious implications: Firstly, merging this particular commit into a downstream fork may be a huge effort. Alternatively, it may be worth merging all changes up to this commit, performing the same reformatting operation locally, and then discarding the merge for this particular commit. The commands used to accomplish this reformatting were as follows (with current working directory as the root of the repository): find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} + find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ; The version of clang-format used was 3.9.0, and autopep8 was 1.2.4. Secondly, “blame” style tools will generally point to this commit instead of a meaningful prior commit. There are alternatives available that will attempt to look through this change and find the appropriate prior commit. YMMV. llvm-svn: 280751
201 lines
7.5 KiB
C++
201 lines
7.5 KiB
C++
//===-- PThreadEvent.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Created by Greg Clayton on 6/16/07.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "PThreadEvent.h"
|
|
#include "DNBLog.h"
|
|
#include "errno.h"
|
|
|
|
PThreadEvent::PThreadEvent(uint32_t bits, uint32_t validBits)
|
|
: m_mutex(), m_set_condition(), m_reset_condition(), m_bits(bits),
|
|
m_validBits(validBits), m_reset_ack_mask(0) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, 0x%8.8x)",
|
|
// this, __FUNCTION__, bits, validBits);
|
|
}
|
|
|
|
PThreadEvent::~PThreadEvent() {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
|
|
}
|
|
|
|
uint32_t PThreadEvent::NewEventBit() {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
uint32_t mask = 1;
|
|
while (mask & m_validBits)
|
|
mask <<= 1;
|
|
m_validBits |= mask;
|
|
return mask;
|
|
}
|
|
|
|
void PThreadEvent::FreeEventBits(const uint32_t mask) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
|
|
// __FUNCTION__, mask);
|
|
if (mask) {
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
m_bits &= ~mask;
|
|
m_validBits &= ~mask;
|
|
}
|
|
}
|
|
|
|
uint32_t PThreadEvent::GetEventBits() const {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p %s", this, LLVM_PRETTY_FUNCTION);
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
uint32_t bits = m_bits;
|
|
return bits;
|
|
}
|
|
|
|
// Replace the event bits with a new bitmask value
|
|
void PThreadEvent::ReplaceEventBits(const uint32_t bits) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
|
|
// __FUNCTION__, bits);
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
// Make sure we have some bits and that they aren't already set...
|
|
if (m_bits != bits) {
|
|
// Figure out which bits are changing
|
|
uint32_t changed_bits = m_bits ^ bits;
|
|
// Set the new bit values
|
|
m_bits = bits;
|
|
// If any new bits are set, then broadcast
|
|
if (changed_bits & m_bits)
|
|
m_set_condition.Broadcast();
|
|
}
|
|
}
|
|
|
|
// Set one or more event bits and broadcast if any new event bits get set
|
|
// that weren't already set.
|
|
|
|
void PThreadEvent::SetEvents(const uint32_t mask) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
|
|
// __FUNCTION__, mask);
|
|
// Make sure we have some bits to set
|
|
if (mask) {
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
// Save the old event bit state so we can tell if things change
|
|
uint32_t old = m_bits;
|
|
// Set the all event bits that are set in 'mask'
|
|
m_bits |= mask;
|
|
// Broadcast only if any extra bits got set.
|
|
if (old != m_bits)
|
|
m_set_condition.Broadcast();
|
|
}
|
|
}
|
|
|
|
// Reset one or more event bits
|
|
void PThreadEvent::ResetEvents(const uint32_t mask) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x)", this,
|
|
// __FUNCTION__, mask);
|
|
if (mask) {
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
|
|
// Save the old event bit state so we can tell if things change
|
|
uint32_t old = m_bits;
|
|
// Clear the all event bits that are set in 'mask'
|
|
m_bits &= ~mask;
|
|
// Broadcast only if any extra bits got reset.
|
|
if (old != m_bits)
|
|
m_reset_condition.Broadcast();
|
|
}
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Wait until 'timeout_abstime' for any events that are set in
|
|
// 'mask'. If 'timeout_abstime' is NULL, then wait forever.
|
|
//----------------------------------------------------------------------
|
|
uint32_t
|
|
PThreadEvent::WaitForSetEvents(const uint32_t mask,
|
|
const struct timespec *timeout_abstime) const {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
|
|
// __FUNCTION__, mask, timeout_abstime);
|
|
int err = 0;
|
|
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
|
|
// unlock the mutex and wait for the condition to be set. When either
|
|
// function returns, they will re-lock the mutex. We use an auto lock/unlock
|
|
// class (PThreadMutex::Locker) to allow us to return at any point in this
|
|
// function and not have to worry about unlocking the mutex.
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
do {
|
|
// Check our predicate (event bits) in case any are already set
|
|
if (mask & m_bits) {
|
|
uint32_t bits_set = mask & m_bits;
|
|
// Our PThreadMutex::Locker will automatically unlock our mutex
|
|
return bits_set;
|
|
}
|
|
if (timeout_abstime) {
|
|
// Wait for condition to get broadcast, or for a timeout. If we get
|
|
// a timeout we will drop out of the do loop and return false which
|
|
// is what we want.
|
|
err = ::pthread_cond_timedwait(m_set_condition.Condition(),
|
|
m_mutex.Mutex(), timeout_abstime);
|
|
// Retest our predicate in case of a race condition right at the end
|
|
// of the timeout.
|
|
if (err == ETIMEDOUT) {
|
|
uint32_t bits_set = mask & m_bits;
|
|
return bits_set;
|
|
}
|
|
} else {
|
|
// Wait for condition to get broadcast. The only error this function
|
|
// should return is if
|
|
err = ::pthread_cond_wait(m_set_condition.Condition(), m_mutex.Mutex());
|
|
}
|
|
} while (err == 0);
|
|
return 0;
|
|
}
|
|
|
|
//----------------------------------------------------------------------
|
|
// Wait until 'timeout_abstime' for any events in 'mask' to reset.
|
|
// If 'timeout_abstime' is NULL, then wait forever.
|
|
//----------------------------------------------------------------------
|
|
uint32_t PThreadEvent::WaitForEventsToReset(
|
|
const uint32_t mask, const struct timespec *timeout_abstime) const {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
|
|
// __FUNCTION__, mask, timeout_abstime);
|
|
int err = 0;
|
|
// pthread_cond_timedwait() or pthread_cond_wait() will atomically
|
|
// unlock the mutex and wait for the condition to be set. When either
|
|
// function returns, they will re-lock the mutex. We use an auto lock/unlock
|
|
// class (PThreadMutex::Locker) to allow us to return at any point in this
|
|
// function and not have to worry about unlocking the mutex.
|
|
PTHREAD_MUTEX_LOCKER(locker, m_mutex);
|
|
do {
|
|
// Check our predicate (event bits) each time through this do loop
|
|
if ((mask & m_bits) == 0) {
|
|
// All the bits requested have been reset, return zero indicating
|
|
// which bits from the mask were still set (none of them)
|
|
return 0;
|
|
}
|
|
if (timeout_abstime) {
|
|
// Wait for condition to get broadcast, or for a timeout. If we get
|
|
// a timeout we will drop out of the do loop and return false which
|
|
// is what we want.
|
|
err = ::pthread_cond_timedwait(m_reset_condition.Condition(),
|
|
m_mutex.Mutex(), timeout_abstime);
|
|
} else {
|
|
// Wait for condition to get broadcast. The only error this function
|
|
// should return is if
|
|
err = ::pthread_cond_wait(m_reset_condition.Condition(), m_mutex.Mutex());
|
|
}
|
|
} while (err == 0);
|
|
// Return a mask indicating which bits (if any) were still set
|
|
return mask & m_bits;
|
|
}
|
|
|
|
uint32_t
|
|
PThreadEvent::WaitForResetAck(const uint32_t mask,
|
|
const struct timespec *timeout_abstime) const {
|
|
if (mask & m_reset_ack_mask) {
|
|
// DNBLogThreadedIf(LOG_EVENTS, "%p PThreadEvent::%s (0x%8.8x, %p)", this,
|
|
// __FUNCTION__, mask, timeout_abstime);
|
|
return WaitForEventsToReset(mask & m_reset_ack_mask, timeout_abstime);
|
|
}
|
|
return 0;
|
|
}
|