
Vector truncations can be pretty expensive, especially on X86, whilst scalar truncations are often free. If the cost of performing the add/mul/and/or/xor reduction is cheap enough on the pre-truncated type, then avoid the vector truncation entirely. Fixes https://github.com/llvm/llvm-project/issues/81469
2033 lines
80 KiB
C++
2033 lines
80 KiB
C++
//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass optimizes scalar/vector interactions using target cost models. The
|
|
// transforms implemented here may not fit in traditional loop-based or SLP
|
|
// vectorization passes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Vectorize/VectorCombine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <numeric>
|
|
#include <queue>
|
|
|
|
#define DEBUG_TYPE "vector-combine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
STATISTIC(NumVecLoad, "Number of vector loads formed");
|
|
STATISTIC(NumVecCmp, "Number of vector compares formed");
|
|
STATISTIC(NumVecBO, "Number of vector binops formed");
|
|
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
|
|
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
|
|
STATISTIC(NumScalarBO, "Number of scalar binops formed");
|
|
STATISTIC(NumScalarCmp, "Number of scalar compares formed");
|
|
|
|
static cl::opt<bool> DisableVectorCombine(
|
|
"disable-vector-combine", cl::init(false), cl::Hidden,
|
|
cl::desc("Disable all vector combine transforms"));
|
|
|
|
static cl::opt<bool> DisableBinopExtractShuffle(
|
|
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
|
|
cl::desc("Disable binop extract to shuffle transforms"));
|
|
|
|
static cl::opt<unsigned> MaxInstrsToScan(
|
|
"vector-combine-max-scan-instrs", cl::init(30), cl::Hidden,
|
|
cl::desc("Max number of instructions to scan for vector combining."));
|
|
|
|
static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
|
|
|
|
namespace {
|
|
class VectorCombine {
|
|
public:
|
|
VectorCombine(Function &F, const TargetTransformInfo &TTI,
|
|
const DominatorTree &DT, AAResults &AA, AssumptionCache &AC,
|
|
bool TryEarlyFoldsOnly)
|
|
: F(F), Builder(F.getContext()), TTI(TTI), DT(DT), AA(AA), AC(AC),
|
|
TryEarlyFoldsOnly(TryEarlyFoldsOnly) {}
|
|
|
|
bool run();
|
|
|
|
private:
|
|
Function &F;
|
|
IRBuilder<> Builder;
|
|
const TargetTransformInfo &TTI;
|
|
const DominatorTree &DT;
|
|
AAResults &AA;
|
|
AssumptionCache &AC;
|
|
|
|
/// If true, only perform beneficial early IR transforms. Do not introduce new
|
|
/// vector operations.
|
|
bool TryEarlyFoldsOnly;
|
|
|
|
InstructionWorklist Worklist;
|
|
|
|
// TODO: Direct calls from the top-level "run" loop use a plain "Instruction"
|
|
// parameter. That should be updated to specific sub-classes because the
|
|
// run loop was changed to dispatch on opcode.
|
|
bool vectorizeLoadInsert(Instruction &I);
|
|
bool widenSubvectorLoad(Instruction &I);
|
|
ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
|
|
ExtractElementInst *Ext1,
|
|
unsigned PreferredExtractIndex) const;
|
|
bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
|
|
const Instruction &I,
|
|
ExtractElementInst *&ConvertToShuffle,
|
|
unsigned PreferredExtractIndex);
|
|
void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
|
|
Instruction &I);
|
|
void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
|
|
Instruction &I);
|
|
bool foldExtractExtract(Instruction &I);
|
|
bool foldInsExtFNeg(Instruction &I);
|
|
bool foldBitcastShuffle(Instruction &I);
|
|
bool scalarizeBinopOrCmp(Instruction &I);
|
|
bool scalarizeVPIntrinsic(Instruction &I);
|
|
bool foldExtractedCmps(Instruction &I);
|
|
bool foldSingleElementStore(Instruction &I);
|
|
bool scalarizeLoadExtract(Instruction &I);
|
|
bool foldShuffleOfBinops(Instruction &I);
|
|
bool foldShuffleFromReductions(Instruction &I);
|
|
bool foldTruncFromReductions(Instruction &I);
|
|
bool foldSelectShuffle(Instruction &I, bool FromReduction = false);
|
|
|
|
void replaceValue(Value &Old, Value &New) {
|
|
Old.replaceAllUsesWith(&New);
|
|
if (auto *NewI = dyn_cast<Instruction>(&New)) {
|
|
New.takeName(&Old);
|
|
Worklist.pushUsersToWorkList(*NewI);
|
|
Worklist.pushValue(NewI);
|
|
}
|
|
Worklist.pushValue(&Old);
|
|
}
|
|
|
|
void eraseInstruction(Instruction &I) {
|
|
for (Value *Op : I.operands())
|
|
Worklist.pushValue(Op);
|
|
Worklist.remove(&I);
|
|
I.eraseFromParent();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static bool canWidenLoad(LoadInst *Load, const TargetTransformInfo &TTI) {
|
|
// Do not widen load if atomic/volatile or under asan/hwasan/memtag/tsan.
|
|
// The widened load may load data from dirty regions or create data races
|
|
// non-existent in the source.
|
|
if (!Load || !Load->isSimple() || !Load->hasOneUse() ||
|
|
Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
|
|
mustSuppressSpeculation(*Load))
|
|
return false;
|
|
|
|
// We are potentially transforming byte-sized (8-bit) memory accesses, so make
|
|
// sure we have all of our type-based constraints in place for this target.
|
|
Type *ScalarTy = Load->getType()->getScalarType();
|
|
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
|
|
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
|
|
if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0 ||
|
|
ScalarSize % 8 != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
|
|
// Match insert into fixed vector of scalar value.
|
|
// TODO: Handle non-zero insert index.
|
|
Value *Scalar;
|
|
if (!match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
|
|
!Scalar->hasOneUse())
|
|
return false;
|
|
|
|
// Optionally match an extract from another vector.
|
|
Value *X;
|
|
bool HasExtract = match(Scalar, m_ExtractElt(m_Value(X), m_ZeroInt()));
|
|
if (!HasExtract)
|
|
X = Scalar;
|
|
|
|
auto *Load = dyn_cast<LoadInst>(X);
|
|
if (!canWidenLoad(Load, TTI))
|
|
return false;
|
|
|
|
Type *ScalarTy = Scalar->getType();
|
|
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
|
|
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
|
|
|
|
// Check safety of replacing the scalar load with a larger vector load.
|
|
// We use minimal alignment (maximum flexibility) because we only care about
|
|
// the dereferenceable region. When calculating cost and creating a new op,
|
|
// we may use a larger value based on alignment attributes.
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
|
|
assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
|
|
|
|
unsigned MinVecNumElts = MinVectorSize / ScalarSize;
|
|
auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
|
|
unsigned OffsetEltIndex = 0;
|
|
Align Alignment = Load->getAlign();
|
|
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
|
|
&DT)) {
|
|
// It is not safe to load directly from the pointer, but we can still peek
|
|
// through gep offsets and check if it safe to load from a base address with
|
|
// updated alignment. If it is, we can shuffle the element(s) into place
|
|
// after loading.
|
|
unsigned OffsetBitWidth = DL.getIndexTypeSizeInBits(SrcPtr->getType());
|
|
APInt Offset(OffsetBitWidth, 0);
|
|
SrcPtr = SrcPtr->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
|
|
|
|
// We want to shuffle the result down from a high element of a vector, so
|
|
// the offset must be positive.
|
|
if (Offset.isNegative())
|
|
return false;
|
|
|
|
// The offset must be a multiple of the scalar element to shuffle cleanly
|
|
// in the element's size.
|
|
uint64_t ScalarSizeInBytes = ScalarSize / 8;
|
|
if (Offset.urem(ScalarSizeInBytes) != 0)
|
|
return false;
|
|
|
|
// If we load MinVecNumElts, will our target element still be loaded?
|
|
OffsetEltIndex = Offset.udiv(ScalarSizeInBytes).getZExtValue();
|
|
if (OffsetEltIndex >= MinVecNumElts)
|
|
return false;
|
|
|
|
if (!isSafeToLoadUnconditionally(SrcPtr, MinVecTy, Align(1), DL, Load, &AC,
|
|
&DT))
|
|
return false;
|
|
|
|
// Update alignment with offset value. Note that the offset could be negated
|
|
// to more accurately represent "(new) SrcPtr - Offset = (old) SrcPtr", but
|
|
// negation does not change the result of the alignment calculation.
|
|
Alignment = commonAlignment(Alignment, Offset.getZExtValue());
|
|
}
|
|
|
|
// Original pattern: insertelt undef, load [free casts of] PtrOp, 0
|
|
// Use the greater of the alignment on the load or its source pointer.
|
|
Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
|
|
Type *LoadTy = Load->getType();
|
|
unsigned AS = Load->getPointerAddressSpace();
|
|
InstructionCost OldCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
|
|
APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
OldCost +=
|
|
TTI.getScalarizationOverhead(MinVecTy, DemandedElts,
|
|
/* Insert */ true, HasExtract, CostKind);
|
|
|
|
// New pattern: load VecPtr
|
|
InstructionCost NewCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
|
|
// Optionally, we are shuffling the loaded vector element(s) into place.
|
|
// For the mask set everything but element 0 to undef to prevent poison from
|
|
// propagating from the extra loaded memory. This will also optionally
|
|
// shrink/grow the vector from the loaded size to the output size.
|
|
// We assume this operation has no cost in codegen if there was no offset.
|
|
// Note that we could use freeze to avoid poison problems, but then we might
|
|
// still need a shuffle to change the vector size.
|
|
auto *Ty = cast<FixedVectorType>(I.getType());
|
|
unsigned OutputNumElts = Ty->getNumElements();
|
|
SmallVector<int, 16> Mask(OutputNumElts, PoisonMaskElem);
|
|
assert(OffsetEltIndex < MinVecNumElts && "Address offset too big");
|
|
Mask[0] = OffsetEltIndex;
|
|
if (OffsetEltIndex)
|
|
NewCost += TTI.getShuffleCost(TTI::SK_PermuteSingleSrc, MinVecTy, Mask);
|
|
|
|
// We can aggressively convert to the vector form because the backend can
|
|
// invert this transform if it does not result in a performance win.
|
|
if (OldCost < NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
// It is safe and potentially profitable to load a vector directly:
|
|
// inselt undef, load Scalar, 0 --> load VecPtr
|
|
IRBuilder<> Builder(Load);
|
|
Value *CastedPtr =
|
|
Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
|
|
Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
|
|
VecLd = Builder.CreateShuffleVector(VecLd, Mask);
|
|
|
|
replaceValue(I, *VecLd);
|
|
++NumVecLoad;
|
|
return true;
|
|
}
|
|
|
|
/// If we are loading a vector and then inserting it into a larger vector with
|
|
/// undefined elements, try to load the larger vector and eliminate the insert.
|
|
/// This removes a shuffle in IR and may allow combining of other loaded values.
|
|
bool VectorCombine::widenSubvectorLoad(Instruction &I) {
|
|
// Match subvector insert of fixed vector.
|
|
auto *Shuf = cast<ShuffleVectorInst>(&I);
|
|
if (!Shuf->isIdentityWithPadding())
|
|
return false;
|
|
|
|
// Allow a non-canonical shuffle mask that is choosing elements from op1.
|
|
unsigned NumOpElts =
|
|
cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
|
|
unsigned OpIndex = any_of(Shuf->getShuffleMask(), [&NumOpElts](int M) {
|
|
return M >= (int)(NumOpElts);
|
|
});
|
|
|
|
auto *Load = dyn_cast<LoadInst>(Shuf->getOperand(OpIndex));
|
|
if (!canWidenLoad(Load, TTI))
|
|
return false;
|
|
|
|
// We use minimal alignment (maximum flexibility) because we only care about
|
|
// the dereferenceable region. When calculating cost and creating a new op,
|
|
// we may use a larger value based on alignment attributes.
|
|
auto *Ty = cast<FixedVectorType>(I.getType());
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
Value *SrcPtr = Load->getPointerOperand()->stripPointerCasts();
|
|
assert(isa<PointerType>(SrcPtr->getType()) && "Expected a pointer type");
|
|
Align Alignment = Load->getAlign();
|
|
if (!isSafeToLoadUnconditionally(SrcPtr, Ty, Align(1), DL, Load, &AC, &DT))
|
|
return false;
|
|
|
|
Alignment = std::max(SrcPtr->getPointerAlignment(DL), Alignment);
|
|
Type *LoadTy = Load->getType();
|
|
unsigned AS = Load->getPointerAddressSpace();
|
|
|
|
// Original pattern: insert_subvector (load PtrOp)
|
|
// This conservatively assumes that the cost of a subvector insert into an
|
|
// undef value is 0. We could add that cost if the cost model accurately
|
|
// reflects the real cost of that operation.
|
|
InstructionCost OldCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, AS);
|
|
|
|
// New pattern: load PtrOp
|
|
InstructionCost NewCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, Ty, Alignment, AS);
|
|
|
|
// We can aggressively convert to the vector form because the backend can
|
|
// invert this transform if it does not result in a performance win.
|
|
if (OldCost < NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
IRBuilder<> Builder(Load);
|
|
Value *CastedPtr =
|
|
Builder.CreatePointerBitCastOrAddrSpaceCast(SrcPtr, Builder.getPtrTy(AS));
|
|
Value *VecLd = Builder.CreateAlignedLoad(Ty, CastedPtr, Alignment);
|
|
replaceValue(I, *VecLd);
|
|
++NumVecLoad;
|
|
return true;
|
|
}
|
|
|
|
/// Determine which, if any, of the inputs should be replaced by a shuffle
|
|
/// followed by extract from a different index.
|
|
ExtractElementInst *VectorCombine::getShuffleExtract(
|
|
ExtractElementInst *Ext0, ExtractElementInst *Ext1,
|
|
unsigned PreferredExtractIndex = InvalidIndex) const {
|
|
auto *Index0C = dyn_cast<ConstantInt>(Ext0->getIndexOperand());
|
|
auto *Index1C = dyn_cast<ConstantInt>(Ext1->getIndexOperand());
|
|
assert(Index0C && Index1C && "Expected constant extract indexes");
|
|
|
|
unsigned Index0 = Index0C->getZExtValue();
|
|
unsigned Index1 = Index1C->getZExtValue();
|
|
|
|
// If the extract indexes are identical, no shuffle is needed.
|
|
if (Index0 == Index1)
|
|
return nullptr;
|
|
|
|
Type *VecTy = Ext0->getVectorOperand()->getType();
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
|
|
InstructionCost Cost0 =
|
|
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
|
|
InstructionCost Cost1 =
|
|
TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
|
|
|
|
// If both costs are invalid no shuffle is needed
|
|
if (!Cost0.isValid() && !Cost1.isValid())
|
|
return nullptr;
|
|
|
|
// We are extracting from 2 different indexes, so one operand must be shuffled
|
|
// before performing a vector operation and/or extract. The more expensive
|
|
// extract will be replaced by a shuffle.
|
|
if (Cost0 > Cost1)
|
|
return Ext0;
|
|
if (Cost1 > Cost0)
|
|
return Ext1;
|
|
|
|
// If the costs are equal and there is a preferred extract index, shuffle the
|
|
// opposite operand.
|
|
if (PreferredExtractIndex == Index0)
|
|
return Ext1;
|
|
if (PreferredExtractIndex == Index1)
|
|
return Ext0;
|
|
|
|
// Otherwise, replace the extract with the higher index.
|
|
return Index0 > Index1 ? Ext0 : Ext1;
|
|
}
|
|
|
|
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
|
|
/// vector operation(s) followed by extract. Return true if the existing
|
|
/// instructions are cheaper than a vector alternative. Otherwise, return false
|
|
/// and if one of the extracts should be transformed to a shufflevector, set
|
|
/// \p ConvertToShuffle to that extract instruction.
|
|
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
|
|
ExtractElementInst *Ext1,
|
|
const Instruction &I,
|
|
ExtractElementInst *&ConvertToShuffle,
|
|
unsigned PreferredExtractIndex) {
|
|
auto *Ext0IndexC = dyn_cast<ConstantInt>(Ext0->getOperand(1));
|
|
auto *Ext1IndexC = dyn_cast<ConstantInt>(Ext1->getOperand(1));
|
|
assert(Ext0IndexC && Ext1IndexC && "Expected constant extract indexes");
|
|
|
|
unsigned Opcode = I.getOpcode();
|
|
Type *ScalarTy = Ext0->getType();
|
|
auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
|
|
InstructionCost ScalarOpCost, VectorOpCost;
|
|
|
|
// Get cost estimates for scalar and vector versions of the operation.
|
|
bool IsBinOp = Instruction::isBinaryOp(Opcode);
|
|
if (IsBinOp) {
|
|
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
|
|
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
} else {
|
|
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
|
|
"Expected a compare");
|
|
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
|
|
ScalarOpCost = TTI.getCmpSelInstrCost(
|
|
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
|
|
VectorOpCost = TTI.getCmpSelInstrCost(
|
|
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
|
|
}
|
|
|
|
// Get cost estimates for the extract elements. These costs will factor into
|
|
// both sequences.
|
|
unsigned Ext0Index = Ext0IndexC->getZExtValue();
|
|
unsigned Ext1Index = Ext1IndexC->getZExtValue();
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
InstructionCost Extract0Cost =
|
|
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Ext0Index);
|
|
InstructionCost Extract1Cost =
|
|
TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Ext1Index);
|
|
|
|
// A more expensive extract will always be replaced by a splat shuffle.
|
|
// For example, if Ext0 is more expensive:
|
|
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
|
|
// extelt (opcode (splat V0, Ext0), V1), Ext1
|
|
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
|
|
// check the cost of creating a broadcast shuffle and shuffling both
|
|
// operands to element 0.
|
|
InstructionCost CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
|
|
|
|
// Extra uses of the extracts mean that we include those costs in the
|
|
// vector total because those instructions will not be eliminated.
|
|
InstructionCost OldCost, NewCost;
|
|
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
|
|
// Handle a special case. If the 2 extracts are identical, adjust the
|
|
// formulas to account for that. The extra use charge allows for either the
|
|
// CSE'd pattern or an unoptimized form with identical values:
|
|
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
|
|
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
|
|
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
|
|
OldCost = CheapExtractCost + ScalarOpCost;
|
|
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
|
|
} else {
|
|
// Handle the general case. Each extract is actually a different value:
|
|
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
|
|
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
|
|
NewCost = VectorOpCost + CheapExtractCost +
|
|
!Ext0->hasOneUse() * Extract0Cost +
|
|
!Ext1->hasOneUse() * Extract1Cost;
|
|
}
|
|
|
|
ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
|
|
if (ConvertToShuffle) {
|
|
if (IsBinOp && DisableBinopExtractShuffle)
|
|
return true;
|
|
|
|
// If we are extracting from 2 different indexes, then one operand must be
|
|
// shuffled before performing the vector operation. The shuffle mask is
|
|
// poison except for 1 lane that is being translated to the remaining
|
|
// extraction lane. Therefore, it is a splat shuffle. Ex:
|
|
// ShufMask = { poison, poison, 0, poison }
|
|
// TODO: The cost model has an option for a "broadcast" shuffle
|
|
// (splat-from-element-0), but no option for a more general splat.
|
|
NewCost +=
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
|
|
}
|
|
|
|
// Aggressively form a vector op if the cost is equal because the transform
|
|
// may enable further optimization.
|
|
// Codegen can reverse this transform (scalarize) if it was not profitable.
|
|
return OldCost < NewCost;
|
|
}
|
|
|
|
/// Create a shuffle that translates (shifts) 1 element from the input vector
|
|
/// to a new element location.
|
|
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
|
|
unsigned NewIndex, IRBuilder<> &Builder) {
|
|
// The shuffle mask is poison except for 1 lane that is being translated
|
|
// to the new element index. Example for OldIndex == 2 and NewIndex == 0:
|
|
// ShufMask = { 2, poison, poison, poison }
|
|
auto *VecTy = cast<FixedVectorType>(Vec->getType());
|
|
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
|
|
ShufMask[NewIndex] = OldIndex;
|
|
return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
|
|
}
|
|
|
|
/// Given an extract element instruction with constant index operand, shuffle
|
|
/// the source vector (shift the scalar element) to a NewIndex for extraction.
|
|
/// Return null if the input can be constant folded, so that we are not creating
|
|
/// unnecessary instructions.
|
|
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
|
|
unsigned NewIndex,
|
|
IRBuilder<> &Builder) {
|
|
// Shufflevectors can only be created for fixed-width vectors.
|
|
if (!isa<FixedVectorType>(ExtElt->getOperand(0)->getType()))
|
|
return nullptr;
|
|
|
|
// If the extract can be constant-folded, this code is unsimplified. Defer
|
|
// to other passes to handle that.
|
|
Value *X = ExtElt->getVectorOperand();
|
|
Value *C = ExtElt->getIndexOperand();
|
|
assert(isa<ConstantInt>(C) && "Expected a constant index operand");
|
|
if (isa<Constant>(X))
|
|
return nullptr;
|
|
|
|
Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
|
|
NewIndex, Builder);
|
|
return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar compares to vector
|
|
/// compares followed by extract.
|
|
/// cmp (ext0 V0, C), (ext1 V1, C)
|
|
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
|
|
ExtractElementInst *Ext1, Instruction &I) {
|
|
assert(isa<CmpInst>(&I) && "Expected a compare");
|
|
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
|
|
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
|
|
"Expected matching constant extract indexes");
|
|
|
|
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
|
|
++NumVecCmp;
|
|
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
|
|
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
|
|
Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
|
|
Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
|
|
replaceValue(I, *NewExt);
|
|
}
|
|
|
|
/// Try to reduce extract element costs by converting scalar binops to vector
|
|
/// binops followed by extract.
|
|
/// bo (ext0 V0, C), (ext1 V1, C)
|
|
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
|
|
ExtractElementInst *Ext1, Instruction &I) {
|
|
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
|
|
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
|
|
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
|
|
"Expected matching constant extract indexes");
|
|
|
|
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
|
|
++NumVecBO;
|
|
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
|
|
Value *VecBO =
|
|
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
|
|
|
|
// All IR flags are safe to back-propagate because any potential poison
|
|
// created in unused vector elements is discarded by the extract.
|
|
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
|
|
VecBOInst->copyIRFlags(&I);
|
|
|
|
Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
|
|
replaceValue(I, *NewExt);
|
|
}
|
|
|
|
/// Match an instruction with extracted vector operands.
|
|
bool VectorCombine::foldExtractExtract(Instruction &I) {
|
|
// It is not safe to transform things like div, urem, etc. because we may
|
|
// create undefined behavior when executing those on unknown vector elements.
|
|
if (!isSafeToSpeculativelyExecute(&I))
|
|
return false;
|
|
|
|
Instruction *I0, *I1;
|
|
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
|
if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
|
|
!match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
|
|
return false;
|
|
|
|
Value *V0, *V1;
|
|
uint64_t C0, C1;
|
|
if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
|
|
!match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
|
|
V0->getType() != V1->getType())
|
|
return false;
|
|
|
|
// If the scalar value 'I' is going to be re-inserted into a vector, then try
|
|
// to create an extract to that same element. The extract/insert can be
|
|
// reduced to a "select shuffle".
|
|
// TODO: If we add a larger pattern match that starts from an insert, this
|
|
// probably becomes unnecessary.
|
|
auto *Ext0 = cast<ExtractElementInst>(I0);
|
|
auto *Ext1 = cast<ExtractElementInst>(I1);
|
|
uint64_t InsertIndex = InvalidIndex;
|
|
if (I.hasOneUse())
|
|
match(I.user_back(),
|
|
m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
|
|
|
|
ExtractElementInst *ExtractToChange;
|
|
if (isExtractExtractCheap(Ext0, Ext1, I, ExtractToChange, InsertIndex))
|
|
return false;
|
|
|
|
if (ExtractToChange) {
|
|
unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
|
|
ExtractElementInst *NewExtract =
|
|
translateExtract(ExtractToChange, CheapExtractIdx, Builder);
|
|
if (!NewExtract)
|
|
return false;
|
|
if (ExtractToChange == Ext0)
|
|
Ext0 = NewExtract;
|
|
else
|
|
Ext1 = NewExtract;
|
|
}
|
|
|
|
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
|
|
foldExtExtCmp(Ext0, Ext1, I);
|
|
else
|
|
foldExtExtBinop(Ext0, Ext1, I);
|
|
|
|
Worklist.push(Ext0);
|
|
Worklist.push(Ext1);
|
|
return true;
|
|
}
|
|
|
|
/// Try to replace an extract + scalar fneg + insert with a vector fneg +
|
|
/// shuffle.
|
|
bool VectorCombine::foldInsExtFNeg(Instruction &I) {
|
|
// Match an insert (op (extract)) pattern.
|
|
Value *DestVec;
|
|
uint64_t Index;
|
|
Instruction *FNeg;
|
|
if (!match(&I, m_InsertElt(m_Value(DestVec), m_OneUse(m_Instruction(FNeg)),
|
|
m_ConstantInt(Index))))
|
|
return false;
|
|
|
|
// Note: This handles the canonical fneg instruction and "fsub -0.0, X".
|
|
Value *SrcVec;
|
|
Instruction *Extract;
|
|
if (!match(FNeg, m_FNeg(m_CombineAnd(
|
|
m_Instruction(Extract),
|
|
m_ExtractElt(m_Value(SrcVec), m_SpecificInt(Index))))))
|
|
return false;
|
|
|
|
// TODO: We could handle this with a length-changing shuffle.
|
|
auto *VecTy = cast<FixedVectorType>(I.getType());
|
|
if (SrcVec->getType() != VecTy)
|
|
return false;
|
|
|
|
// Ignore bogus insert/extract index.
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
if (Index >= NumElts)
|
|
return false;
|
|
|
|
// We are inserting the negated element into the same lane that we extracted
|
|
// from. This is equivalent to a select-shuffle that chooses all but the
|
|
// negated element from the destination vector.
|
|
SmallVector<int> Mask(NumElts);
|
|
std::iota(Mask.begin(), Mask.end(), 0);
|
|
Mask[Index] = Index + NumElts;
|
|
|
|
Type *ScalarTy = VecTy->getScalarType();
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost OldCost =
|
|
TTI.getArithmeticInstrCost(Instruction::FNeg, ScalarTy) +
|
|
TTI.getVectorInstrCost(I, VecTy, CostKind, Index);
|
|
|
|
// If the extract has one use, it will be eliminated, so count it in the
|
|
// original cost. If it has more than one use, ignore the cost because it will
|
|
// be the same before/after.
|
|
if (Extract->hasOneUse())
|
|
OldCost += TTI.getVectorInstrCost(*Extract, VecTy, CostKind, Index);
|
|
|
|
InstructionCost NewCost =
|
|
TTI.getArithmeticInstrCost(Instruction::FNeg, VecTy) +
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_Select, VecTy, Mask);
|
|
|
|
if (NewCost > OldCost)
|
|
return false;
|
|
|
|
// insertelt DestVec, (fneg (extractelt SrcVec, Index)), Index -->
|
|
// shuffle DestVec, (fneg SrcVec), Mask
|
|
Value *VecFNeg = Builder.CreateFNegFMF(SrcVec, FNeg);
|
|
Value *Shuf = Builder.CreateShuffleVector(DestVec, VecFNeg, Mask);
|
|
replaceValue(I, *Shuf);
|
|
return true;
|
|
}
|
|
|
|
/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
|
|
/// destination type followed by shuffle. This can enable further transforms by
|
|
/// moving bitcasts or shuffles together.
|
|
bool VectorCombine::foldBitcastShuffle(Instruction &I) {
|
|
Value *V;
|
|
ArrayRef<int> Mask;
|
|
if (!match(&I, m_BitCast(
|
|
m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
|
|
return false;
|
|
|
|
// 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
|
|
// scalable type is unknown; Second, we cannot reason if the narrowed shuffle
|
|
// mask for scalable type is a splat or not.
|
|
// 2) Disallow non-vector casts.
|
|
// TODO: We could allow any shuffle.
|
|
auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
|
|
auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
|
|
if (!DestTy || !SrcTy)
|
|
return false;
|
|
|
|
unsigned DestEltSize = DestTy->getScalarSizeInBits();
|
|
unsigned SrcEltSize = SrcTy->getScalarSizeInBits();
|
|
if (SrcTy->getPrimitiveSizeInBits() % DestEltSize != 0)
|
|
return false;
|
|
|
|
SmallVector<int, 16> NewMask;
|
|
if (DestEltSize <= SrcEltSize) {
|
|
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
|
|
// always be expanded to the equivalent form choosing narrower elements.
|
|
assert(SrcEltSize % DestEltSize == 0 && "Unexpected shuffle mask");
|
|
unsigned ScaleFactor = SrcEltSize / DestEltSize;
|
|
narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
|
|
} else {
|
|
// The bitcast is from narrow elements to wide elements. The shuffle mask
|
|
// must choose consecutive elements to allow casting first.
|
|
assert(DestEltSize % SrcEltSize == 0 && "Unexpected shuffle mask");
|
|
unsigned ScaleFactor = DestEltSize / SrcEltSize;
|
|
if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
|
|
return false;
|
|
}
|
|
|
|
// Bitcast the shuffle src - keep its original width but using the destination
|
|
// scalar type.
|
|
unsigned NumSrcElts = SrcTy->getPrimitiveSizeInBits() / DestEltSize;
|
|
auto *ShuffleTy = FixedVectorType::get(DestTy->getScalarType(), NumSrcElts);
|
|
|
|
// The new shuffle must not cost more than the old shuffle. The bitcast is
|
|
// moved ahead of the shuffle, so assume that it has the same cost as before.
|
|
InstructionCost DestCost = TTI.getShuffleCost(
|
|
TargetTransformInfo::SK_PermuteSingleSrc, ShuffleTy, NewMask);
|
|
InstructionCost SrcCost =
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy, Mask);
|
|
if (DestCost > SrcCost || !DestCost.isValid())
|
|
return false;
|
|
|
|
// bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
|
|
++NumShufOfBitcast;
|
|
Value *CastV = Builder.CreateBitCast(V, ShuffleTy);
|
|
Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
|
|
replaceValue(I, *Shuf);
|
|
return true;
|
|
}
|
|
|
|
/// VP Intrinsics whose vector operands are both splat values may be simplified
|
|
/// into the scalar version of the operation and the result splatted. This
|
|
/// can lead to scalarization down the line.
|
|
bool VectorCombine::scalarizeVPIntrinsic(Instruction &I) {
|
|
if (!isa<VPIntrinsic>(I))
|
|
return false;
|
|
VPIntrinsic &VPI = cast<VPIntrinsic>(I);
|
|
Value *Op0 = VPI.getArgOperand(0);
|
|
Value *Op1 = VPI.getArgOperand(1);
|
|
|
|
if (!isSplatValue(Op0) || !isSplatValue(Op1))
|
|
return false;
|
|
|
|
// Check getSplatValue early in this function, to avoid doing unnecessary
|
|
// work.
|
|
Value *ScalarOp0 = getSplatValue(Op0);
|
|
Value *ScalarOp1 = getSplatValue(Op1);
|
|
if (!ScalarOp0 || !ScalarOp1)
|
|
return false;
|
|
|
|
// For the binary VP intrinsics supported here, the result on disabled lanes
|
|
// is a poison value. For now, only do this simplification if all lanes
|
|
// are active.
|
|
// TODO: Relax the condition that all lanes are active by using insertelement
|
|
// on inactive lanes.
|
|
auto IsAllTrueMask = [](Value *MaskVal) {
|
|
if (Value *SplattedVal = getSplatValue(MaskVal))
|
|
if (auto *ConstValue = dyn_cast<Constant>(SplattedVal))
|
|
return ConstValue->isAllOnesValue();
|
|
return false;
|
|
};
|
|
if (!IsAllTrueMask(VPI.getArgOperand(2)))
|
|
return false;
|
|
|
|
// Check to make sure we support scalarization of the intrinsic
|
|
Intrinsic::ID IntrID = VPI.getIntrinsicID();
|
|
if (!VPBinOpIntrinsic::isVPBinOp(IntrID))
|
|
return false;
|
|
|
|
// Calculate cost of splatting both operands into vectors and the vector
|
|
// intrinsic
|
|
VectorType *VecTy = cast<VectorType>(VPI.getType());
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost SplatCost =
|
|
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, 0) +
|
|
TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy);
|
|
|
|
// Calculate the cost of the VP Intrinsic
|
|
SmallVector<Type *, 4> Args;
|
|
for (Value *V : VPI.args())
|
|
Args.push_back(V->getType());
|
|
IntrinsicCostAttributes Attrs(IntrID, VecTy, Args);
|
|
InstructionCost VectorOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
|
|
InstructionCost OldCost = 2 * SplatCost + VectorOpCost;
|
|
|
|
// Determine scalar opcode
|
|
std::optional<unsigned> FunctionalOpcode =
|
|
VPI.getFunctionalOpcode();
|
|
std::optional<Intrinsic::ID> ScalarIntrID = std::nullopt;
|
|
if (!FunctionalOpcode) {
|
|
ScalarIntrID = VPI.getFunctionalIntrinsicID();
|
|
if (!ScalarIntrID)
|
|
return false;
|
|
}
|
|
|
|
// Calculate cost of scalarizing
|
|
InstructionCost ScalarOpCost = 0;
|
|
if (ScalarIntrID) {
|
|
IntrinsicCostAttributes Attrs(*ScalarIntrID, VecTy->getScalarType(), Args);
|
|
ScalarOpCost = TTI.getIntrinsicInstrCost(Attrs, CostKind);
|
|
} else {
|
|
ScalarOpCost =
|
|
TTI.getArithmeticInstrCost(*FunctionalOpcode, VecTy->getScalarType());
|
|
}
|
|
|
|
// The existing splats may be kept around if other instructions use them.
|
|
InstructionCost CostToKeepSplats =
|
|
(SplatCost * !Op0->hasOneUse()) + (SplatCost * !Op1->hasOneUse());
|
|
InstructionCost NewCost = ScalarOpCost + SplatCost + CostToKeepSplats;
|
|
|
|
LLVM_DEBUG(dbgs() << "Found a VP Intrinsic to scalarize: " << VPI
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << "Cost of Intrinsic: " << OldCost
|
|
<< ", Cost of scalarizing:" << NewCost << "\n");
|
|
|
|
// We want to scalarize unless the vector variant actually has lower cost.
|
|
if (OldCost < NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
// Scalarize the intrinsic
|
|
ElementCount EC = cast<VectorType>(Op0->getType())->getElementCount();
|
|
Value *EVL = VPI.getArgOperand(3);
|
|
const DataLayout &DL = VPI.getModule()->getDataLayout();
|
|
|
|
// If the VP op might introduce UB or poison, we can scalarize it provided
|
|
// that we know the EVL > 0: If the EVL is zero, then the original VP op
|
|
// becomes a no-op and thus won't be UB, so make sure we don't introduce UB by
|
|
// scalarizing it.
|
|
bool SafeToSpeculate;
|
|
if (ScalarIntrID)
|
|
SafeToSpeculate = Intrinsic::getAttributes(I.getContext(), *ScalarIntrID)
|
|
.hasFnAttr(Attribute::AttrKind::Speculatable);
|
|
else
|
|
SafeToSpeculate = isSafeToSpeculativelyExecuteWithOpcode(
|
|
*FunctionalOpcode, &VPI, nullptr, &AC, &DT);
|
|
if (!SafeToSpeculate && !isKnownNonZero(EVL, DL, 0, &AC, &VPI, &DT))
|
|
return false;
|
|
|
|
Value *ScalarVal =
|
|
ScalarIntrID
|
|
? Builder.CreateIntrinsic(VecTy->getScalarType(), *ScalarIntrID,
|
|
{ScalarOp0, ScalarOp1})
|
|
: Builder.CreateBinOp((Instruction::BinaryOps)(*FunctionalOpcode),
|
|
ScalarOp0, ScalarOp1);
|
|
|
|
replaceValue(VPI, *Builder.CreateVectorSplat(EC, ScalarVal));
|
|
return true;
|
|
}
|
|
|
|
/// Match a vector binop or compare instruction with at least one inserted
|
|
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
|
|
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
|
|
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
|
|
Value *Ins0, *Ins1;
|
|
if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
|
|
!match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
|
|
return false;
|
|
|
|
// Do not convert the vector condition of a vector select into a scalar
|
|
// condition. That may cause problems for codegen because of differences in
|
|
// boolean formats and register-file transfers.
|
|
// TODO: Can we account for that in the cost model?
|
|
bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
|
|
if (IsCmp)
|
|
for (User *U : I.users())
|
|
if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
|
|
return false;
|
|
|
|
// Match against one or both scalar values being inserted into constant
|
|
// vectors:
|
|
// vec_op VecC0, (inselt VecC1, V1, Index)
|
|
// vec_op (inselt VecC0, V0, Index), VecC1
|
|
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
|
|
// TODO: Deal with mismatched index constants and variable indexes?
|
|
Constant *VecC0 = nullptr, *VecC1 = nullptr;
|
|
Value *V0 = nullptr, *V1 = nullptr;
|
|
uint64_t Index0 = 0, Index1 = 0;
|
|
if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
|
|
m_ConstantInt(Index0))) &&
|
|
!match(Ins0, m_Constant(VecC0)))
|
|
return false;
|
|
if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
|
|
m_ConstantInt(Index1))) &&
|
|
!match(Ins1, m_Constant(VecC1)))
|
|
return false;
|
|
|
|
bool IsConst0 = !V0;
|
|
bool IsConst1 = !V1;
|
|
if (IsConst0 && IsConst1)
|
|
return false;
|
|
if (!IsConst0 && !IsConst1 && Index0 != Index1)
|
|
return false;
|
|
|
|
// Bail for single insertion if it is a load.
|
|
// TODO: Handle this once getVectorInstrCost can cost for load/stores.
|
|
auto *I0 = dyn_cast_or_null<Instruction>(V0);
|
|
auto *I1 = dyn_cast_or_null<Instruction>(V1);
|
|
if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
|
|
(IsConst1 && I0 && I0->mayReadFromMemory()))
|
|
return false;
|
|
|
|
uint64_t Index = IsConst0 ? Index1 : Index0;
|
|
Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
|
|
Type *VecTy = I.getType();
|
|
assert(VecTy->isVectorTy() &&
|
|
(IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
|
|
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
|
|
ScalarTy->isPointerTy()) &&
|
|
"Unexpected types for insert element into binop or cmp");
|
|
|
|
unsigned Opcode = I.getOpcode();
|
|
InstructionCost ScalarOpCost, VectorOpCost;
|
|
if (IsCmp) {
|
|
CmpInst::Predicate Pred = cast<CmpInst>(I).getPredicate();
|
|
ScalarOpCost = TTI.getCmpSelInstrCost(
|
|
Opcode, ScalarTy, CmpInst::makeCmpResultType(ScalarTy), Pred);
|
|
VectorOpCost = TTI.getCmpSelInstrCost(
|
|
Opcode, VecTy, CmpInst::makeCmpResultType(VecTy), Pred);
|
|
} else {
|
|
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
|
|
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
}
|
|
|
|
// Get cost estimate for the insert element. This cost will factor into
|
|
// both sequences.
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost InsertCost = TTI.getVectorInstrCost(
|
|
Instruction::InsertElement, VecTy, CostKind, Index);
|
|
InstructionCost OldCost =
|
|
(IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) + VectorOpCost;
|
|
InstructionCost NewCost = ScalarOpCost + InsertCost +
|
|
(IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
|
|
(IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
|
|
|
|
// We want to scalarize unless the vector variant actually has lower cost.
|
|
if (OldCost < NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
|
|
// inselt NewVecC, (scalar_op V0, V1), Index
|
|
if (IsCmp)
|
|
++NumScalarCmp;
|
|
else
|
|
++NumScalarBO;
|
|
|
|
// For constant cases, extract the scalar element, this should constant fold.
|
|
if (IsConst0)
|
|
V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
|
|
if (IsConst1)
|
|
V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
|
|
|
|
Value *Scalar =
|
|
IsCmp ? Builder.CreateCmp(Pred, V0, V1)
|
|
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
|
|
|
|
Scalar->setName(I.getName() + ".scalar");
|
|
|
|
// All IR flags are safe to back-propagate. There is no potential for extra
|
|
// poison to be created by the scalar instruction.
|
|
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
|
|
ScalarInst->copyIRFlags(&I);
|
|
|
|
// Fold the vector constants in the original vectors into a new base vector.
|
|
Value *NewVecC =
|
|
IsCmp ? Builder.CreateCmp(Pred, VecC0, VecC1)
|
|
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, VecC0, VecC1);
|
|
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
|
|
replaceValue(I, *Insert);
|
|
return true;
|
|
}
|
|
|
|
/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
|
|
/// a vector into vector operations followed by extract. Note: The SLP pass
|
|
/// may miss this pattern because of implementation problems.
|
|
bool VectorCombine::foldExtractedCmps(Instruction &I) {
|
|
// We are looking for a scalar binop of booleans.
|
|
// binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
|
|
if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
|
|
return false;
|
|
|
|
// The compare predicates should match, and each compare should have a
|
|
// constant operand.
|
|
// TODO: Relax the one-use constraints.
|
|
Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
|
|
Instruction *I0, *I1;
|
|
Constant *C0, *C1;
|
|
CmpInst::Predicate P0, P1;
|
|
if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
|
|
!match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
|
|
P0 != P1)
|
|
return false;
|
|
|
|
// The compare operands must be extracts of the same vector with constant
|
|
// extract indexes.
|
|
// TODO: Relax the one-use constraints.
|
|
Value *X;
|
|
uint64_t Index0, Index1;
|
|
if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
|
|
!match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
|
|
return false;
|
|
|
|
auto *Ext0 = cast<ExtractElementInst>(I0);
|
|
auto *Ext1 = cast<ExtractElementInst>(I1);
|
|
ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
|
|
if (!ConvertToShuf)
|
|
return false;
|
|
|
|
// The original scalar pattern is:
|
|
// binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
|
|
CmpInst::Predicate Pred = P0;
|
|
unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
|
|
: Instruction::ICmp;
|
|
auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
|
|
if (!VecTy)
|
|
return false;
|
|
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost OldCost =
|
|
TTI.getVectorInstrCost(*Ext0, VecTy, CostKind, Index0);
|
|
OldCost += TTI.getVectorInstrCost(*Ext1, VecTy, CostKind, Index1);
|
|
OldCost +=
|
|
TTI.getCmpSelInstrCost(CmpOpcode, I0->getType(),
|
|
CmpInst::makeCmpResultType(I0->getType()), Pred) *
|
|
2;
|
|
OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
|
|
|
|
// The proposed vector pattern is:
|
|
// vcmp = cmp Pred X, VecC
|
|
// ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
|
|
int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
|
|
int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
|
|
auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
|
|
InstructionCost NewCost = TTI.getCmpSelInstrCost(
|
|
CmpOpcode, X->getType(), CmpInst::makeCmpResultType(X->getType()), Pred);
|
|
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), PoisonMaskElem);
|
|
ShufMask[CheapIndex] = ExpensiveIndex;
|
|
NewCost += TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy,
|
|
ShufMask);
|
|
NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
|
|
NewCost += TTI.getVectorInstrCost(*Ext0, CmpTy, CostKind, CheapIndex);
|
|
|
|
// Aggressively form vector ops if the cost is equal because the transform
|
|
// may enable further optimization.
|
|
// Codegen can reverse this transform (scalarize) if it was not profitable.
|
|
if (OldCost < NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
// Create a vector constant from the 2 scalar constants.
|
|
SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
|
|
PoisonValue::get(VecTy->getElementType()));
|
|
CmpC[Index0] = C0;
|
|
CmpC[Index1] = C1;
|
|
Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
|
|
|
|
Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
|
|
Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
|
|
VCmp, Shuf);
|
|
Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
|
|
replaceValue(I, *NewExt);
|
|
++NumVecCmpBO;
|
|
return true;
|
|
}
|
|
|
|
// Check if memory loc modified between two instrs in the same BB
|
|
static bool isMemModifiedBetween(BasicBlock::iterator Begin,
|
|
BasicBlock::iterator End,
|
|
const MemoryLocation &Loc, AAResults &AA) {
|
|
unsigned NumScanned = 0;
|
|
return std::any_of(Begin, End, [&](const Instruction &Instr) {
|
|
return isModSet(AA.getModRefInfo(&Instr, Loc)) ||
|
|
++NumScanned > MaxInstrsToScan;
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
/// Helper class to indicate whether a vector index can be safely scalarized and
|
|
/// if a freeze needs to be inserted.
|
|
class ScalarizationResult {
|
|
enum class StatusTy { Unsafe, Safe, SafeWithFreeze };
|
|
|
|
StatusTy Status;
|
|
Value *ToFreeze;
|
|
|
|
ScalarizationResult(StatusTy Status, Value *ToFreeze = nullptr)
|
|
: Status(Status), ToFreeze(ToFreeze) {}
|
|
|
|
public:
|
|
ScalarizationResult(const ScalarizationResult &Other) = default;
|
|
~ScalarizationResult() {
|
|
assert(!ToFreeze && "freeze() not called with ToFreeze being set");
|
|
}
|
|
|
|
static ScalarizationResult unsafe() { return {StatusTy::Unsafe}; }
|
|
static ScalarizationResult safe() { return {StatusTy::Safe}; }
|
|
static ScalarizationResult safeWithFreeze(Value *ToFreeze) {
|
|
return {StatusTy::SafeWithFreeze, ToFreeze};
|
|
}
|
|
|
|
/// Returns true if the index can be scalarize without requiring a freeze.
|
|
bool isSafe() const { return Status == StatusTy::Safe; }
|
|
/// Returns true if the index cannot be scalarized.
|
|
bool isUnsafe() const { return Status == StatusTy::Unsafe; }
|
|
/// Returns true if the index can be scalarize, but requires inserting a
|
|
/// freeze.
|
|
bool isSafeWithFreeze() const { return Status == StatusTy::SafeWithFreeze; }
|
|
|
|
/// Reset the state of Unsafe and clear ToFreze if set.
|
|
void discard() {
|
|
ToFreeze = nullptr;
|
|
Status = StatusTy::Unsafe;
|
|
}
|
|
|
|
/// Freeze the ToFreeze and update the use in \p User to use it.
|
|
void freeze(IRBuilder<> &Builder, Instruction &UserI) {
|
|
assert(isSafeWithFreeze() &&
|
|
"should only be used when freezing is required");
|
|
assert(is_contained(ToFreeze->users(), &UserI) &&
|
|
"UserI must be a user of ToFreeze");
|
|
IRBuilder<>::InsertPointGuard Guard(Builder);
|
|
Builder.SetInsertPoint(cast<Instruction>(&UserI));
|
|
Value *Frozen =
|
|
Builder.CreateFreeze(ToFreeze, ToFreeze->getName() + ".frozen");
|
|
for (Use &U : make_early_inc_range((UserI.operands())))
|
|
if (U.get() == ToFreeze)
|
|
U.set(Frozen);
|
|
|
|
ToFreeze = nullptr;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Check if it is legal to scalarize a memory access to \p VecTy at index \p
|
|
/// Idx. \p Idx must access a valid vector element.
|
|
static ScalarizationResult canScalarizeAccess(VectorType *VecTy, Value *Idx,
|
|
Instruction *CtxI,
|
|
AssumptionCache &AC,
|
|
const DominatorTree &DT) {
|
|
// We do checks for both fixed vector types and scalable vector types.
|
|
// This is the number of elements of fixed vector types,
|
|
// or the minimum number of elements of scalable vector types.
|
|
uint64_t NumElements = VecTy->getElementCount().getKnownMinValue();
|
|
|
|
if (auto *C = dyn_cast<ConstantInt>(Idx)) {
|
|
if (C->getValue().ult(NumElements))
|
|
return ScalarizationResult::safe();
|
|
return ScalarizationResult::unsafe();
|
|
}
|
|
|
|
unsigned IntWidth = Idx->getType()->getScalarSizeInBits();
|
|
APInt Zero(IntWidth, 0);
|
|
APInt MaxElts(IntWidth, NumElements);
|
|
ConstantRange ValidIndices(Zero, MaxElts);
|
|
ConstantRange IdxRange(IntWidth, true);
|
|
|
|
if (isGuaranteedNotToBePoison(Idx, &AC)) {
|
|
if (ValidIndices.contains(computeConstantRange(Idx, /* ForSigned */ false,
|
|
true, &AC, CtxI, &DT)))
|
|
return ScalarizationResult::safe();
|
|
return ScalarizationResult::unsafe();
|
|
}
|
|
|
|
// If the index may be poison, check if we can insert a freeze before the
|
|
// range of the index is restricted.
|
|
Value *IdxBase;
|
|
ConstantInt *CI;
|
|
if (match(Idx, m_And(m_Value(IdxBase), m_ConstantInt(CI)))) {
|
|
IdxRange = IdxRange.binaryAnd(CI->getValue());
|
|
} else if (match(Idx, m_URem(m_Value(IdxBase), m_ConstantInt(CI)))) {
|
|
IdxRange = IdxRange.urem(CI->getValue());
|
|
}
|
|
|
|
if (ValidIndices.contains(IdxRange))
|
|
return ScalarizationResult::safeWithFreeze(IdxBase);
|
|
return ScalarizationResult::unsafe();
|
|
}
|
|
|
|
/// The memory operation on a vector of \p ScalarType had alignment of
|
|
/// \p VectorAlignment. Compute the maximal, but conservatively correct,
|
|
/// alignment that will be valid for the memory operation on a single scalar
|
|
/// element of the same type with index \p Idx.
|
|
static Align computeAlignmentAfterScalarization(Align VectorAlignment,
|
|
Type *ScalarType, Value *Idx,
|
|
const DataLayout &DL) {
|
|
if (auto *C = dyn_cast<ConstantInt>(Idx))
|
|
return commonAlignment(VectorAlignment,
|
|
C->getZExtValue() * DL.getTypeStoreSize(ScalarType));
|
|
return commonAlignment(VectorAlignment, DL.getTypeStoreSize(ScalarType));
|
|
}
|
|
|
|
// Combine patterns like:
|
|
// %0 = load <4 x i32>, <4 x i32>* %a
|
|
// %1 = insertelement <4 x i32> %0, i32 %b, i32 1
|
|
// store <4 x i32> %1, <4 x i32>* %a
|
|
// to:
|
|
// %0 = bitcast <4 x i32>* %a to i32*
|
|
// %1 = getelementptr inbounds i32, i32* %0, i64 0, i64 1
|
|
// store i32 %b, i32* %1
|
|
bool VectorCombine::foldSingleElementStore(Instruction &I) {
|
|
auto *SI = cast<StoreInst>(&I);
|
|
if (!SI->isSimple() || !isa<VectorType>(SI->getValueOperand()->getType()))
|
|
return false;
|
|
|
|
// TODO: Combine more complicated patterns (multiple insert) by referencing
|
|
// TargetTransformInfo.
|
|
Instruction *Source;
|
|
Value *NewElement;
|
|
Value *Idx;
|
|
if (!match(SI->getValueOperand(),
|
|
m_InsertElt(m_Instruction(Source), m_Value(NewElement),
|
|
m_Value(Idx))))
|
|
return false;
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Source)) {
|
|
auto VecTy = cast<VectorType>(SI->getValueOperand()->getType());
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
Value *SrcAddr = Load->getPointerOperand()->stripPointerCasts();
|
|
// Don't optimize for atomic/volatile load or store. Ensure memory is not
|
|
// modified between, vector type matches store size, and index is inbounds.
|
|
if (!Load->isSimple() || Load->getParent() != SI->getParent() ||
|
|
!DL.typeSizeEqualsStoreSize(Load->getType()->getScalarType()) ||
|
|
SrcAddr != SI->getPointerOperand()->stripPointerCasts())
|
|
return false;
|
|
|
|
auto ScalarizableIdx = canScalarizeAccess(VecTy, Idx, Load, AC, DT);
|
|
if (ScalarizableIdx.isUnsafe() ||
|
|
isMemModifiedBetween(Load->getIterator(), SI->getIterator(),
|
|
MemoryLocation::get(SI), AA))
|
|
return false;
|
|
|
|
if (ScalarizableIdx.isSafeWithFreeze())
|
|
ScalarizableIdx.freeze(Builder, *cast<Instruction>(Idx));
|
|
Value *GEP = Builder.CreateInBoundsGEP(
|
|
SI->getValueOperand()->getType(), SI->getPointerOperand(),
|
|
{ConstantInt::get(Idx->getType(), 0), Idx});
|
|
StoreInst *NSI = Builder.CreateStore(NewElement, GEP);
|
|
NSI->copyMetadata(*SI);
|
|
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
|
|
std::max(SI->getAlign(), Load->getAlign()), NewElement->getType(), Idx,
|
|
DL);
|
|
NSI->setAlignment(ScalarOpAlignment);
|
|
replaceValue(I, *NSI);
|
|
eraseInstruction(I);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Try to scalarize vector loads feeding extractelement instructions.
|
|
bool VectorCombine::scalarizeLoadExtract(Instruction &I) {
|
|
Value *Ptr;
|
|
if (!match(&I, m_Load(m_Value(Ptr))))
|
|
return false;
|
|
|
|
auto *VecTy = cast<VectorType>(I.getType());
|
|
auto *LI = cast<LoadInst>(&I);
|
|
const DataLayout &DL = I.getModule()->getDataLayout();
|
|
if (LI->isVolatile() || !DL.typeSizeEqualsStoreSize(VecTy->getScalarType()))
|
|
return false;
|
|
|
|
InstructionCost OriginalCost =
|
|
TTI.getMemoryOpCost(Instruction::Load, VecTy, LI->getAlign(),
|
|
LI->getPointerAddressSpace());
|
|
InstructionCost ScalarizedCost = 0;
|
|
|
|
Instruction *LastCheckedInst = LI;
|
|
unsigned NumInstChecked = 0;
|
|
DenseMap<ExtractElementInst *, ScalarizationResult> NeedFreeze;
|
|
auto FailureGuard = make_scope_exit([&]() {
|
|
// If the transform is aborted, discard the ScalarizationResults.
|
|
for (auto &Pair : NeedFreeze)
|
|
Pair.second.discard();
|
|
});
|
|
|
|
// Check if all users of the load are extracts with no memory modifications
|
|
// between the load and the extract. Compute the cost of both the original
|
|
// code and the scalarized version.
|
|
for (User *U : LI->users()) {
|
|
auto *UI = dyn_cast<ExtractElementInst>(U);
|
|
if (!UI || UI->getParent() != LI->getParent())
|
|
return false;
|
|
|
|
// Check if any instruction between the load and the extract may modify
|
|
// memory.
|
|
if (LastCheckedInst->comesBefore(UI)) {
|
|
for (Instruction &I :
|
|
make_range(std::next(LI->getIterator()), UI->getIterator())) {
|
|
// Bail out if we reached the check limit or the instruction may write
|
|
// to memory.
|
|
if (NumInstChecked == MaxInstrsToScan || I.mayWriteToMemory())
|
|
return false;
|
|
NumInstChecked++;
|
|
}
|
|
LastCheckedInst = UI;
|
|
}
|
|
|
|
auto ScalarIdx = canScalarizeAccess(VecTy, UI->getOperand(1), &I, AC, DT);
|
|
if (ScalarIdx.isUnsafe())
|
|
return false;
|
|
if (ScalarIdx.isSafeWithFreeze()) {
|
|
NeedFreeze.try_emplace(UI, ScalarIdx);
|
|
ScalarIdx.discard();
|
|
}
|
|
|
|
auto *Index = dyn_cast<ConstantInt>(UI->getOperand(1));
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
OriginalCost +=
|
|
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, CostKind,
|
|
Index ? Index->getZExtValue() : -1);
|
|
ScalarizedCost +=
|
|
TTI.getMemoryOpCost(Instruction::Load, VecTy->getElementType(),
|
|
Align(1), LI->getPointerAddressSpace());
|
|
ScalarizedCost += TTI.getAddressComputationCost(VecTy->getElementType());
|
|
}
|
|
|
|
if (ScalarizedCost >= OriginalCost)
|
|
return false;
|
|
|
|
// Replace extracts with narrow scalar loads.
|
|
for (User *U : LI->users()) {
|
|
auto *EI = cast<ExtractElementInst>(U);
|
|
Value *Idx = EI->getOperand(1);
|
|
|
|
// Insert 'freeze' for poison indexes.
|
|
auto It = NeedFreeze.find(EI);
|
|
if (It != NeedFreeze.end())
|
|
It->second.freeze(Builder, *cast<Instruction>(Idx));
|
|
|
|
Builder.SetInsertPoint(EI);
|
|
Value *GEP =
|
|
Builder.CreateInBoundsGEP(VecTy, Ptr, {Builder.getInt32(0), Idx});
|
|
auto *NewLoad = cast<LoadInst>(Builder.CreateLoad(
|
|
VecTy->getElementType(), GEP, EI->getName() + ".scalar"));
|
|
|
|
Align ScalarOpAlignment = computeAlignmentAfterScalarization(
|
|
LI->getAlign(), VecTy->getElementType(), Idx, DL);
|
|
NewLoad->setAlignment(ScalarOpAlignment);
|
|
|
|
replaceValue(*EI, *NewLoad);
|
|
}
|
|
|
|
FailureGuard.release();
|
|
return true;
|
|
}
|
|
|
|
/// Try to convert "shuffle (binop), (binop)" with a shared binop operand into
|
|
/// "binop (shuffle), (shuffle)".
|
|
bool VectorCombine::foldShuffleOfBinops(Instruction &I) {
|
|
auto *VecTy = cast<FixedVectorType>(I.getType());
|
|
BinaryOperator *B0, *B1;
|
|
ArrayRef<int> Mask;
|
|
if (!match(&I, m_Shuffle(m_OneUse(m_BinOp(B0)), m_OneUse(m_BinOp(B1)),
|
|
m_Mask(Mask))) ||
|
|
B0->getOpcode() != B1->getOpcode() || B0->getType() != VecTy)
|
|
return false;
|
|
|
|
// Try to replace a binop with a shuffle if the shuffle is not costly.
|
|
// The new shuffle will choose from a single, common operand, so it may be
|
|
// cheaper than the existing two-operand shuffle.
|
|
SmallVector<int> UnaryMask = createUnaryMask(Mask, Mask.size());
|
|
Instruction::BinaryOps Opcode = B0->getOpcode();
|
|
InstructionCost BinopCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
|
|
InstructionCost ShufCost = TTI.getShuffleCost(
|
|
TargetTransformInfo::SK_PermuteSingleSrc, VecTy, UnaryMask);
|
|
if (ShufCost > BinopCost)
|
|
return false;
|
|
|
|
// If we have something like "add X, Y" and "add Z, X", swap ops to match.
|
|
Value *X = B0->getOperand(0), *Y = B0->getOperand(1);
|
|
Value *Z = B1->getOperand(0), *W = B1->getOperand(1);
|
|
if (BinaryOperator::isCommutative(Opcode) && X != Z && Y != W)
|
|
std::swap(X, Y);
|
|
|
|
Value *Shuf0, *Shuf1;
|
|
if (X == Z) {
|
|
// shuf (bo X, Y), (bo X, W) --> bo (shuf X), (shuf Y, W)
|
|
Shuf0 = Builder.CreateShuffleVector(X, UnaryMask);
|
|
Shuf1 = Builder.CreateShuffleVector(Y, W, Mask);
|
|
} else if (Y == W) {
|
|
// shuf (bo X, Y), (bo Z, Y) --> bo (shuf X, Z), (shuf Y)
|
|
Shuf0 = Builder.CreateShuffleVector(X, Z, Mask);
|
|
Shuf1 = Builder.CreateShuffleVector(Y, UnaryMask);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
Value *NewBO = Builder.CreateBinOp(Opcode, Shuf0, Shuf1);
|
|
// Intersect flags from the old binops.
|
|
if (auto *NewInst = dyn_cast<Instruction>(NewBO)) {
|
|
NewInst->copyIRFlags(B0);
|
|
NewInst->andIRFlags(B1);
|
|
}
|
|
replaceValue(I, *NewBO);
|
|
return true;
|
|
}
|
|
|
|
/// Given a commutative reduction, the order of the input lanes does not alter
|
|
/// the results. We can use this to remove certain shuffles feeding the
|
|
/// reduction, removing the need to shuffle at all.
|
|
bool VectorCombine::foldShuffleFromReductions(Instruction &I) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&I);
|
|
if (!II)
|
|
return false;
|
|
switch (II->getIntrinsicID()) {
|
|
case Intrinsic::vector_reduce_add:
|
|
case Intrinsic::vector_reduce_mul:
|
|
case Intrinsic::vector_reduce_and:
|
|
case Intrinsic::vector_reduce_or:
|
|
case Intrinsic::vector_reduce_xor:
|
|
case Intrinsic::vector_reduce_smin:
|
|
case Intrinsic::vector_reduce_smax:
|
|
case Intrinsic::vector_reduce_umin:
|
|
case Intrinsic::vector_reduce_umax:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
// Find all the inputs when looking through operations that do not alter the
|
|
// lane order (binops, for example). Currently we look for a single shuffle,
|
|
// and can ignore splat values.
|
|
std::queue<Value *> Worklist;
|
|
SmallPtrSet<Value *, 4> Visited;
|
|
ShuffleVectorInst *Shuffle = nullptr;
|
|
if (auto *Op = dyn_cast<Instruction>(I.getOperand(0)))
|
|
Worklist.push(Op);
|
|
|
|
while (!Worklist.empty()) {
|
|
Value *CV = Worklist.front();
|
|
Worklist.pop();
|
|
if (Visited.contains(CV))
|
|
continue;
|
|
|
|
// Splats don't change the order, so can be safely ignored.
|
|
if (isSplatValue(CV))
|
|
continue;
|
|
|
|
Visited.insert(CV);
|
|
|
|
if (auto *CI = dyn_cast<Instruction>(CV)) {
|
|
if (CI->isBinaryOp()) {
|
|
for (auto *Op : CI->operand_values())
|
|
Worklist.push(Op);
|
|
continue;
|
|
} else if (auto *SV = dyn_cast<ShuffleVectorInst>(CI)) {
|
|
if (Shuffle && Shuffle != SV)
|
|
return false;
|
|
Shuffle = SV;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Anything else is currently an unknown node.
|
|
return false;
|
|
}
|
|
|
|
if (!Shuffle)
|
|
return false;
|
|
|
|
// Check all uses of the binary ops and shuffles are also included in the
|
|
// lane-invariant operations (Visited should be the list of lanewise
|
|
// instructions, including the shuffle that we found).
|
|
for (auto *V : Visited)
|
|
for (auto *U : V->users())
|
|
if (!Visited.contains(U) && U != &I)
|
|
return false;
|
|
|
|
FixedVectorType *VecType =
|
|
dyn_cast<FixedVectorType>(II->getOperand(0)->getType());
|
|
if (!VecType)
|
|
return false;
|
|
FixedVectorType *ShuffleInputType =
|
|
dyn_cast<FixedVectorType>(Shuffle->getOperand(0)->getType());
|
|
if (!ShuffleInputType)
|
|
return false;
|
|
unsigned NumInputElts = ShuffleInputType->getNumElements();
|
|
|
|
// Find the mask from sorting the lanes into order. This is most likely to
|
|
// become a identity or concat mask. Undef elements are pushed to the end.
|
|
SmallVector<int> ConcatMask;
|
|
Shuffle->getShuffleMask(ConcatMask);
|
|
sort(ConcatMask, [](int X, int Y) { return (unsigned)X < (unsigned)Y; });
|
|
// In the case of a truncating shuffle it's possible for the mask
|
|
// to have an index greater than the size of the resulting vector.
|
|
// This requires special handling.
|
|
bool IsTruncatingShuffle = VecType->getNumElements() < NumInputElts;
|
|
bool UsesSecondVec =
|
|
any_of(ConcatMask, [&](int M) { return M >= (int)NumInputElts; });
|
|
|
|
FixedVectorType *VecTyForCost =
|
|
(UsesSecondVec && !IsTruncatingShuffle) ? VecType : ShuffleInputType;
|
|
InstructionCost OldCost = TTI.getShuffleCost(
|
|
UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
|
|
VecTyForCost, Shuffle->getShuffleMask());
|
|
InstructionCost NewCost = TTI.getShuffleCost(
|
|
UsesSecondVec ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc,
|
|
VecTyForCost, ConcatMask);
|
|
|
|
LLVM_DEBUG(dbgs() << "Found a reduction feeding from a shuffle: " << *Shuffle
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << " OldCost: " << OldCost << " vs NewCost: " << NewCost
|
|
<< "\n");
|
|
if (NewCost < OldCost) {
|
|
Builder.SetInsertPoint(Shuffle);
|
|
Value *NewShuffle = Builder.CreateShuffleVector(
|
|
Shuffle->getOperand(0), Shuffle->getOperand(1), ConcatMask);
|
|
LLVM_DEBUG(dbgs() << "Created new shuffle: " << *NewShuffle << "\n");
|
|
replaceValue(*Shuffle, *NewShuffle);
|
|
}
|
|
|
|
// See if we can re-use foldSelectShuffle, getting it to reduce the size of
|
|
// the shuffle into a nicer order, as it can ignore the order of the shuffles.
|
|
return foldSelectShuffle(*Shuffle, true);
|
|
}
|
|
|
|
/// Determine if its more efficient to fold:
|
|
/// reduce(trunc(x)) -> trunc(reduce(x)).
|
|
bool VectorCombine::foldTruncFromReductions(Instruction &I) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&I);
|
|
if (!II)
|
|
return false;
|
|
|
|
Intrinsic::ID IID = II->getIntrinsicID();
|
|
switch (IID) {
|
|
case Intrinsic::vector_reduce_add:
|
|
case Intrinsic::vector_reduce_mul:
|
|
case Intrinsic::vector_reduce_and:
|
|
case Intrinsic::vector_reduce_or:
|
|
case Intrinsic::vector_reduce_xor:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
unsigned ReductionOpc = getArithmeticReductionInstruction(IID);
|
|
Value *ReductionSrc = I.getOperand(0);
|
|
|
|
Value *TruncSrc;
|
|
if (!match(ReductionSrc, m_OneUse(m_Trunc(m_Value(TruncSrc)))))
|
|
return false;
|
|
|
|
auto *Trunc = cast<CastInst>(ReductionSrc);
|
|
auto *TruncSrcTy = cast<VectorType>(TruncSrc->getType());
|
|
auto *ReductionSrcTy = cast<VectorType>(ReductionSrc->getType());
|
|
Type *ResultTy = I.getType();
|
|
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
InstructionCost OldCost =
|
|
TTI.getCastInstrCost(Instruction::Trunc, ReductionSrcTy, TruncSrcTy,
|
|
TTI::CastContextHint::None, CostKind, Trunc) +
|
|
TTI.getArithmeticReductionCost(ReductionOpc, ReductionSrcTy, std::nullopt,
|
|
CostKind);
|
|
InstructionCost NewCost =
|
|
TTI.getArithmeticReductionCost(ReductionOpc, TruncSrcTy, std::nullopt,
|
|
CostKind) +
|
|
TTI.getCastInstrCost(Instruction::Trunc, ResultTy,
|
|
ReductionSrcTy->getScalarType(),
|
|
TTI::CastContextHint::None, CostKind);
|
|
|
|
if (OldCost <= NewCost || !NewCost.isValid())
|
|
return false;
|
|
|
|
Value *NewReduction = Builder.CreateIntrinsic(
|
|
TruncSrcTy->getScalarType(), II->getIntrinsicID(), {TruncSrc});
|
|
Value *NewTruncation = Builder.CreateTrunc(NewReduction, ResultTy);
|
|
replaceValue(I, *NewTruncation);
|
|
return true;
|
|
}
|
|
|
|
/// This method looks for groups of shuffles acting on binops, of the form:
|
|
/// %x = shuffle ...
|
|
/// %y = shuffle ...
|
|
/// %a = binop %x, %y
|
|
/// %b = binop %x, %y
|
|
/// shuffle %a, %b, selectmask
|
|
/// We may, especially if the shuffle is wider than legal, be able to convert
|
|
/// the shuffle to a form where only parts of a and b need to be computed. On
|
|
/// architectures with no obvious "select" shuffle, this can reduce the total
|
|
/// number of operations if the target reports them as cheaper.
|
|
bool VectorCombine::foldSelectShuffle(Instruction &I, bool FromReduction) {
|
|
auto *SVI = cast<ShuffleVectorInst>(&I);
|
|
auto *VT = cast<FixedVectorType>(I.getType());
|
|
auto *Op0 = dyn_cast<Instruction>(SVI->getOperand(0));
|
|
auto *Op1 = dyn_cast<Instruction>(SVI->getOperand(1));
|
|
if (!Op0 || !Op1 || Op0 == Op1 || !Op0->isBinaryOp() || !Op1->isBinaryOp() ||
|
|
VT != Op0->getType())
|
|
return false;
|
|
|
|
auto *SVI0A = dyn_cast<Instruction>(Op0->getOperand(0));
|
|
auto *SVI0B = dyn_cast<Instruction>(Op0->getOperand(1));
|
|
auto *SVI1A = dyn_cast<Instruction>(Op1->getOperand(0));
|
|
auto *SVI1B = dyn_cast<Instruction>(Op1->getOperand(1));
|
|
SmallPtrSet<Instruction *, 4> InputShuffles({SVI0A, SVI0B, SVI1A, SVI1B});
|
|
auto checkSVNonOpUses = [&](Instruction *I) {
|
|
if (!I || I->getOperand(0)->getType() != VT)
|
|
return true;
|
|
return any_of(I->users(), [&](User *U) {
|
|
return U != Op0 && U != Op1 &&
|
|
!(isa<ShuffleVectorInst>(U) &&
|
|
(InputShuffles.contains(cast<Instruction>(U)) ||
|
|
isInstructionTriviallyDead(cast<Instruction>(U))));
|
|
});
|
|
};
|
|
if (checkSVNonOpUses(SVI0A) || checkSVNonOpUses(SVI0B) ||
|
|
checkSVNonOpUses(SVI1A) || checkSVNonOpUses(SVI1B))
|
|
return false;
|
|
|
|
// Collect all the uses that are shuffles that we can transform together. We
|
|
// may not have a single shuffle, but a group that can all be transformed
|
|
// together profitably.
|
|
SmallVector<ShuffleVectorInst *> Shuffles;
|
|
auto collectShuffles = [&](Instruction *I) {
|
|
for (auto *U : I->users()) {
|
|
auto *SV = dyn_cast<ShuffleVectorInst>(U);
|
|
if (!SV || SV->getType() != VT)
|
|
return false;
|
|
if ((SV->getOperand(0) != Op0 && SV->getOperand(0) != Op1) ||
|
|
(SV->getOperand(1) != Op0 && SV->getOperand(1) != Op1))
|
|
return false;
|
|
if (!llvm::is_contained(Shuffles, SV))
|
|
Shuffles.push_back(SV);
|
|
}
|
|
return true;
|
|
};
|
|
if (!collectShuffles(Op0) || !collectShuffles(Op1))
|
|
return false;
|
|
// From a reduction, we need to be processing a single shuffle, otherwise the
|
|
// other uses will not be lane-invariant.
|
|
if (FromReduction && Shuffles.size() > 1)
|
|
return false;
|
|
|
|
// Add any shuffle uses for the shuffles we have found, to include them in our
|
|
// cost calculations.
|
|
if (!FromReduction) {
|
|
for (ShuffleVectorInst *SV : Shuffles) {
|
|
for (auto *U : SV->users()) {
|
|
ShuffleVectorInst *SSV = dyn_cast<ShuffleVectorInst>(U);
|
|
if (SSV && isa<UndefValue>(SSV->getOperand(1)) && SSV->getType() == VT)
|
|
Shuffles.push_back(SSV);
|
|
}
|
|
}
|
|
}
|
|
|
|
// For each of the output shuffles, we try to sort all the first vector
|
|
// elements to the beginning, followed by the second array elements at the
|
|
// end. If the binops are legalized to smaller vectors, this may reduce total
|
|
// number of binops. We compute the ReconstructMask mask needed to convert
|
|
// back to the original lane order.
|
|
SmallVector<std::pair<int, int>> V1, V2;
|
|
SmallVector<SmallVector<int>> OrigReconstructMasks;
|
|
int MaxV1Elt = 0, MaxV2Elt = 0;
|
|
unsigned NumElts = VT->getNumElements();
|
|
for (ShuffleVectorInst *SVN : Shuffles) {
|
|
SmallVector<int> Mask;
|
|
SVN->getShuffleMask(Mask);
|
|
|
|
// Check the operands are the same as the original, or reversed (in which
|
|
// case we need to commute the mask).
|
|
Value *SVOp0 = SVN->getOperand(0);
|
|
Value *SVOp1 = SVN->getOperand(1);
|
|
if (isa<UndefValue>(SVOp1)) {
|
|
auto *SSV = cast<ShuffleVectorInst>(SVOp0);
|
|
SVOp0 = SSV->getOperand(0);
|
|
SVOp1 = SSV->getOperand(1);
|
|
for (unsigned I = 0, E = Mask.size(); I != E; I++) {
|
|
if (Mask[I] >= static_cast<int>(SSV->getShuffleMask().size()))
|
|
return false;
|
|
Mask[I] = Mask[I] < 0 ? Mask[I] : SSV->getMaskValue(Mask[I]);
|
|
}
|
|
}
|
|
if (SVOp0 == Op1 && SVOp1 == Op0) {
|
|
std::swap(SVOp0, SVOp1);
|
|
ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
|
|
}
|
|
if (SVOp0 != Op0 || SVOp1 != Op1)
|
|
return false;
|
|
|
|
// Calculate the reconstruction mask for this shuffle, as the mask needed to
|
|
// take the packed values from Op0/Op1 and reconstructing to the original
|
|
// order.
|
|
SmallVector<int> ReconstructMask;
|
|
for (unsigned I = 0; I < Mask.size(); I++) {
|
|
if (Mask[I] < 0) {
|
|
ReconstructMask.push_back(-1);
|
|
} else if (Mask[I] < static_cast<int>(NumElts)) {
|
|
MaxV1Elt = std::max(MaxV1Elt, Mask[I]);
|
|
auto It = find_if(V1, [&](const std::pair<int, int> &A) {
|
|
return Mask[I] == A.first;
|
|
});
|
|
if (It != V1.end())
|
|
ReconstructMask.push_back(It - V1.begin());
|
|
else {
|
|
ReconstructMask.push_back(V1.size());
|
|
V1.emplace_back(Mask[I], V1.size());
|
|
}
|
|
} else {
|
|
MaxV2Elt = std::max<int>(MaxV2Elt, Mask[I] - NumElts);
|
|
auto It = find_if(V2, [&](const std::pair<int, int> &A) {
|
|
return Mask[I] - static_cast<int>(NumElts) == A.first;
|
|
});
|
|
if (It != V2.end())
|
|
ReconstructMask.push_back(NumElts + It - V2.begin());
|
|
else {
|
|
ReconstructMask.push_back(NumElts + V2.size());
|
|
V2.emplace_back(Mask[I] - NumElts, NumElts + V2.size());
|
|
}
|
|
}
|
|
}
|
|
|
|
// For reductions, we know that the lane ordering out doesn't alter the
|
|
// result. In-order can help simplify the shuffle away.
|
|
if (FromReduction)
|
|
sort(ReconstructMask);
|
|
OrigReconstructMasks.push_back(std::move(ReconstructMask));
|
|
}
|
|
|
|
// If the Maximum element used from V1 and V2 are not larger than the new
|
|
// vectors, the vectors are already packes and performing the optimization
|
|
// again will likely not help any further. This also prevents us from getting
|
|
// stuck in a cycle in case the costs do not also rule it out.
|
|
if (V1.empty() || V2.empty() ||
|
|
(MaxV1Elt == static_cast<int>(V1.size()) - 1 &&
|
|
MaxV2Elt == static_cast<int>(V2.size()) - 1))
|
|
return false;
|
|
|
|
// GetBaseMaskValue takes one of the inputs, which may either be a shuffle, a
|
|
// shuffle of another shuffle, or not a shuffle (that is treated like a
|
|
// identity shuffle).
|
|
auto GetBaseMaskValue = [&](Instruction *I, int M) {
|
|
auto *SV = dyn_cast<ShuffleVectorInst>(I);
|
|
if (!SV)
|
|
return M;
|
|
if (isa<UndefValue>(SV->getOperand(1)))
|
|
if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
|
|
if (InputShuffles.contains(SSV))
|
|
return SSV->getMaskValue(SV->getMaskValue(M));
|
|
return SV->getMaskValue(M);
|
|
};
|
|
|
|
// Attempt to sort the inputs my ascending mask values to make simpler input
|
|
// shuffles and push complex shuffles down to the uses. We sort on the first
|
|
// of the two input shuffle orders, to try and get at least one input into a
|
|
// nice order.
|
|
auto SortBase = [&](Instruction *A, std::pair<int, int> X,
|
|
std::pair<int, int> Y) {
|
|
int MXA = GetBaseMaskValue(A, X.first);
|
|
int MYA = GetBaseMaskValue(A, Y.first);
|
|
return MXA < MYA;
|
|
};
|
|
stable_sort(V1, [&](std::pair<int, int> A, std::pair<int, int> B) {
|
|
return SortBase(SVI0A, A, B);
|
|
});
|
|
stable_sort(V2, [&](std::pair<int, int> A, std::pair<int, int> B) {
|
|
return SortBase(SVI1A, A, B);
|
|
});
|
|
// Calculate our ReconstructMasks from the OrigReconstructMasks and the
|
|
// modified order of the input shuffles.
|
|
SmallVector<SmallVector<int>> ReconstructMasks;
|
|
for (const auto &Mask : OrigReconstructMasks) {
|
|
SmallVector<int> ReconstructMask;
|
|
for (int M : Mask) {
|
|
auto FindIndex = [](const SmallVector<std::pair<int, int>> &V, int M) {
|
|
auto It = find_if(V, [M](auto A) { return A.second == M; });
|
|
assert(It != V.end() && "Expected all entries in Mask");
|
|
return std::distance(V.begin(), It);
|
|
};
|
|
if (M < 0)
|
|
ReconstructMask.push_back(-1);
|
|
else if (M < static_cast<int>(NumElts)) {
|
|
ReconstructMask.push_back(FindIndex(V1, M));
|
|
} else {
|
|
ReconstructMask.push_back(NumElts + FindIndex(V2, M));
|
|
}
|
|
}
|
|
ReconstructMasks.push_back(std::move(ReconstructMask));
|
|
}
|
|
|
|
// Calculate the masks needed for the new input shuffles, which get padded
|
|
// with undef
|
|
SmallVector<int> V1A, V1B, V2A, V2B;
|
|
for (unsigned I = 0; I < V1.size(); I++) {
|
|
V1A.push_back(GetBaseMaskValue(SVI0A, V1[I].first));
|
|
V1B.push_back(GetBaseMaskValue(SVI0B, V1[I].first));
|
|
}
|
|
for (unsigned I = 0; I < V2.size(); I++) {
|
|
V2A.push_back(GetBaseMaskValue(SVI1A, V2[I].first));
|
|
V2B.push_back(GetBaseMaskValue(SVI1B, V2[I].first));
|
|
}
|
|
while (V1A.size() < NumElts) {
|
|
V1A.push_back(PoisonMaskElem);
|
|
V1B.push_back(PoisonMaskElem);
|
|
}
|
|
while (V2A.size() < NumElts) {
|
|
V2A.push_back(PoisonMaskElem);
|
|
V2B.push_back(PoisonMaskElem);
|
|
}
|
|
|
|
auto AddShuffleCost = [&](InstructionCost C, Instruction *I) {
|
|
auto *SV = dyn_cast<ShuffleVectorInst>(I);
|
|
if (!SV)
|
|
return C;
|
|
return C + TTI.getShuffleCost(isa<UndefValue>(SV->getOperand(1))
|
|
? TTI::SK_PermuteSingleSrc
|
|
: TTI::SK_PermuteTwoSrc,
|
|
VT, SV->getShuffleMask());
|
|
};
|
|
auto AddShuffleMaskCost = [&](InstructionCost C, ArrayRef<int> Mask) {
|
|
return C + TTI.getShuffleCost(TTI::SK_PermuteTwoSrc, VT, Mask);
|
|
};
|
|
|
|
// Get the costs of the shuffles + binops before and after with the new
|
|
// shuffle masks.
|
|
InstructionCost CostBefore =
|
|
TTI.getArithmeticInstrCost(Op0->getOpcode(), VT) +
|
|
TTI.getArithmeticInstrCost(Op1->getOpcode(), VT);
|
|
CostBefore += std::accumulate(Shuffles.begin(), Shuffles.end(),
|
|
InstructionCost(0), AddShuffleCost);
|
|
CostBefore += std::accumulate(InputShuffles.begin(), InputShuffles.end(),
|
|
InstructionCost(0), AddShuffleCost);
|
|
|
|
// The new binops will be unused for lanes past the used shuffle lengths.
|
|
// These types attempt to get the correct cost for that from the target.
|
|
FixedVectorType *Op0SmallVT =
|
|
FixedVectorType::get(VT->getScalarType(), V1.size());
|
|
FixedVectorType *Op1SmallVT =
|
|
FixedVectorType::get(VT->getScalarType(), V2.size());
|
|
InstructionCost CostAfter =
|
|
TTI.getArithmeticInstrCost(Op0->getOpcode(), Op0SmallVT) +
|
|
TTI.getArithmeticInstrCost(Op1->getOpcode(), Op1SmallVT);
|
|
CostAfter += std::accumulate(ReconstructMasks.begin(), ReconstructMasks.end(),
|
|
InstructionCost(0), AddShuffleMaskCost);
|
|
std::set<SmallVector<int>> OutputShuffleMasks({V1A, V1B, V2A, V2B});
|
|
CostAfter +=
|
|
std::accumulate(OutputShuffleMasks.begin(), OutputShuffleMasks.end(),
|
|
InstructionCost(0), AddShuffleMaskCost);
|
|
|
|
LLVM_DEBUG(dbgs() << "Found a binop select shuffle pattern: " << I << "\n");
|
|
LLVM_DEBUG(dbgs() << " CostBefore: " << CostBefore
|
|
<< " vs CostAfter: " << CostAfter << "\n");
|
|
if (CostBefore <= CostAfter)
|
|
return false;
|
|
|
|
// The cost model has passed, create the new instructions.
|
|
auto GetShuffleOperand = [&](Instruction *I, unsigned Op) -> Value * {
|
|
auto *SV = dyn_cast<ShuffleVectorInst>(I);
|
|
if (!SV)
|
|
return I;
|
|
if (isa<UndefValue>(SV->getOperand(1)))
|
|
if (auto *SSV = dyn_cast<ShuffleVectorInst>(SV->getOperand(0)))
|
|
if (InputShuffles.contains(SSV))
|
|
return SSV->getOperand(Op);
|
|
return SV->getOperand(Op);
|
|
};
|
|
Builder.SetInsertPoint(*SVI0A->getInsertionPointAfterDef());
|
|
Value *NSV0A = Builder.CreateShuffleVector(GetShuffleOperand(SVI0A, 0),
|
|
GetShuffleOperand(SVI0A, 1), V1A);
|
|
Builder.SetInsertPoint(*SVI0B->getInsertionPointAfterDef());
|
|
Value *NSV0B = Builder.CreateShuffleVector(GetShuffleOperand(SVI0B, 0),
|
|
GetShuffleOperand(SVI0B, 1), V1B);
|
|
Builder.SetInsertPoint(*SVI1A->getInsertionPointAfterDef());
|
|
Value *NSV1A = Builder.CreateShuffleVector(GetShuffleOperand(SVI1A, 0),
|
|
GetShuffleOperand(SVI1A, 1), V2A);
|
|
Builder.SetInsertPoint(*SVI1B->getInsertionPointAfterDef());
|
|
Value *NSV1B = Builder.CreateShuffleVector(GetShuffleOperand(SVI1B, 0),
|
|
GetShuffleOperand(SVI1B, 1), V2B);
|
|
Builder.SetInsertPoint(Op0);
|
|
Value *NOp0 = Builder.CreateBinOp((Instruction::BinaryOps)Op0->getOpcode(),
|
|
NSV0A, NSV0B);
|
|
if (auto *I = dyn_cast<Instruction>(NOp0))
|
|
I->copyIRFlags(Op0, true);
|
|
Builder.SetInsertPoint(Op1);
|
|
Value *NOp1 = Builder.CreateBinOp((Instruction::BinaryOps)Op1->getOpcode(),
|
|
NSV1A, NSV1B);
|
|
if (auto *I = dyn_cast<Instruction>(NOp1))
|
|
I->copyIRFlags(Op1, true);
|
|
|
|
for (int S = 0, E = ReconstructMasks.size(); S != E; S++) {
|
|
Builder.SetInsertPoint(Shuffles[S]);
|
|
Value *NSV = Builder.CreateShuffleVector(NOp0, NOp1, ReconstructMasks[S]);
|
|
replaceValue(*Shuffles[S], *NSV);
|
|
}
|
|
|
|
Worklist.pushValue(NSV0A);
|
|
Worklist.pushValue(NSV0B);
|
|
Worklist.pushValue(NSV1A);
|
|
Worklist.pushValue(NSV1B);
|
|
for (auto *S : Shuffles)
|
|
Worklist.add(S);
|
|
return true;
|
|
}
|
|
|
|
/// This is the entry point for all transforms. Pass manager differences are
|
|
/// handled in the callers of this function.
|
|
bool VectorCombine::run() {
|
|
if (DisableVectorCombine)
|
|
return false;
|
|
|
|
// Don't attempt vectorization if the target does not support vectors.
|
|
if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
|
|
return false;
|
|
|
|
bool MadeChange = false;
|
|
auto FoldInst = [this, &MadeChange](Instruction &I) {
|
|
Builder.SetInsertPoint(&I);
|
|
bool IsFixedVectorType = isa<FixedVectorType>(I.getType());
|
|
auto Opcode = I.getOpcode();
|
|
|
|
// These folds should be beneficial regardless of when this pass is run
|
|
// in the optimization pipeline.
|
|
// The type checking is for run-time efficiency. We can avoid wasting time
|
|
// dispatching to folding functions if there's no chance of matching.
|
|
if (IsFixedVectorType) {
|
|
switch (Opcode) {
|
|
case Instruction::InsertElement:
|
|
MadeChange |= vectorizeLoadInsert(I);
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
MadeChange |= widenSubvectorLoad(I);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// This transform works with scalable and fixed vectors
|
|
// TODO: Identify and allow other scalable transforms
|
|
if (isa<VectorType>(I.getType())) {
|
|
MadeChange |= scalarizeBinopOrCmp(I);
|
|
MadeChange |= scalarizeLoadExtract(I);
|
|
MadeChange |= scalarizeVPIntrinsic(I);
|
|
}
|
|
|
|
if (Opcode == Instruction::Store)
|
|
MadeChange |= foldSingleElementStore(I);
|
|
|
|
// If this is an early pipeline invocation of this pass, we are done.
|
|
if (TryEarlyFoldsOnly)
|
|
return;
|
|
|
|
// Otherwise, try folds that improve codegen but may interfere with
|
|
// early IR canonicalizations.
|
|
// The type checking is for run-time efficiency. We can avoid wasting time
|
|
// dispatching to folding functions if there's no chance of matching.
|
|
if (IsFixedVectorType) {
|
|
switch (Opcode) {
|
|
case Instruction::InsertElement:
|
|
MadeChange |= foldInsExtFNeg(I);
|
|
break;
|
|
case Instruction::ShuffleVector:
|
|
MadeChange |= foldShuffleOfBinops(I);
|
|
MadeChange |= foldSelectShuffle(I);
|
|
break;
|
|
case Instruction::BitCast:
|
|
MadeChange |= foldBitcastShuffle(I);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (Opcode) {
|
|
case Instruction::Call:
|
|
MadeChange |= foldShuffleFromReductions(I);
|
|
MadeChange |= foldTruncFromReductions(I);
|
|
break;
|
|
case Instruction::ICmp:
|
|
case Instruction::FCmp:
|
|
MadeChange |= foldExtractExtract(I);
|
|
break;
|
|
default:
|
|
if (Instruction::isBinaryOp(Opcode)) {
|
|
MadeChange |= foldExtractExtract(I);
|
|
MadeChange |= foldExtractedCmps(I);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
for (BasicBlock &BB : F) {
|
|
// Ignore unreachable basic blocks.
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
continue;
|
|
// Use early increment range so that we can erase instructions in loop.
|
|
for (Instruction &I : make_early_inc_range(BB)) {
|
|
if (I.isDebugOrPseudoInst())
|
|
continue;
|
|
FoldInst(I);
|
|
}
|
|
}
|
|
|
|
while (!Worklist.isEmpty()) {
|
|
Instruction *I = Worklist.removeOne();
|
|
if (!I)
|
|
continue;
|
|
|
|
if (isInstructionTriviallyDead(I)) {
|
|
eraseInstruction(*I);
|
|
continue;
|
|
}
|
|
|
|
FoldInst(*I);
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
PreservedAnalyses VectorCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &FAM) {
|
|
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
|
|
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
|
|
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
|
|
AAResults &AA = FAM.getResult<AAManager>(F);
|
|
VectorCombine Combiner(F, TTI, DT, AA, AC, TryEarlyFoldsOnly);
|
|
if (!Combiner.run())
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|