
During `hlfir.assign` inlining and `ElementalAssignBufferization` we can deduce the optimal shape from `lhs` and `rhs` shapes. It is probably better be done in a separate pass that propagates constant shapes, but I have not seen any benchmarks that would benefit from this yet. So consider this as a workaround for a bigger TODO issue. The `ElementalAssignBufferization` case is from 465.tonto, but I do not have performance results yet (I do not expect much).
926 lines
36 KiB
C++
926 lines
36 KiB
C++
//===- OptimizedBufferization.cpp - special cases for bufferization -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// In some special cases we can bufferize hlfir expressions in a more optimal
|
|
// way so as to avoid creating temporaries. This pass handles these. It should
|
|
// be run before the catch-all bufferization pass.
|
|
//
|
|
// This requires constant subexpression elimination to have already been run.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Optimizer/Analysis/AliasAnalysis.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/HLFIRTools.h"
|
|
#include "flang/Optimizer/Dialect/FIROps.h"
|
|
#include "flang/Optimizer/Dialect/FIRType.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIRDialect.h"
|
|
#include "flang/Optimizer/HLFIR/HLFIROps.h"
|
|
#include "flang/Optimizer/HLFIR/Passes.h"
|
|
#include "flang/Optimizer/OpenMP/Passes.h"
|
|
#include "flang/Optimizer/Transforms/Utils.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/IR/Dominance.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
#include "mlir/Support/LLVM.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <mlir/Analysis/AliasAnalysis.h>
|
|
#include <optional>
|
|
|
|
namespace hlfir {
|
|
#define GEN_PASS_DEF_OPTIMIZEDBUFFERIZATION
|
|
#include "flang/Optimizer/HLFIR/Passes.h.inc"
|
|
} // namespace hlfir
|
|
|
|
#define DEBUG_TYPE "opt-bufferization"
|
|
|
|
namespace {
|
|
|
|
/// This transformation should match in place modification of arrays.
|
|
/// It should match code of the form
|
|
/// %array = some.operation // array has shape %shape
|
|
/// %expr = hlfir.elemental %shape : [...] {
|
|
/// bb0(%arg0: index)
|
|
/// %0 = hlfir.designate %array(%arg0)
|
|
/// [...] // no other reads or writes to %array
|
|
/// hlfir.yield_element %element
|
|
/// }
|
|
/// hlfir.assign %expr to %array
|
|
/// hlfir.destroy %expr
|
|
///
|
|
/// Or
|
|
///
|
|
/// %read_array = some.operation // shape %shape
|
|
/// %expr = hlfir.elemental %shape : [...] {
|
|
/// bb0(%arg0: index)
|
|
/// %0 = hlfir.designate %read_array(%arg0)
|
|
/// [...]
|
|
/// hlfir.yield_element %element
|
|
/// }
|
|
/// %write_array = some.operation // with shape %shape
|
|
/// [...] // operations which don't effect write_array
|
|
/// hlfir.assign %expr to %write_array
|
|
/// hlfir.destroy %expr
|
|
///
|
|
/// In these cases, it is safe to turn the elemental into a do loop and modify
|
|
/// elements of %array in place without creating an extra temporary for the
|
|
/// elemental. We must check that there are no reads from the array at indexes
|
|
/// which might conflict with the assignment or any writes. For now we will keep
|
|
/// that strict and say that all reads must be at the elemental index (it is
|
|
/// probably safe to read from higher indices if lowering to an ordered loop).
|
|
class ElementalAssignBufferization
|
|
: public mlir::OpRewritePattern<hlfir::ElementalOp> {
|
|
private:
|
|
struct MatchInfo {
|
|
mlir::Value array;
|
|
hlfir::AssignOp assign;
|
|
hlfir::DestroyOp destroy;
|
|
};
|
|
/// determines if the transformation can be applied to this elemental
|
|
static std::optional<MatchInfo> findMatch(hlfir::ElementalOp elemental);
|
|
|
|
/// Returns the array indices for the given hlfir.designate.
|
|
/// It recognizes the computations used to transform the one-based indices
|
|
/// into the array's lb-based indices, and returns the one-based indices
|
|
/// in these cases.
|
|
static llvm::SmallVector<mlir::Value>
|
|
getDesignatorIndices(hlfir::DesignateOp designate);
|
|
|
|
public:
|
|
using mlir::OpRewritePattern<hlfir::ElementalOp>::OpRewritePattern;
|
|
|
|
llvm::LogicalResult
|
|
matchAndRewrite(hlfir::ElementalOp elemental,
|
|
mlir::PatternRewriter &rewriter) const override;
|
|
};
|
|
|
|
/// recursively collect all effects between start and end (including start, not
|
|
/// including end) start must properly dominate end, start and end must be in
|
|
/// the same block. If any operations with unknown effects are found,
|
|
/// std::nullopt is returned
|
|
static std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
|
|
getEffectsBetween(mlir::Operation *start, mlir::Operation *end) {
|
|
mlir::SmallVector<mlir::MemoryEffects::EffectInstance> ret;
|
|
if (start == end)
|
|
return ret;
|
|
assert(start->getBlock() && end->getBlock() && "TODO: block arguments");
|
|
assert(start->getBlock() == end->getBlock());
|
|
assert(mlir::DominanceInfo{}.properlyDominates(start, end));
|
|
|
|
mlir::Operation *nextOp = start;
|
|
while (nextOp && nextOp != end) {
|
|
std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
|
|
effects = mlir::getEffectsRecursively(nextOp);
|
|
if (!effects)
|
|
return std::nullopt;
|
|
ret.append(*effects);
|
|
nextOp = nextOp->getNextNode();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/// If effect is a read or write on val, return whether it aliases.
|
|
/// Otherwise return mlir::AliasResult::NoAlias
|
|
static mlir::AliasResult
|
|
containsReadOrWriteEffectOn(const mlir::MemoryEffects::EffectInstance &effect,
|
|
mlir::Value val) {
|
|
fir::AliasAnalysis aliasAnalysis;
|
|
|
|
if (mlir::isa<mlir::MemoryEffects::Read, mlir::MemoryEffects::Write>(
|
|
effect.getEffect())) {
|
|
mlir::Value accessedVal = effect.getValue();
|
|
if (mlir::isa<fir::DebuggingResource>(effect.getResource()))
|
|
return mlir::AliasResult::NoAlias;
|
|
if (!accessedVal)
|
|
return mlir::AliasResult::MayAlias;
|
|
if (accessedVal == val)
|
|
return mlir::AliasResult::MustAlias;
|
|
|
|
// if the accessed value might alias val
|
|
mlir::AliasResult res = aliasAnalysis.alias(val, accessedVal);
|
|
if (!res.isNo())
|
|
return res;
|
|
|
|
// FIXME: alias analysis of fir.load
|
|
// follow this common pattern:
|
|
// %ref = hlfir.designate %array(%index)
|
|
// %val = fir.load $ref
|
|
if (auto designate = accessedVal.getDefiningOp<hlfir::DesignateOp>()) {
|
|
if (designate.getMemref() == val)
|
|
return mlir::AliasResult::MustAlias;
|
|
|
|
// if the designate is into an array that might alias val
|
|
res = aliasAnalysis.alias(val, designate.getMemref());
|
|
if (!res.isNo())
|
|
return res;
|
|
}
|
|
}
|
|
return mlir::AliasResult::NoAlias;
|
|
}
|
|
|
|
// Helper class for analyzing two array slices represented
|
|
// by two hlfir.designate operations.
|
|
class ArraySectionAnalyzer {
|
|
public:
|
|
// The result of the analyzis is one of the values below.
|
|
enum class SlicesOverlapKind {
|
|
// Slices overlap is unknown.
|
|
Unknown,
|
|
// Slices are definitely identical.
|
|
DefinitelyIdentical,
|
|
// Slices are definitely disjoint.
|
|
DefinitelyDisjoint,
|
|
// Slices may be either disjoint or identical,
|
|
// i.e. there is definitely no partial overlap.
|
|
EitherIdenticalOrDisjoint
|
|
};
|
|
|
|
// Analyzes two hlfir.designate results and returns the overlap kind.
|
|
// The callers may use this method when the alias analysis reports
|
|
// an alias of some kind, so that we can run Fortran specific analysis
|
|
// on the array slices to see if they are identical or disjoint.
|
|
// Note that the alias analysis are not able to give such an answer
|
|
// about the references.
|
|
static SlicesOverlapKind analyze(mlir::Value ref1, mlir::Value ref2);
|
|
|
|
private:
|
|
struct SectionDesc {
|
|
// An array section is described by <lb, ub, stride> tuple.
|
|
// If the designator's subscript is not a triple, then
|
|
// the section descriptor is constructed as <lb, nullptr, nullptr>.
|
|
mlir::Value lb, ub, stride;
|
|
|
|
SectionDesc(mlir::Value lb, mlir::Value ub, mlir::Value stride)
|
|
: lb(lb), ub(ub), stride(stride) {
|
|
assert(lb && "lower bound or index must be specified");
|
|
normalize();
|
|
}
|
|
|
|
// Normalize the section descriptor:
|
|
// 1. If UB is nullptr, then it is set to LB.
|
|
// 2. If LB==UB, then stride does not matter,
|
|
// so it is reset to nullptr.
|
|
// 3. If STRIDE==1, then it is reset to nullptr.
|
|
void normalize() {
|
|
if (!ub)
|
|
ub = lb;
|
|
if (lb == ub)
|
|
stride = nullptr;
|
|
if (stride)
|
|
if (auto val = fir::getIntIfConstant(stride))
|
|
if (*val == 1)
|
|
stride = nullptr;
|
|
}
|
|
|
|
bool operator==(const SectionDesc &other) const {
|
|
return lb == other.lb && ub == other.ub && stride == other.stride;
|
|
}
|
|
};
|
|
|
|
// Given an operand_iterator over the indices operands,
|
|
// read the subscript values and return them as SectionDesc
|
|
// updating the iterator. If isTriplet is true,
|
|
// the subscript is a triplet, and the result is <lb, ub, stride>.
|
|
// Otherwise, the subscript is a scalar index, and the result
|
|
// is <index, nullptr, nullptr>.
|
|
static SectionDesc readSectionDesc(mlir::Operation::operand_iterator &it,
|
|
bool isTriplet) {
|
|
if (isTriplet)
|
|
return {*it++, *it++, *it++};
|
|
return {*it++, nullptr, nullptr};
|
|
}
|
|
|
|
// Return the ordered lower and upper bounds of the section.
|
|
// If stride is known to be non-negative, then the ordered
|
|
// bounds match the <lb, ub> of the descriptor.
|
|
// If stride is known to be negative, then the ordered
|
|
// bounds are <ub, lb> of the descriptor.
|
|
// If stride is unknown, we cannot deduce any order,
|
|
// so the result is <nullptr, nullptr>
|
|
static std::pair<mlir::Value, mlir::Value>
|
|
getOrderedBounds(const SectionDesc &desc) {
|
|
mlir::Value stride = desc.stride;
|
|
// Null stride means stride=1.
|
|
if (!stride)
|
|
return {desc.lb, desc.ub};
|
|
// Reverse the bounds, if stride is negative.
|
|
if (auto val = fir::getIntIfConstant(stride)) {
|
|
if (*val >= 0)
|
|
return {desc.lb, desc.ub};
|
|
else
|
|
return {desc.ub, desc.lb};
|
|
}
|
|
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
// Given two array sections <lb1, ub1, stride1> and
|
|
// <lb2, ub2, stride2>, return true only if the sections
|
|
// are known to be disjoint.
|
|
//
|
|
// For example, for any positive constant C:
|
|
// X:Y does not overlap with (Y+C):Z
|
|
// X:Y does not overlap with Z:(X-C)
|
|
static bool areDisjointSections(const SectionDesc &desc1,
|
|
const SectionDesc &desc2) {
|
|
auto [lb1, ub1] = getOrderedBounds(desc1);
|
|
auto [lb2, ub2] = getOrderedBounds(desc2);
|
|
if (!lb1 || !lb2)
|
|
return false;
|
|
// Note that this comparison must be made on the ordered bounds,
|
|
// otherwise 'a(x:y:1) = a(z:x-1:-1) + 1' may be incorrectly treated
|
|
// as not overlapping (x=2, y=10, z=9).
|
|
if (isLess(ub1, lb2) || isLess(ub2, lb1))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Given two array sections <lb1, ub1, stride1> and
|
|
// <lb2, ub2, stride2>, return true only if the sections
|
|
// are known to be identical.
|
|
//
|
|
// For example:
|
|
// <x, x, stride>
|
|
// <x, nullptr, nullptr>
|
|
//
|
|
// These sections are identical, from the point of which array
|
|
// elements are being addresses, even though the shape
|
|
// of the array slices might be different.
|
|
static bool areIdenticalSections(const SectionDesc &desc1,
|
|
const SectionDesc &desc2) {
|
|
if (desc1 == desc2)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Return true, if v1 is known to be less than v2.
|
|
static bool isLess(mlir::Value v1, mlir::Value v2);
|
|
};
|
|
|
|
ArraySectionAnalyzer::SlicesOverlapKind
|
|
ArraySectionAnalyzer::analyze(mlir::Value ref1, mlir::Value ref2) {
|
|
if (ref1 == ref2)
|
|
return SlicesOverlapKind::DefinitelyIdentical;
|
|
|
|
auto des1 = ref1.getDefiningOp<hlfir::DesignateOp>();
|
|
auto des2 = ref2.getDefiningOp<hlfir::DesignateOp>();
|
|
// We only support a pair of designators right now.
|
|
if (!des1 || !des2)
|
|
return SlicesOverlapKind::Unknown;
|
|
|
|
if (des1.getMemref() != des2.getMemref()) {
|
|
// If the bases are different, then there is unknown overlap.
|
|
LLVM_DEBUG(llvm::dbgs() << "No identical base for:\n"
|
|
<< des1 << "and:\n"
|
|
<< des2 << "\n");
|
|
return SlicesOverlapKind::Unknown;
|
|
}
|
|
|
|
// Require all components of the designators to be the same.
|
|
// It might be too strict, e.g. we may probably allow for
|
|
// different type parameters.
|
|
if (des1.getComponent() != des2.getComponent() ||
|
|
des1.getComponentShape() != des2.getComponentShape() ||
|
|
des1.getSubstring() != des2.getSubstring() ||
|
|
des1.getComplexPart() != des2.getComplexPart() ||
|
|
des1.getTypeparams() != des2.getTypeparams()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Different designator specs for:\n"
|
|
<< des1 << "and:\n"
|
|
<< des2 << "\n");
|
|
return SlicesOverlapKind::Unknown;
|
|
}
|
|
|
|
// Analyze the subscripts.
|
|
auto des1It = des1.getIndices().begin();
|
|
auto des2It = des2.getIndices().begin();
|
|
bool identicalTriplets = true;
|
|
bool identicalIndices = true;
|
|
for (auto [isTriplet1, isTriplet2] :
|
|
llvm::zip(des1.getIsTriplet(), des2.getIsTriplet())) {
|
|
SectionDesc desc1 = readSectionDesc(des1It, isTriplet1);
|
|
SectionDesc desc2 = readSectionDesc(des2It, isTriplet2);
|
|
|
|
// See if we can prove that any of the sections do not overlap.
|
|
// This is mostly a Polyhedron/nf performance hack that looks for
|
|
// particular relations between the lower and upper bounds
|
|
// of the array sections, e.g. for any positive constant C:
|
|
// X:Y does not overlap with (Y+C):Z
|
|
// X:Y does not overlap with Z:(X-C)
|
|
if (areDisjointSections(desc1, desc2))
|
|
return SlicesOverlapKind::DefinitelyDisjoint;
|
|
|
|
if (!areIdenticalSections(desc1, desc2)) {
|
|
if (isTriplet1 || isTriplet2) {
|
|
// For example:
|
|
// hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %0)
|
|
// hlfir.designate %6#0 (%c2:%c7999:%c1, %c1:%c120:%c1, %1)
|
|
//
|
|
// If all the triplets (section speficiers) are the same, then
|
|
// we do not care if %0 is equal to %1 - the slices are either
|
|
// identical or completely disjoint.
|
|
//
|
|
// Also, treat these as identical sections:
|
|
// hlfir.designate %6#0 (%c2:%c2:%c1)
|
|
// hlfir.designate %6#0 (%c2)
|
|
identicalTriplets = false;
|
|
LLVM_DEBUG(llvm::dbgs() << "Triplet mismatch for:\n"
|
|
<< des1 << "and:\n"
|
|
<< des2 << "\n");
|
|
} else {
|
|
identicalIndices = false;
|
|
LLVM_DEBUG(llvm::dbgs() << "Indices mismatch for:\n"
|
|
<< des1 << "and:\n"
|
|
<< des2 << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (identicalTriplets) {
|
|
if (identicalIndices)
|
|
return SlicesOverlapKind::DefinitelyIdentical;
|
|
else
|
|
return SlicesOverlapKind::EitherIdenticalOrDisjoint;
|
|
}
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Different sections for:\n"
|
|
<< des1 << "and:\n"
|
|
<< des2 << "\n");
|
|
return SlicesOverlapKind::Unknown;
|
|
}
|
|
|
|
bool ArraySectionAnalyzer::isLess(mlir::Value v1, mlir::Value v2) {
|
|
auto removeConvert = [](mlir::Value v) -> mlir::Operation * {
|
|
auto *op = v.getDefiningOp();
|
|
while (auto conv = mlir::dyn_cast_or_null<fir::ConvertOp>(op))
|
|
op = conv.getValue().getDefiningOp();
|
|
return op;
|
|
};
|
|
|
|
auto isPositiveConstant = [](mlir::Value v) -> bool {
|
|
if (auto val = fir::getIntIfConstant(v))
|
|
return *val > 0;
|
|
return false;
|
|
};
|
|
|
|
auto *op1 = removeConvert(v1);
|
|
auto *op2 = removeConvert(v2);
|
|
if (!op1 || !op2)
|
|
return false;
|
|
|
|
// Check if they are both constants.
|
|
if (auto val1 = fir::getIntIfConstant(op1->getResult(0)))
|
|
if (auto val2 = fir::getIntIfConstant(op2->getResult(0)))
|
|
return *val1 < *val2;
|
|
|
|
// Handle some variable cases (C > 0):
|
|
// v2 = v1 + C
|
|
// v2 = C + v1
|
|
// v1 = v2 - C
|
|
if (auto addi = mlir::dyn_cast<mlir::arith::AddIOp>(op2))
|
|
if ((addi.getLhs().getDefiningOp() == op1 &&
|
|
isPositiveConstant(addi.getRhs())) ||
|
|
(addi.getRhs().getDefiningOp() == op1 &&
|
|
isPositiveConstant(addi.getLhs())))
|
|
return true;
|
|
if (auto subi = mlir::dyn_cast<mlir::arith::SubIOp>(op1))
|
|
if (subi.getLhs().getDefiningOp() == op2 &&
|
|
isPositiveConstant(subi.getRhs()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
llvm::SmallVector<mlir::Value>
|
|
ElementalAssignBufferization::getDesignatorIndices(
|
|
hlfir::DesignateOp designate) {
|
|
mlir::Value memref = designate.getMemref();
|
|
|
|
// If the object is a box, then the indices may be adjusted
|
|
// according to the box's lower bound(s). Scan through
|
|
// the computations to try to find the one-based indices.
|
|
if (mlir::isa<fir::BaseBoxType>(memref.getType())) {
|
|
// Look for the following pattern:
|
|
// %13 = fir.load %12 : !fir.ref<!fir.box<...>
|
|
// %14:3 = fir.box_dims %13, %c0 : (!fir.box<...>, index) -> ...
|
|
// %17 = arith.subi %14#0, %c1 : index
|
|
// %18 = arith.addi %arg2, %17 : index
|
|
// %19 = hlfir.designate %13 (%18) : (!fir.box<...>, index) -> ...
|
|
//
|
|
// %arg2 is a one-based index.
|
|
|
|
auto isNormalizedLb = [memref](mlir::Value v, unsigned dim) {
|
|
// Return true, if v and dim are such that:
|
|
// %14:3 = fir.box_dims %13, %dim : (!fir.box<...>, index) -> ...
|
|
// %17 = arith.subi %14#0, %c1 : index
|
|
// %19 = hlfir.designate %13 (...) : (!fir.box<...>, index) -> ...
|
|
if (auto subOp =
|
|
mlir::dyn_cast_or_null<mlir::arith::SubIOp>(v.getDefiningOp())) {
|
|
auto cst = fir::getIntIfConstant(subOp.getRhs());
|
|
if (!cst || *cst != 1)
|
|
return false;
|
|
if (auto dimsOp = mlir::dyn_cast_or_null<fir::BoxDimsOp>(
|
|
subOp.getLhs().getDefiningOp())) {
|
|
if (memref != dimsOp.getVal() ||
|
|
dimsOp.getResult(0) != subOp.getLhs())
|
|
return false;
|
|
auto dimsOpDim = fir::getIntIfConstant(dimsOp.getDim());
|
|
return dimsOpDim && dimsOpDim == dim;
|
|
}
|
|
}
|
|
return false;
|
|
};
|
|
|
|
llvm::SmallVector<mlir::Value> newIndices;
|
|
for (auto index : llvm::enumerate(designate.getIndices())) {
|
|
if (auto addOp = mlir::dyn_cast_or_null<mlir::arith::AddIOp>(
|
|
index.value().getDefiningOp())) {
|
|
for (unsigned opNum = 0; opNum < 2; ++opNum)
|
|
if (isNormalizedLb(addOp->getOperand(opNum), index.index())) {
|
|
newIndices.push_back(addOp->getOperand((opNum + 1) % 2));
|
|
break;
|
|
}
|
|
|
|
// If new one-based index was not added, exit early.
|
|
if (newIndices.size() <= index.index())
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If any of the indices is not adjusted to the array's lb,
|
|
// then return the original designator indices.
|
|
if (newIndices.size() != designate.getIndices().size())
|
|
return designate.getIndices();
|
|
|
|
return newIndices;
|
|
}
|
|
|
|
return designate.getIndices();
|
|
}
|
|
|
|
std::optional<ElementalAssignBufferization::MatchInfo>
|
|
ElementalAssignBufferization::findMatch(hlfir::ElementalOp elemental) {
|
|
mlir::Operation::user_range users = elemental->getUsers();
|
|
// the only uses of the elemental should be the assignment and the destroy
|
|
if (std::distance(users.begin(), users.end()) != 2) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Too many uses of the elemental\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// If the ElementalOp must produce a temporary (e.g. for
|
|
// finalization purposes), then we cannot inline it.
|
|
if (hlfir::elementalOpMustProduceTemp(elemental)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "ElementalOp must produce a temp\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
MatchInfo match;
|
|
for (mlir::Operation *user : users)
|
|
mlir::TypeSwitch<mlir::Operation *, void>(user)
|
|
.Case([&](hlfir::AssignOp op) { match.assign = op; })
|
|
.Case([&](hlfir::DestroyOp op) { match.destroy = op; });
|
|
|
|
if (!match.assign || !match.destroy) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Couldn't find assign or destroy\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// the array is what the elemental is assigned into
|
|
// TODO: this could be extended to also allow hlfir.expr by first bufferizing
|
|
// the incoming expression
|
|
match.array = match.assign.getLhs();
|
|
mlir::Type arrayType = mlir::dyn_cast<fir::SequenceType>(
|
|
fir::unwrapPassByRefType(match.array.getType()));
|
|
if (!arrayType) {
|
|
LLVM_DEBUG(llvm::dbgs() << "AssignOp's result is not an array\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// require that the array elements are trivial
|
|
// TODO: this is just to make the pass easier to think about. Not an inherent
|
|
// limitation
|
|
mlir::Type eleTy = hlfir::getFortranElementType(arrayType);
|
|
if (!fir::isa_trivial(eleTy)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "AssignOp's data type is not trivial\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// The array must have the same shape as the elemental.
|
|
//
|
|
// f2018 10.2.1.2 (3) requires the lhs and rhs of an assignment to be
|
|
// conformable unless the lhs is an allocatable array. In HLFIR we can
|
|
// see this from the presence or absence of the realloc attribute on
|
|
// hlfir.assign. If it is not a realloc assignment, we can trust that
|
|
// the shapes do conform.
|
|
//
|
|
// TODO: the lhs's shape is dynamic, so it is hard to prove that
|
|
// there is no reallocation of the lhs due to the assignment.
|
|
// We can probably try generating multiple versions of the code
|
|
// with checking for the shape match, length parameters match, etc.
|
|
if (match.assign.isAllocatableAssignment()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "AssignOp may involve (re)allocation of LHS\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// the transformation wants to apply the elemental in a do-loop at the
|
|
// hlfir.assign, check there are no effects which make this unsafe
|
|
|
|
// keep track of any values written to in the elemental, as these can't be
|
|
// read from or written to between the elemental and the assignment
|
|
mlir::SmallVector<mlir::Value, 1> notToBeAccessedBeforeAssign;
|
|
// likewise, values read in the elemental cannot be written to between the
|
|
// elemental and the assign
|
|
mlir::SmallVector<mlir::Value, 1> notToBeWrittenBeforeAssign;
|
|
|
|
// 1) side effects in the elemental body - it isn't sufficient to just look
|
|
// for ordered elementals because we also cannot support out of order reads
|
|
std::optional<mlir::SmallVector<mlir::MemoryEffects::EffectInstance>>
|
|
effects = getEffectsBetween(&elemental.getBody()->front(),
|
|
elemental.getBody()->getTerminator());
|
|
if (!effects) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "operation with unknown effects inside elemental\n");
|
|
return std::nullopt;
|
|
}
|
|
for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
|
|
mlir::AliasResult res = containsReadOrWriteEffectOn(effect, match.array);
|
|
if (res.isNo()) {
|
|
if (effect.getValue()) {
|
|
if (mlir::isa<mlir::MemoryEffects::Write>(effect.getEffect()))
|
|
notToBeAccessedBeforeAssign.push_back(effect.getValue());
|
|
else if (mlir::isa<mlir::MemoryEffects::Read>(effect.getEffect()))
|
|
notToBeWrittenBeforeAssign.push_back(effect.getValue());
|
|
}
|
|
|
|
// this is safe in the elemental
|
|
continue;
|
|
}
|
|
|
|
// don't allow any aliasing writes in the elemental
|
|
if (mlir::isa<mlir::MemoryEffects::Write>(effect.getEffect())) {
|
|
LLVM_DEBUG(llvm::dbgs() << "write inside the elemental body\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
if (effect.getValue() == nullptr) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "side-effect with no value, cannot analyze further\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// allow if and only if the reads are from the elemental indices, in order
|
|
// => each iteration doesn't read values written by other iterations
|
|
// don't allow reads from a different value which may alias: fir alias
|
|
// analysis isn't precise enough to tell us if two aliasing arrays overlap
|
|
// exactly or only partially. If they overlap partially, a designate at the
|
|
// elemental indices could be accessing different elements: e.g. we could
|
|
// designate two slices of the same array at different start indexes. These
|
|
// two MustAlias but index 1 of one array isn't the same element as index 1
|
|
// of the other array.
|
|
if (!res.isPartial()) {
|
|
if (auto designate =
|
|
effect.getValue().getDefiningOp<hlfir::DesignateOp>()) {
|
|
ArraySectionAnalyzer::SlicesOverlapKind overlap =
|
|
ArraySectionAnalyzer::analyze(match.array, designate.getMemref());
|
|
if (overlap ==
|
|
ArraySectionAnalyzer::SlicesOverlapKind::DefinitelyDisjoint)
|
|
continue;
|
|
|
|
if (overlap == ArraySectionAnalyzer::SlicesOverlapKind::Unknown) {
|
|
LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
|
|
<< " at " << elemental.getLoc() << "\n");
|
|
return std::nullopt;
|
|
}
|
|
auto indices = getDesignatorIndices(designate);
|
|
auto elementalIndices = elemental.getIndices();
|
|
if (indices.size() == elementalIndices.size() &&
|
|
std::equal(indices.begin(), indices.end(), elementalIndices.begin(),
|
|
elementalIndices.end()))
|
|
continue;
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "possible read conflict: " << designate
|
|
<< " at " << elemental.getLoc() << "\n");
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "disallowed side-effect: " << effect.getValue()
|
|
<< " for " << elemental.getLoc() << "\n");
|
|
return std::nullopt;
|
|
}
|
|
|
|
// 2) look for conflicting effects between the elemental and the assignment
|
|
effects = getEffectsBetween(elemental->getNextNode(), match.assign);
|
|
if (!effects) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "operation with unknown effects between elemental and assign\n");
|
|
return std::nullopt;
|
|
}
|
|
for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
|
|
// not safe to access anything written in the elemental as this write
|
|
// will be moved to the assignment
|
|
for (mlir::Value val : notToBeAccessedBeforeAssign) {
|
|
mlir::AliasResult res = containsReadOrWriteEffectOn(effect, val);
|
|
if (!res.isNo()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "disallowed side-effect: " << effect.getValue() << " for "
|
|
<< elemental.getLoc() << "\n");
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
// Anything that is read inside the elemental can only be safely read
|
|
// between the elemental and the assignment.
|
|
for (mlir::Value val : notToBeWrittenBeforeAssign) {
|
|
mlir::AliasResult res = containsReadOrWriteEffectOn(effect, val);
|
|
if (!res.isNo() &&
|
|
!mlir::isa<mlir::MemoryEffects::Read>(effect.getEffect())) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "disallowed non-read side-effect: " << effect.getValue()
|
|
<< " for " << elemental.getLoc() << "\n");
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
}
|
|
|
|
return match;
|
|
}
|
|
|
|
llvm::LogicalResult ElementalAssignBufferization::matchAndRewrite(
|
|
hlfir::ElementalOp elemental, mlir::PatternRewriter &rewriter) const {
|
|
std::optional<MatchInfo> match = findMatch(elemental);
|
|
if (!match)
|
|
return rewriter.notifyMatchFailure(
|
|
elemental, "cannot prove safety of ElementalAssignBufferization");
|
|
|
|
mlir::Location loc = elemental->getLoc();
|
|
fir::FirOpBuilder builder(rewriter, elemental.getOperation());
|
|
auto rhsExtents = hlfir::getIndexExtents(loc, builder, elemental.getShape());
|
|
|
|
// create the loop at the assignment
|
|
builder.setInsertionPoint(match->assign);
|
|
hlfir::Entity lhs{match->array};
|
|
lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
|
|
mlir::Value lhsShape = hlfir::genShape(loc, builder, lhs);
|
|
llvm::SmallVector<mlir::Value> lhsExtents =
|
|
hlfir::getIndexExtents(loc, builder, lhsShape);
|
|
llvm::SmallVector<mlir::Value> extents =
|
|
fir::factory::deduceOptimalExtents(rhsExtents, lhsExtents);
|
|
|
|
// Generate a loop nest looping around the hlfir.elemental shape and clone
|
|
// hlfir.elemental region inside the inner loop
|
|
hlfir::LoopNest loopNest =
|
|
hlfir::genLoopNest(loc, builder, extents, !elemental.isOrdered(),
|
|
flangomp::shouldUseWorkshareLowering(elemental));
|
|
builder.setInsertionPointToStart(loopNest.body);
|
|
auto yield = hlfir::inlineElementalOp(loc, builder, elemental,
|
|
loopNest.oneBasedIndices);
|
|
hlfir::Entity elementValue{yield.getElementValue()};
|
|
rewriter.eraseOp(yield);
|
|
|
|
// Assign the element value to the array element for this iteration.
|
|
auto arrayElement =
|
|
hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
|
|
builder.create<hlfir::AssignOp>(
|
|
loc, elementValue, arrayElement, /*realloc=*/false,
|
|
/*keep_lhs_length_if_realloc=*/false, match->assign.getTemporaryLhs());
|
|
|
|
rewriter.eraseOp(match->assign);
|
|
rewriter.eraseOp(match->destroy);
|
|
rewriter.eraseOp(elemental);
|
|
return mlir::success();
|
|
}
|
|
|
|
/// Expand hlfir.assign of a scalar RHS to array LHS into a loop nest
|
|
/// of element-by-element assignments:
|
|
/// hlfir.assign %cst to %0 : f32, !fir.ref<!fir.array<6x6xf32>>
|
|
/// into:
|
|
/// fir.do_loop %arg0 = %c1 to %c6 step %c1 unordered {
|
|
/// fir.do_loop %arg1 = %c1 to %c6 step %c1 unordered {
|
|
/// %1 = hlfir.designate %0 (%arg1, %arg0) :
|
|
/// (!fir.ref<!fir.array<6x6xf32>>, index, index) -> !fir.ref<f32>
|
|
/// hlfir.assign %cst to %1 : f32, !fir.ref<f32>
|
|
/// }
|
|
/// }
|
|
class BroadcastAssignBufferization
|
|
: public mlir::OpRewritePattern<hlfir::AssignOp> {
|
|
private:
|
|
public:
|
|
using mlir::OpRewritePattern<hlfir::AssignOp>::OpRewritePattern;
|
|
|
|
llvm::LogicalResult
|
|
matchAndRewrite(hlfir::AssignOp assign,
|
|
mlir::PatternRewriter &rewriter) const override;
|
|
};
|
|
|
|
llvm::LogicalResult BroadcastAssignBufferization::matchAndRewrite(
|
|
hlfir::AssignOp assign, mlir::PatternRewriter &rewriter) const {
|
|
// Since RHS is a scalar and LHS is an array, LHS must be allocated
|
|
// in a conforming Fortran program, and LHS cannot be reallocated
|
|
// as a result of the assignment. So we can ignore isAllocatableAssignment
|
|
// and do the transformation always.
|
|
mlir::Value rhs = assign.getRhs();
|
|
if (!fir::isa_trivial(rhs.getType()))
|
|
return rewriter.notifyMatchFailure(
|
|
assign, "AssignOp's RHS is not a trivial scalar");
|
|
|
|
hlfir::Entity lhs{assign.getLhs()};
|
|
if (!lhs.isArray())
|
|
return rewriter.notifyMatchFailure(assign,
|
|
"AssignOp's LHS is not an array");
|
|
|
|
mlir::Type eleTy = lhs.getFortranElementType();
|
|
if (!fir::isa_trivial(eleTy))
|
|
return rewriter.notifyMatchFailure(
|
|
assign, "AssignOp's LHS data type is not trivial");
|
|
|
|
mlir::Location loc = assign->getLoc();
|
|
fir::FirOpBuilder builder(rewriter, assign.getOperation());
|
|
builder.setInsertionPoint(assign);
|
|
lhs = hlfir::derefPointersAndAllocatables(loc, builder, lhs);
|
|
mlir::Value shape = hlfir::genShape(loc, builder, lhs);
|
|
llvm::SmallVector<mlir::Value> extents =
|
|
hlfir::getIndexExtents(loc, builder, shape);
|
|
hlfir::LoopNest loopNest =
|
|
hlfir::genLoopNest(loc, builder, extents, /*isUnordered=*/true,
|
|
flangomp::shouldUseWorkshareLowering(assign));
|
|
builder.setInsertionPointToStart(loopNest.body);
|
|
auto arrayElement =
|
|
hlfir::getElementAt(loc, builder, lhs, loopNest.oneBasedIndices);
|
|
builder.create<hlfir::AssignOp>(loc, rhs, arrayElement);
|
|
rewriter.eraseOp(assign);
|
|
return mlir::success();
|
|
}
|
|
|
|
class EvaluateIntoMemoryAssignBufferization
|
|
: public mlir::OpRewritePattern<hlfir::EvaluateInMemoryOp> {
|
|
|
|
public:
|
|
using mlir::OpRewritePattern<hlfir::EvaluateInMemoryOp>::OpRewritePattern;
|
|
|
|
llvm::LogicalResult
|
|
matchAndRewrite(hlfir::EvaluateInMemoryOp,
|
|
mlir::PatternRewriter &rewriter) const override;
|
|
};
|
|
|
|
static llvm::LogicalResult
|
|
tryUsingAssignLhsDirectly(hlfir::EvaluateInMemoryOp evalInMem,
|
|
mlir::PatternRewriter &rewriter) {
|
|
mlir::Location loc = evalInMem.getLoc();
|
|
hlfir::DestroyOp destroy;
|
|
hlfir::AssignOp assign;
|
|
for (auto user : llvm::enumerate(evalInMem->getUsers())) {
|
|
if (user.index() > 2)
|
|
return mlir::failure();
|
|
mlir::TypeSwitch<mlir::Operation *, void>(user.value())
|
|
.Case([&](hlfir::AssignOp op) { assign = op; })
|
|
.Case([&](hlfir::DestroyOp op) { destroy = op; });
|
|
}
|
|
if (!assign || !destroy || destroy.mustFinalizeExpr() ||
|
|
assign.isAllocatableAssignment())
|
|
return mlir::failure();
|
|
|
|
hlfir::Entity lhs{assign.getLhs()};
|
|
// EvaluateInMemoryOp memory is contiguous, so in general, it can only be
|
|
// replace by the LHS if the LHS is contiguous.
|
|
if (!lhs.isSimplyContiguous())
|
|
return mlir::failure();
|
|
// Character assignment may involves truncation/padding, so the LHS
|
|
// cannot be used to evaluate RHS in place without proving the LHS and
|
|
// RHS lengths are the same.
|
|
if (lhs.isCharacter())
|
|
return mlir::failure();
|
|
fir::AliasAnalysis aliasAnalysis;
|
|
// The region must not read or write the LHS.
|
|
// Note that getModRef is used instead of mlir::MemoryEffects because
|
|
// EvaluateInMemoryOp is typically expected to hold fir.calls and that
|
|
// Fortran calls cannot be modeled in a useful way with mlir::MemoryEffects:
|
|
// it is hard/impossible to list all the read/written SSA values in a call,
|
|
// but it is often possible to tell that an SSA value cannot be accessed,
|
|
// hence getModRef is needed here and below. Also note that getModRef uses
|
|
// mlir::MemoryEffects for operations that do not have special handling in
|
|
// getModRef.
|
|
if (aliasAnalysis.getModRef(evalInMem.getBody(), lhs).isModOrRef())
|
|
return mlir::failure();
|
|
// Any variables affected between the hlfir.evalInMem and assignment must not
|
|
// be read or written inside the region since it will be moved at the
|
|
// assignment insertion point.
|
|
auto effects = getEffectsBetween(evalInMem->getNextNode(), assign);
|
|
if (!effects) {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< "operation with unknown effects between eval_in_mem and assign\n");
|
|
return mlir::failure();
|
|
}
|
|
for (const mlir::MemoryEffects::EffectInstance &effect : *effects) {
|
|
mlir::Value affected = effect.getValue();
|
|
if (!affected ||
|
|
aliasAnalysis.getModRef(evalInMem.getBody(), affected).isModOrRef())
|
|
return mlir::failure();
|
|
}
|
|
|
|
rewriter.setInsertionPoint(assign);
|
|
fir::FirOpBuilder builder(rewriter, evalInMem.getOperation());
|
|
mlir::Value rawLhs = hlfir::genVariableRawAddress(loc, builder, lhs);
|
|
hlfir::computeEvaluateOpIn(loc, builder, evalInMem, rawLhs);
|
|
rewriter.eraseOp(assign);
|
|
rewriter.eraseOp(destroy);
|
|
rewriter.eraseOp(evalInMem);
|
|
return mlir::success();
|
|
}
|
|
|
|
llvm::LogicalResult EvaluateIntoMemoryAssignBufferization::matchAndRewrite(
|
|
hlfir::EvaluateInMemoryOp evalInMem,
|
|
mlir::PatternRewriter &rewriter) const {
|
|
if (mlir::succeeded(tryUsingAssignLhsDirectly(evalInMem, rewriter)))
|
|
return mlir::success();
|
|
// Rewrite to temp + as_expr here so that the assign + as_expr pattern can
|
|
// kick-in for simple types and at least implement the assignment inline
|
|
// instead of call Assign runtime.
|
|
fir::FirOpBuilder builder(rewriter, evalInMem.getOperation());
|
|
mlir::Location loc = evalInMem.getLoc();
|
|
auto [temp, isHeapAllocated] = hlfir::computeEvaluateOpInNewTemp(
|
|
loc, builder, evalInMem, evalInMem.getShape(), evalInMem.getTypeparams());
|
|
rewriter.replaceOpWithNewOp<hlfir::AsExprOp>(
|
|
evalInMem, temp, /*mustFree=*/builder.createBool(loc, isHeapAllocated));
|
|
return mlir::success();
|
|
}
|
|
|
|
class OptimizedBufferizationPass
|
|
: public hlfir::impl::OptimizedBufferizationBase<
|
|
OptimizedBufferizationPass> {
|
|
public:
|
|
void runOnOperation() override {
|
|
mlir::MLIRContext *context = &getContext();
|
|
|
|
mlir::GreedyRewriteConfig config;
|
|
// Prevent the pattern driver from merging blocks
|
|
config.setRegionSimplificationLevel(
|
|
mlir::GreedySimplifyRegionLevel::Disabled);
|
|
|
|
mlir::RewritePatternSet patterns(context);
|
|
// TODO: right now the patterns are non-conflicting,
|
|
// but it might be better to run this pass on hlfir.assign
|
|
// operations and decide which transformation to apply
|
|
// at one place (e.g. we may use some heuristics and
|
|
// choose different optimization strategies).
|
|
// This requires small code reordering in ElementalAssignBufferization.
|
|
patterns.insert<ElementalAssignBufferization>(context);
|
|
patterns.insert<BroadcastAssignBufferization>(context);
|
|
patterns.insert<EvaluateIntoMemoryAssignBufferization>(context);
|
|
|
|
if (mlir::failed(mlir::applyPatternsGreedily(
|
|
getOperation(), std::move(patterns), config))) {
|
|
mlir::emitError(getOperation()->getLoc(),
|
|
"failure in HLFIR optimized bufferization");
|
|
signalPassFailure();
|
|
}
|
|
}
|
|
};
|
|
} // namespace
|