Florian Hahn cedb9704bd
[VPlan] Verify CFG invariants first (NFCI).
Verifying CFG invariants of a block before verifying its contents allows
contents verification to rely on the CFG invariants (e.g. that there's a
vector loop region that can be retrieved).

This avoids extra checks in
https://github.com/llvm/llvm-project/pull/76172.
2024-03-04 16:29:19 +00:00

308 lines
9.8 KiB
C++

//===-- VPlanVerifier.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the class VPlanVerifier, which contains utility functions
/// to check the consistency and invariants of a VPlan.
///
//===----------------------------------------------------------------------===//
#include "VPlanVerifier.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Support/CommandLine.h"
#define DEBUG_TYPE "loop-vectorize"
using namespace llvm;
// Verify that phi-like recipes are at the beginning of \p VPBB, with no
// other recipes in between. Also check that only header blocks contain
// VPHeaderPHIRecipes.
static bool verifyPhiRecipes(const VPBasicBlock *VPBB) {
auto RecipeI = VPBB->begin();
auto End = VPBB->end();
unsigned NumActiveLaneMaskPhiRecipes = 0;
const VPRegionBlock *ParentR = VPBB->getParent();
bool IsHeaderVPBB = ParentR && !ParentR->isReplicator() &&
ParentR->getEntryBasicBlock() == VPBB;
while (RecipeI != End && RecipeI->isPhi()) {
if (isa<VPActiveLaneMaskPHIRecipe>(RecipeI))
NumActiveLaneMaskPhiRecipes++;
if (IsHeaderVPBB && !isa<VPHeaderPHIRecipe, VPWidenPHIRecipe>(*RecipeI)) {
errs() << "Found non-header PHI recipe in header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
#endif
return false;
}
if (!IsHeaderVPBB && isa<VPHeaderPHIRecipe>(*RecipeI)) {
errs() << "Found header PHI recipe in non-header VPBB";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
#endif
return false;
}
RecipeI++;
}
if (NumActiveLaneMaskPhiRecipes > 1) {
errs() << "There should be no more than one VPActiveLaneMaskPHIRecipe";
return false;
}
while (RecipeI != End) {
if (RecipeI->isPhi() && !isa<VPBlendRecipe>(&*RecipeI)) {
errs() << "Found phi-like recipe after non-phi recipe";
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
errs() << ": ";
RecipeI->dump();
errs() << "after\n";
std::prev(RecipeI)->dump();
#endif
return false;
}
RecipeI++;
}
return true;
}
static bool verifyVPBasicBlock(const VPBasicBlock *VPBB,
const VPDominatorTree &VPDT) {
if (!verifyPhiRecipes(VPBB))
return false;
// Verify that defs in VPBB dominate all their uses. The current
// implementation is still incomplete.
DenseMap<const VPRecipeBase *, unsigned> RecipeNumbering;
unsigned Cnt = 0;
for (const VPRecipeBase &R : *VPBB)
RecipeNumbering[&R] = Cnt++;
for (const VPRecipeBase &R : *VPBB) {
for (const VPValue *V : R.definedValues()) {
for (const VPUser *U : V->users()) {
auto *UI = dyn_cast<VPRecipeBase>(U);
// TODO: check dominance of incoming values for phis properly.
if (!UI ||
isa<VPHeaderPHIRecipe, VPWidenPHIRecipe, VPPredInstPHIRecipe>(UI))
continue;
// If the user is in the same block, check it comes after R in the
// block.
if (UI->getParent() == VPBB) {
if (RecipeNumbering[UI] < RecipeNumbering[&R]) {
errs() << "Use before def!\n";
return false;
}
continue;
}
if (!VPDT.dominates(VPBB, UI->getParent())) {
errs() << "Use before def!\n";
return false;
}
}
}
}
return true;
}
/// Utility function that checks whether \p VPBlockVec has duplicate
/// VPBlockBases.
static bool hasDuplicates(const SmallVectorImpl<VPBlockBase *> &VPBlockVec) {
SmallDenseSet<const VPBlockBase *, 8> VPBlockSet;
for (const auto *Block : VPBlockVec) {
if (VPBlockSet.count(Block))
return true;
VPBlockSet.insert(Block);
}
return false;
}
static bool verifyBlock(const VPBlockBase *VPB, const VPDominatorTree &VPDT) {
auto *VPBB = dyn_cast<VPBasicBlock>(VPB);
// Check block's condition bit.
if (VPB->getNumSuccessors() > 1 ||
(VPBB && VPBB->getParent() && VPBB->isExiting() &&
!VPBB->getParent()->isReplicator())) {
if (!VPBB || !VPBB->getTerminator()) {
errs() << "Block has multiple successors but doesn't "
"have a proper branch recipe!\n";
return false;
}
} else {
if (VPBB && VPBB->getTerminator()) {
errs() << "Unexpected branch recipe!\n";
return false;
}
}
// Check block's successors.
const auto &Successors = VPB->getSuccessors();
// There must be only one instance of a successor in block's successor list.
// TODO: This won't work for switch statements.
if (hasDuplicates(Successors)) {
errs() << "Multiple instances of the same successor.\n";
return false;
}
for (const VPBlockBase *Succ : Successors) {
// There must be a bi-directional link between block and successor.
const auto &SuccPreds = Succ->getPredecessors();
if (!is_contained(SuccPreds, VPB)) {
errs() << "Missing predecessor link.\n";
return false;
}
}
// Check block's predecessors.
const auto &Predecessors = VPB->getPredecessors();
// There must be only one instance of a predecessor in block's predecessor
// list.
// TODO: This won't work for switch statements.
if (hasDuplicates(Predecessors)) {
errs() << "Multiple instances of the same predecessor.\n";
return false;
}
for (const VPBlockBase *Pred : Predecessors) {
// Block and predecessor must be inside the same region.
if (Pred->getParent() != VPB->getParent()) {
errs() << "Predecessor is not in the same region.\n";
return false;
}
// There must be a bi-directional link between block and predecessor.
const auto &PredSuccs = Pred->getSuccessors();
if (!is_contained(PredSuccs, VPB)) {
errs() << "Missing successor link.\n";
return false;
}
}
return !VPBB || verifyVPBasicBlock(VPBB, VPDT);
}
/// Helper function that verifies the CFG invariants of the VPBlockBases within
/// \p Region. Checks in this function are generic for VPBlockBases. They are
/// not specific for VPBasicBlocks or VPRegionBlocks.
static bool verifyBlocksInRegion(const VPRegionBlock *Region,
const VPDominatorTree &VPDT) {
for (const VPBlockBase *VPB : vp_depth_first_shallow(Region->getEntry())) {
// Check block's parent.
if (VPB->getParent() != Region) {
errs() << "VPBlockBase has wrong parent\n";
return false;
}
if (!verifyBlock(VPB, VPDT))
return false;
}
return true;
}
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Do not recurse inside nested VPRegionBlocks.
static bool verifyRegion(const VPRegionBlock *Region,
const VPDominatorTree &VPDT) {
const VPBlockBase *Entry = Region->getEntry();
const VPBlockBase *Exiting = Region->getExiting();
// Entry and Exiting shouldn't have any predecessor/successor, respectively.
if (Entry->getNumPredecessors() != 0) {
errs() << "region entry block has predecessors\n";
return false;
}
if (Exiting->getNumSuccessors() != 0) {
errs() << "region exiting block has successors\n";
return false;
}
return verifyBlocksInRegion(Region, VPDT);
}
/// Verify the CFG invariants of VPRegionBlock \p Region and its nested
/// VPBlockBases. Recurse inside nested VPRegionBlocks.
static bool verifyRegionRec(const VPRegionBlock *Region,
const VPDominatorTree &VPDT) {
// Recurse inside nested regions and check all blocks inside the region.
return verifyRegion(Region, VPDT) &&
all_of(vp_depth_first_shallow(Region->getEntry()),
[&VPDT](const VPBlockBase *VPB) {
const auto *SubRegion = dyn_cast<VPRegionBlock>(VPB);
return !SubRegion || verifyRegionRec(SubRegion, VPDT);
});
}
bool llvm::verifyVPlanIsValid(const VPlan &Plan) {
VPDominatorTree VPDT;
VPDT.recalculate(const_cast<VPlan &>(Plan));
if (any_of(
vp_depth_first_shallow(Plan.getEntry()),
[&VPDT](const VPBlockBase *VPB) { return !verifyBlock(VPB, VPDT); }))
return false;
const VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
if (!verifyRegionRec(TopRegion, VPDT))
return false;
if (TopRegion->getParent()) {
errs() << "VPlan Top Region should have no parent.\n";
return false;
}
const VPBasicBlock *Entry = dyn_cast<VPBasicBlock>(TopRegion->getEntry());
if (!Entry) {
errs() << "VPlan entry block is not a VPBasicBlock\n";
return false;
}
if (!isa<VPCanonicalIVPHIRecipe>(&*Entry->begin())) {
errs() << "VPlan vector loop header does not start with a "
"VPCanonicalIVPHIRecipe\n";
return false;
}
const VPBasicBlock *Exiting = dyn_cast<VPBasicBlock>(TopRegion->getExiting());
if (!Exiting) {
errs() << "VPlan exiting block is not a VPBasicBlock\n";
return false;
}
if (Exiting->empty()) {
errs() << "VPlan vector loop exiting block must end with BranchOnCount or "
"BranchOnCond VPInstruction but is empty\n";
return false;
}
auto *LastInst = dyn_cast<VPInstruction>(std::prev(Exiting->end()));
if (!LastInst || (LastInst->getOpcode() != VPInstruction::BranchOnCount &&
LastInst->getOpcode() != VPInstruction::BranchOnCond)) {
errs() << "VPlan vector loop exit must end with BranchOnCount or "
"BranchOnCond VPInstruction\n";
return false;
}
for (const auto &KV : Plan.getLiveOuts())
if (KV.second->getNumOperands() != 1) {
errs() << "live outs must have a single operand\n";
return false;
}
return true;
}