Jonathan Thackray a1a74c9e80
[NFC][clang] Remove superfluous header files after refactor in #132252 (#132495)
Remove superfluous header files after refactor in #132252
2025-03-26 14:45:00 +00:00

1355 lines
54 KiB
C++

//===---------- PPC.cpp - Emit LLVM Code for builtins ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGBuiltin.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/Support/ScopedPrinter.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
unsigned BuiltinID,
const CallExpr *E) {
Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
SmallString<64> Asm;
raw_svector_ostream AsmOS(Asm);
llvm::IntegerType *RetType = CGF.Int32Ty;
switch (BuiltinID) {
case clang::PPC::BI__builtin_ppc_ldarx:
AsmOS << "ldarx ";
RetType = CGF.Int64Ty;
break;
case clang::PPC::BI__builtin_ppc_lwarx:
AsmOS << "lwarx ";
RetType = CGF.Int32Ty;
break;
case clang::PPC::BI__builtin_ppc_lharx:
AsmOS << "lharx ";
RetType = CGF.Int16Ty;
break;
case clang::PPC::BI__builtin_ppc_lbarx:
AsmOS << "lbarx ";
RetType = CGF.Int8Ty;
break;
default:
llvm_unreachable("Expected only PowerPC load reserve intrinsics");
}
AsmOS << "$0, ${1:y}";
std::string Constraints = "=r,*Z,~{memory}";
std::string_view MachineClobbers = CGF.getTarget().getClobbers();
if (!MachineClobbers.empty()) {
Constraints += ',';
Constraints += MachineClobbers;
}
llvm::Type *PtrType = CGF.UnqualPtrTy;
llvm::FunctionType *FTy = llvm::FunctionType::get(RetType, {PtrType}, false);
llvm::InlineAsm *IA =
llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
CI->addParamAttr(
0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
return CI;
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
// Do not emit the builtin arguments in the arguments of a function call,
// because the evaluation order of function arguments is not specified in C++.
// This is important when testing to ensure the arguments are emitted in the
// same order every time. Eg:
// Instead of:
// return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)),
// EmitScalarExpr(E->getArg(1)), "swdiv");
// Use:
// Value *Op0 = EmitScalarExpr(E->getArg(0));
// Value *Op1 = EmitScalarExpr(E->getArg(1));
// return Builder.CreateFDiv(Op0, Op1, "swdiv")
Intrinsic::ID ID = Intrinsic::not_intrinsic;
#include "llvm/TargetParser/PPCTargetParser.def"
auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx,
unsigned Mask, CmpInst::Predicate CompOp,
unsigned OpValue) -> Value * {
if (SupportMethod == BUILTIN_PPC_FALSE)
return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
if (SupportMethod == BUILTIN_PPC_TRUE)
return llvm::ConstantInt::getTrue(ConvertType(E->getType()));
assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod.");
llvm::Value *FieldValue = nullptr;
if (SupportMethod == USE_SYS_CONF) {
llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE);
llvm::Constant *SysConf =
CGM.CreateRuntimeVariable(STy, "_system_configuration");
// Grab the appropriate field from _system_configuration.
llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
ConstantInt::get(Int32Ty, FieldIdx)};
FieldValue = Builder.CreateInBoundsGEP(STy, SysConf, Idxs);
FieldValue = Builder.CreateAlignedLoad(Int32Ty, FieldValue,
CharUnits::fromQuantity(4));
} else if (SupportMethod == SYS_CALL) {
llvm::FunctionType *FTy =
llvm::FunctionType::get(Int64Ty, Int32Ty, false);
llvm::FunctionCallee Func =
CGM.CreateRuntimeFunction(FTy, "getsystemcfg");
FieldValue =
Builder.CreateCall(Func, {ConstantInt::get(Int32Ty, FieldIdx)});
}
assert(FieldValue &&
"SupportMethod value is not defined in PPCTargetParser.def.");
if (Mask)
FieldValue = Builder.CreateAnd(FieldValue, Mask);
llvm::Type *ValueType = FieldValue->getType();
bool IsValueType64Bit = ValueType->isIntegerTy(64);
assert(
(IsValueType64Bit || ValueType->isIntegerTy(32)) &&
"Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr().");
return Builder.CreateICmp(
CompOp, FieldValue,
ConstantInt::get(IsValueType64Bit ? Int64Ty : Int32Ty, OpValue));
};
switch (BuiltinID) {
default: return nullptr;
case Builtin::BI__builtin_cpu_is: {
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
llvm::Triple Triple = getTarget().getTriple();
typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo;
auto [LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue] =
static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr)
#define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \
AIXID) \
.Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID})
#include "llvm/TargetParser/PPCTargetParser.def"
.Default({BUILTIN_PPC_UNSUPPORTED, 0,
BUILTIN_PPC_UNSUPPORTED, 0}));
if (Triple.isOSAIX()) {
assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
"Invalid CPU name. Missed by SemaChecking?");
return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0,
ICmpInst::ICMP_EQ, AIXIDValue);
}
assert(Triple.isOSLinux() &&
"__builtin_cpu_is() is only supported for AIX and Linux.");
assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) &&
"Invalid CPU name. Missed by SemaChecking?");
if (LinuxSupportMethod == BUILTIN_PPC_FALSE)
return llvm::ConstantInt::getFalse(ConvertType(E->getType()));
Value *Op0 = llvm::ConstantInt::get(Int32Ty, PPC_FAWORD_CPUID);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_is");
return Builder.CreateICmpEQ(TheCall,
llvm::ConstantInt::get(Int32Ty, LinuxIDValue));
}
case Builtin::BI__builtin_cpu_supports: {
llvm::Triple Triple = getTarget().getTriple();
const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
if (Triple.isOSAIX()) {
typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate,
unsigned>
CPUSupportType;
auto [SupportMethod, FieldIdx, Mask, CompOp, Value] =
static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr)
#define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \
VALUE) \
.Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE})
#include "llvm/TargetParser/PPCTargetParser.def"
.Default({BUILTIN_PPC_FALSE, 0, 0,
CmpInst::Predicate(), 0}));
return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp,
Value);
}
assert(Triple.isOSLinux() &&
"__builtin_cpu_supports() is only supported for AIX and Linux.");
auto [FeatureWord, BitMask] =
StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
#define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \
.Case(Name, {FA_WORD, Bitmask})
#include "llvm/TargetParser/PPCTargetParser.def"
.Default({0, 0});
if (!BitMask)
return Builder.getFalse();
Value *Op0 = llvm::ConstantInt::get(Int32Ty, FeatureWord);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_fixed_addr_ld);
Value *TheCall = Builder.CreateCall(F, {Op0}, "cpu_supports");
Value *Mask =
Builder.CreateAnd(TheCall, llvm::ConstantInt::get(Int32Ty, BitMask));
return Builder.CreateICmpNE(Mask, llvm::Constant::getNullValue(Int32Ty));
#undef PPC_FAWORD_HWCAP
#undef PPC_FAWORD_HWCAP2
#undef PPC_FAWORD_CPUID
}
// __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
// call __builtin_readcyclecounter.
case PPC::BI__builtin_ppc_get_timebase:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
// vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
case PPC::BI__builtin_altivec_lvx:
case PPC::BI__builtin_altivec_lvxl:
case PPC::BI__builtin_altivec_lvebx:
case PPC::BI__builtin_altivec_lvehx:
case PPC::BI__builtin_altivec_lvewx:
case PPC::BI__builtin_altivec_lvsl:
case PPC::BI__builtin_altivec_lvsr:
case PPC::BI__builtin_vsx_lxvd2x:
case PPC::BI__builtin_vsx_lxvw4x:
case PPC::BI__builtin_vsx_lxvd2x_be:
case PPC::BI__builtin_vsx_lxvw4x_be:
case PPC::BI__builtin_vsx_lxvl:
case PPC::BI__builtin_vsx_lxvll:
{
SmallVector<Value *, 2> Ops;
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops.push_back(EmitScalarExpr(E->getArg(1)));
if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
BuiltinID == PPC::BI__builtin_vsx_lxvll)) {
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
case PPC::BI__builtin_altivec_lvx:
ID = Intrinsic::ppc_altivec_lvx;
break;
case PPC::BI__builtin_altivec_lvxl:
ID = Intrinsic::ppc_altivec_lvxl;
break;
case PPC::BI__builtin_altivec_lvebx:
ID = Intrinsic::ppc_altivec_lvebx;
break;
case PPC::BI__builtin_altivec_lvehx:
ID = Intrinsic::ppc_altivec_lvehx;
break;
case PPC::BI__builtin_altivec_lvewx:
ID = Intrinsic::ppc_altivec_lvewx;
break;
case PPC::BI__builtin_altivec_lvsl:
ID = Intrinsic::ppc_altivec_lvsl;
break;
case PPC::BI__builtin_altivec_lvsr:
ID = Intrinsic::ppc_altivec_lvsr;
break;
case PPC::BI__builtin_vsx_lxvd2x:
ID = Intrinsic::ppc_vsx_lxvd2x;
break;
case PPC::BI__builtin_vsx_lxvw4x:
ID = Intrinsic::ppc_vsx_lxvw4x;
break;
case PPC::BI__builtin_vsx_lxvd2x_be:
ID = Intrinsic::ppc_vsx_lxvd2x_be;
break;
case PPC::BI__builtin_vsx_lxvw4x_be:
ID = Intrinsic::ppc_vsx_lxvw4x_be;
break;
case PPC::BI__builtin_vsx_lxvl:
ID = Intrinsic::ppc_vsx_lxvl;
break;
case PPC::BI__builtin_vsx_lxvll:
ID = Intrinsic::ppc_vsx_lxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
// vec_st, vec_xst_be
case PPC::BI__builtin_altivec_stvx:
case PPC::BI__builtin_altivec_stvxl:
case PPC::BI__builtin_altivec_stvebx:
case PPC::BI__builtin_altivec_stvehx:
case PPC::BI__builtin_altivec_stvewx:
case PPC::BI__builtin_vsx_stxvd2x:
case PPC::BI__builtin_vsx_stxvw4x:
case PPC::BI__builtin_vsx_stxvd2x_be:
case PPC::BI__builtin_vsx_stxvw4x_be:
case PPC::BI__builtin_vsx_stxvl:
case PPC::BI__builtin_vsx_stxvll:
{
SmallVector<Value *, 3> Ops;
Ops.push_back(EmitScalarExpr(E->getArg(0)));
Ops.push_back(EmitScalarExpr(E->getArg(1)));
Ops.push_back(EmitScalarExpr(E->getArg(2)));
if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
BuiltinID == PPC::BI__builtin_vsx_stxvll)) {
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
Ops.pop_back();
}
switch (BuiltinID) {
default: llvm_unreachable("Unsupported st intrinsic!");
case PPC::BI__builtin_altivec_stvx:
ID = Intrinsic::ppc_altivec_stvx;
break;
case PPC::BI__builtin_altivec_stvxl:
ID = Intrinsic::ppc_altivec_stvxl;
break;
case PPC::BI__builtin_altivec_stvebx:
ID = Intrinsic::ppc_altivec_stvebx;
break;
case PPC::BI__builtin_altivec_stvehx:
ID = Intrinsic::ppc_altivec_stvehx;
break;
case PPC::BI__builtin_altivec_stvewx:
ID = Intrinsic::ppc_altivec_stvewx;
break;
case PPC::BI__builtin_vsx_stxvd2x:
ID = Intrinsic::ppc_vsx_stxvd2x;
break;
case PPC::BI__builtin_vsx_stxvw4x:
ID = Intrinsic::ppc_vsx_stxvw4x;
break;
case PPC::BI__builtin_vsx_stxvd2x_be:
ID = Intrinsic::ppc_vsx_stxvd2x_be;
break;
case PPC::BI__builtin_vsx_stxvw4x_be:
ID = Intrinsic::ppc_vsx_stxvw4x_be;
break;
case PPC::BI__builtin_vsx_stxvl:
ID = Intrinsic::ppc_vsx_stxvl;
break;
case PPC::BI__builtin_vsx_stxvll:
ID = Intrinsic::ppc_vsx_stxvll;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
case PPC::BI__builtin_vsx_ldrmb: {
// Essentially boils down to performing an unaligned VMX load sequence so
// as to avoid crossing a page boundary and then shuffling the elements
// into the right side of the vector register.
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
llvm::Type *ResTy = ConvertType(E->getType());
bool IsLE = getTarget().isLittleEndian();
// If the user wants the entire vector, just load the entire vector.
if (NumBytes == 16) {
Value *LD =
Builder.CreateLoad(Address(Op0, ResTy, CharUnits::fromQuantity(1)));
if (!IsLE)
return LD;
// Reverse the bytes on LE.
SmallVector<int, 16> RevMask;
for (int Idx = 0; Idx < 16; Idx++)
RevMask.push_back(15 - Idx);
return Builder.CreateShuffleVector(LD, LD, RevMask);
}
llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
: Intrinsic::ppc_altivec_lvsl);
llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
Value *HiMem = Builder.CreateGEP(
Int8Ty, Op0, ConstantInt::get(Op1->getType(), NumBytes - 1));
Value *LoLd = Builder.CreateCall(Lvx, Op0, "ld.lo");
Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
Value *Mask1 = Builder.CreateCall(Lvs, Op0, "mask1");
Op0 = IsLE ? HiLd : LoLd;
Op1 = IsLE ? LoLd : HiLd;
Value *AllElts = Builder.CreateCall(Vperm, {Op0, Op1, Mask1}, "shuffle1");
Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
if (IsLE) {
SmallVector<int, 16> Consts;
for (int Idx = 0; Idx < 16; Idx++) {
int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
: 16 - (NumBytes - Idx);
Consts.push_back(Val);
}
return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
Zero, Consts);
}
SmallVector<Constant *, 16> Consts;
for (int Idx = 0; Idx < 16; Idx++)
Consts.push_back(Builder.getInt8(NumBytes + Idx));
Value *Mask2 = ConstantVector::get(Consts);
return Builder.CreateBitCast(
Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
}
case PPC::BI__builtin_vsx_strmb: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
int64_t NumBytes = cast<ConstantInt>(Op1)->getZExtValue();
bool IsLE = getTarget().isLittleEndian();
auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
// Storing the whole vector, simply store it on BE and reverse bytes and
// store on LE.
if (Width == 16) {
Value *StVec = Op2;
if (IsLE) {
SmallVector<int, 16> RevMask;
for (int Idx = 0; Idx < 16; Idx++)
RevMask.push_back(15 - Idx);
StVec = Builder.CreateShuffleVector(Op2, Op2, RevMask);
}
return Builder.CreateStore(
StVec, Address(Op0, Op2->getType(), CharUnits::fromQuantity(1)));
}
auto *ConvTy = Int64Ty;
unsigned NumElts = 0;
switch (Width) {
default:
llvm_unreachable("width for stores must be a power of 2");
case 8:
ConvTy = Int64Ty;
NumElts = 2;
break;
case 4:
ConvTy = Int32Ty;
NumElts = 4;
break;
case 2:
ConvTy = Int16Ty;
NumElts = 8;
break;
case 1:
ConvTy = Int8Ty;
NumElts = 16;
break;
}
Value *Vec = Builder.CreateBitCast(
Op2, llvm::FixedVectorType::get(ConvTy, NumElts));
Value *Ptr =
Builder.CreateGEP(Int8Ty, Op0, ConstantInt::get(Int64Ty, Offset));
Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
if (IsLE && Width > 1) {
Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
Elt = Builder.CreateCall(F, Elt);
}
return Builder.CreateStore(
Elt, Address(Ptr, ConvTy, CharUnits::fromQuantity(1)));
};
unsigned Stored = 0;
unsigned RemainingBytes = NumBytes;
Value *Result;
if (NumBytes == 16)
return StoreSubVec(16, 0, 0);
if (NumBytes >= 8) {
Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
RemainingBytes -= 8;
Stored += 8;
}
if (RemainingBytes >= 4) {
Result = StoreSubVec(4, NumBytes - Stored - 4,
IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
RemainingBytes -= 4;
Stored += 4;
}
if (RemainingBytes >= 2) {
Result = StoreSubVec(2, NumBytes - Stored - 2,
IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
RemainingBytes -= 2;
Stored += 2;
}
if (RemainingBytes)
Result =
StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
return Result;
}
// Square root
case PPC::BI__builtin_vsx_xvsqrtsp:
case PPC::BI__builtin_vsx_xvsqrtdp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (Builder.getIsFPConstrained()) {
llvm::Function *F = CGM.getIntrinsic(
Intrinsic::experimental_constrained_sqrt, ResultType);
return Builder.CreateConstrainedFPCall(F, X);
} else {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
return Builder.CreateCall(F, X);
}
}
// Count leading zeros
case PPC::BI__builtin_altivec_vclzb:
case PPC::BI__builtin_altivec_vclzh:
case PPC::BI__builtin_altivec_vclzw:
case PPC::BI__builtin_altivec_vclzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vctzb:
case PPC::BI__builtin_altivec_vctzh:
case PPC::BI__builtin_altivec_vctzw:
case PPC::BI__builtin_altivec_vctzd: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
return Builder.CreateCall(F, {X, Undef});
}
case PPC::BI__builtin_altivec_vinsd:
case PPC::BI__builtin_altivec_vinsw:
case PPC::BI__builtin_altivec_vinsd_elt:
case PPC::BI__builtin_altivec_vinsw_elt: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
BuiltinID == PPC::BI__builtin_altivec_vinsd);
bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw ||
BuiltinID == PPC::BI__builtin_altivec_vinsw_elt);
// The third argument must be a compile time constant.
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI &&
"Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
// Valid value for the third argument is dependent on the input type and
// builtin called.
int ValidMaxValue = 0;
if (IsUnaligned)
ValidMaxValue = (Is32bit) ? 12 : 8;
else
ValidMaxValue = (Is32bit) ? 3 : 1;
// Get value of third argument.
int64_t ConstArg = ArgCI->getSExtValue();
// Compose range checking error message.
std::string RangeErrMsg = IsUnaligned ? "byte" : "element";
RangeErrMsg += " number " + llvm::to_string(ConstArg);
RangeErrMsg += " is outside of the valid range [0, ";
RangeErrMsg += llvm::to_string(ValidMaxValue) + "]";
// Issue error if third argument is not within the valid range.
if (ConstArg < 0 || ConstArg > ValidMaxValue)
CGM.Error(E->getExprLoc(), RangeErrMsg);
// Input to vec_replace_elt is an element index, convert to byte index.
if (!IsUnaligned) {
ConstArg *= Is32bit ? 4 : 8;
// Fix the constant according to endianess.
if (getTarget().isLittleEndian())
ConstArg = (Is32bit ? 12 : 8) - ConstArg;
}
ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd;
Op2 = ConstantInt::getSigned(Int32Ty, ConstArg);
// Casting input to vector int as per intrinsic definition.
Op0 =
Is32bit
? Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4))
: Builder.CreateBitCast(Op0,
llvm::FixedVectorType::get(Int64Ty, 2));
return Builder.CreateBitCast(
Builder.CreateCall(CGM.getIntrinsic(ID), {Op0, Op1, Op2}), ResultType);
}
case PPC::BI__builtin_altivec_vadduqm:
case PPC::BI__builtin_altivec_vsubuqm: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int128Ty, 1));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int128Ty, 1));
if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
return Builder.CreateAdd(Op0, Op1, "vadduqm");
else
return Builder.CreateSub(Op0, Op1, "vsubuqm");
}
case PPC::BI__builtin_altivec_vaddcuq_c:
case PPC::BI__builtin_altivec_vsubcuq_c: {
SmallVector<Value *, 2> Ops;
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
llvm::IntegerType::get(getLLVMContext(), 128), 1);
Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c)
? Intrinsic::ppc_altivec_vaddcuq
: Intrinsic::ppc_altivec_vsubcuq;
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
}
case PPC::BI__builtin_altivec_vaddeuqm_c:
case PPC::BI__builtin_altivec_vaddecuq_c:
case PPC::BI__builtin_altivec_vsubeuqm_c:
case PPC::BI__builtin_altivec_vsubecuq_c: {
SmallVector<Value *, 3> Ops;
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Type *V1I128Ty = llvm::FixedVectorType::get(
llvm::IntegerType::get(getLLVMContext(), 128), 1);
Ops.push_back(Builder.CreateBitCast(Op0, V1I128Ty));
Ops.push_back(Builder.CreateBitCast(Op1, V1I128Ty));
Ops.push_back(Builder.CreateBitCast(Op2, V1I128Ty));
switch (BuiltinID) {
default:
llvm_unreachable("Unsupported intrinsic!");
case PPC::BI__builtin_altivec_vaddeuqm_c:
ID = Intrinsic::ppc_altivec_vaddeuqm;
break;
case PPC::BI__builtin_altivec_vaddecuq_c:
ID = Intrinsic::ppc_altivec_vaddecuq;
break;
case PPC::BI__builtin_altivec_vsubeuqm_c:
ID = Intrinsic::ppc_altivec_vsubeuqm;
break;
case PPC::BI__builtin_altivec_vsubecuq_c:
ID = Intrinsic::ppc_altivec_vsubecuq;
break;
}
return Builder.CreateCall(CGM.getIntrinsic(ID), Ops, "");
}
case PPC::BI__builtin_ppc_rldimi:
case PPC::BI__builtin_ppc_rlwimi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
// rldimi is 64-bit instruction, expand the intrinsic before isel to
// leverage peephole and avoid legalization efforts.
if (BuiltinID == PPC::BI__builtin_ppc_rldimi &&
!getTarget().getTriple().isPPC64()) {
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Op0->getType());
Op2 = Builder.CreateZExt(Op2, Int64Ty);
Value *Shift = Builder.CreateCall(F, {Op0, Op0, Op2});
return Builder.CreateOr(Builder.CreateAnd(Shift, Op3),
Builder.CreateAnd(Op1, Builder.CreateNot(Op3)));
}
return Builder.CreateCall(
CGM.getIntrinsic(BuiltinID == PPC::BI__builtin_ppc_rldimi
? Intrinsic::ppc_rldimi
: Intrinsic::ppc_rlwimi),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_rlwnm: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_rlwnm),
{Op0, Op1, Op2});
}
case PPC::BI__builtin_ppc_poppar4:
case PPC::BI__builtin_ppc_poppar8: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = Op0->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
Value *Tmp = Builder.CreateCall(F, Op0);
llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
"cast");
return Result;
}
case PPC::BI__builtin_ppc_cmpb: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
if (getTarget().getTriple().isPPC64()) {
Function *F =
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
return Builder.CreateCall(F, {Op0, Op1}, "cmpb");
}
// For 32 bit, emit the code as below:
// %conv = trunc i64 %a to i32
// %conv1 = trunc i64 %b to i32
// %shr = lshr i64 %a, 32
// %conv2 = trunc i64 %shr to i32
// %shr3 = lshr i64 %b, 32
// %conv4 = trunc i64 %shr3 to i32
// %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
// %conv5 = zext i32 %0 to i64
// %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
// %conv614 = zext i32 %1 to i64
// %shl = shl nuw i64 %conv614, 32
// %or = or i64 %shl, %conv5
// ret i64 %or
Function *F =
CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
Value *ArgOneLo = Builder.CreateTrunc(Op0, Int32Ty);
Value *ArgTwoLo = Builder.CreateTrunc(Op1, Int32Ty);
Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
Value *ArgOneHi =
Builder.CreateTrunc(Builder.CreateLShr(Op0, ShiftAmt), Int32Ty);
Value *ArgTwoHi =
Builder.CreateTrunc(Builder.CreateLShr(Op1, ShiftAmt), Int32Ty);
Value *ResLo = Builder.CreateZExt(
Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
Value *ResHiShift = Builder.CreateZExt(
Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
return Builder.CreateOr(ResLo, ResHi);
}
// Copy sign
case PPC::BI__builtin_vsx_xvcpsgnsp:
case PPC::BI__builtin_vsx_xvcpsgndp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
ID = Intrinsic::copysign;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.CreateCall(F, {X, Y});
}
// Rounding/truncation
case PPC::BI__builtin_vsx_xvrspip:
case PPC::BI__builtin_vsx_xvrdpip:
case PPC::BI__builtin_vsx_xvrdpim:
case PPC::BI__builtin_vsx_xvrspim:
case PPC::BI__builtin_vsx_xvrdpi:
case PPC::BI__builtin_vsx_xvrspi:
case PPC::BI__builtin_vsx_xvrdpic:
case PPC::BI__builtin_vsx_xvrspic:
case PPC::BI__builtin_vsx_xvrdpiz:
case PPC::BI__builtin_vsx_xvrspiz: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
BuiltinID == PPC::BI__builtin_vsx_xvrspim)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_floor
: Intrinsic::floor;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
BuiltinID == PPC::BI__builtin_vsx_xvrspi)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_round
: Intrinsic::round;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
BuiltinID == PPC::BI__builtin_vsx_xvrspic)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_rint
: Intrinsic::rint;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
BuiltinID == PPC::BI__builtin_vsx_xvrspip)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_ceil
: Intrinsic::ceil;
else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
ID = Builder.getIsFPConstrained()
? Intrinsic::experimental_constrained_trunc
: Intrinsic::trunc;
llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
: Builder.CreateCall(F, X);
}
// Absolute value
case PPC::BI__builtin_vsx_xvabsdp:
case PPC::BI__builtin_vsx_xvabssp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
return Builder.CreateCall(F, X);
}
// Fastmath by default
case PPC::BI__builtin_ppc_recipdivf:
case PPC::BI__builtin_ppc_recipdivd:
case PPC::BI__builtin_ppc_rsqrtf:
case PPC::BI__builtin_ppc_rsqrtd: {
FastMathFlags FMF = Builder.getFastMathFlags();
Builder.getFastMathFlags().setFast();
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
Value *Y = EmitScalarExpr(E->getArg(1));
Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
auto *One = ConstantFP::get(ResultType, 1.0);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
case PPC::BI__builtin_ppc_alignx: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
ConstantInt *AlignmentCI = cast<ConstantInt>(Op0);
if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
AlignmentCI = ConstantInt::get(AlignmentCI->getIntegerType(),
llvm::Value::MaximumAlignment);
emitAlignmentAssumption(Op1, E->getArg(1),
/*The expr loc is sufficient.*/ SourceLocation(),
AlignmentCI, nullptr);
return Op1;
}
case PPC::BI__builtin_ppc_rdlam: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Type *Ty = Op0->getType();
Value *ShiftAmt = Builder.CreateIntCast(Op1, Ty, false);
Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
Value *Rotate = Builder.CreateCall(F, {Op0, Op0, ShiftAmt});
return Builder.CreateAnd(Rotate, Op2);
}
case PPC::BI__builtin_ppc_load2r: {
Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *LoadIntrinsic = Builder.CreateCall(F, {Op0});
return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
}
// FMA variations
case PPC::BI__builtin_ppc_fnmsub:
case PPC::BI__builtin_ppc_fnmsubs:
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp: {
llvm::Type *ResultType = ConvertType(E->getType());
Value *X = EmitScalarExpr(E->getArg(0));
Value *Y = EmitScalarExpr(E->getArg(1));
Value *Z = EmitScalarExpr(E->getArg(2));
llvm::Function *F;
if (Builder.getIsFPConstrained())
F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
else
F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
switch (BuiltinID) {
case PPC::BI__builtin_vsx_xvmaddadp:
case PPC::BI__builtin_vsx_xvmaddasp:
if (Builder.getIsFPConstrained())
return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
else
return Builder.CreateCall(F, {X, Y, Z});
case PPC::BI__builtin_vsx_xvnmaddadp:
case PPC::BI__builtin_vsx_xvnmaddasp:
if (Builder.getIsFPConstrained())
return Builder.CreateFNeg(
Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
else
return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
case PPC::BI__builtin_vsx_xvmsubadp:
case PPC::BI__builtin_vsx_xvmsubasp:
if (Builder.getIsFPConstrained())
return Builder.CreateConstrainedFPCall(
F, {X, Y, Builder.CreateFNeg(Z, "neg")});
else
return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
case PPC::BI__builtin_ppc_fnmsub:
case PPC::BI__builtin_ppc_fnmsubs:
case PPC::BI__builtin_vsx_xvnmsubadp:
case PPC::BI__builtin_vsx_xvnmsubasp:
if (Builder.getIsFPConstrained())
return Builder.CreateFNeg(
Builder.CreateConstrainedFPCall(
F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
"neg");
else
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::ppc_fnmsub, ResultType), {X, Y, Z});
}
llvm_unreachable("Unknown FMA operation");
return nullptr; // Suppress no-return warning
}
case PPC::BI__builtin_vsx_insertword: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
// Third argument is a compile time constant int. It must be clamped to
// to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI &&
"Third arg to xxinsertw intrinsic must be constant integer");
const int64_t MaxIndex = 12;
int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
// The builtin semantics don't exactly match the xxinsertw instructions
// semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
// word from the first argument, and inserts it in the second argument. The
// instruction extracts the word from its second input register and inserts
// it into its first input register, so swap the first and second arguments.
std::swap(Op0, Op1);
// Need to cast the second argument from a vector of unsigned int to a
// vector of long long.
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
if (getTarget().isLittleEndian()) {
// Reverse the double words in the vector we will extract from.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
Op0 = Builder.CreateShuffleVector(Op0, Op0, {1, 0});
// Reverse the index.
Index = MaxIndex - Index;
}
// Intrinsic expects the first arg to be a vector of int.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
Op2 = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, {Op0, Op1, Op2});
}
case PPC::BI__builtin_vsx_extractuword: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
// Intrinsic expects the first argument to be a vector of doublewords.
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
// The second argument is a compile time constant int that needs to
// be clamped to the range [0, 12].
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op1);
assert(ArgCI &&
"Second Arg to xxextractuw intrinsic must be a constant integer!");
const int64_t MaxIndex = 12;
int64_t Index = std::clamp(ArgCI->getSExtValue(), (int64_t)0, MaxIndex);
if (getTarget().isLittleEndian()) {
// Reverse the index.
Index = MaxIndex - Index;
Op1 = ConstantInt::getSigned(Int32Ty, Index);
// Emit the call, then reverse the double words of the results vector.
Value *Call = Builder.CreateCall(F, {Op0, Op1});
Value *ShuffleCall =
Builder.CreateShuffleVector(Call, Call, {1, 0});
return ShuffleCall;
} else {
Op1 = ConstantInt::getSigned(Int32Ty, Index);
return Builder.CreateCall(F, {Op0, Op1});
}
}
case PPC::BI__builtin_vsx_xxpermdi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI && "Third arg must be constant integer!");
unsigned Index = ArgCI->getZExtValue();
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int64Ty, 2));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int64Ty, 2));
// Account for endianness by treating this as just a shuffle. So we use the
// same indices for both LE and BE in order to produce expected results in
// both cases.
int ElemIdx0 = (Index & 2) >> 1;
int ElemIdx1 = 2 + (Index & 1);
int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
QualType BIRetType = E->getType();
auto RetTy = ConvertType(BIRetType);
return Builder.CreateBitCast(ShuffleCall, RetTy);
}
case PPC::BI__builtin_vsx_xxsldwi: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
ConstantInt *ArgCI = dyn_cast<ConstantInt>(Op2);
assert(ArgCI && "Third argument must be a compile time constant");
unsigned Index = ArgCI->getZExtValue() & 0x3;
Op0 = Builder.CreateBitCast(Op0, llvm::FixedVectorType::get(Int32Ty, 4));
Op1 = Builder.CreateBitCast(Op1, llvm::FixedVectorType::get(Int32Ty, 4));
// Create a shuffle mask
int ElemIdx0;
int ElemIdx1;
int ElemIdx2;
int ElemIdx3;
if (getTarget().isLittleEndian()) {
// Little endian element N comes from element 8+N-Index of the
// concatenated wide vector (of course, using modulo arithmetic on
// the total number of elements).
ElemIdx0 = (8 - Index) % 8;
ElemIdx1 = (9 - Index) % 8;
ElemIdx2 = (10 - Index) % 8;
ElemIdx3 = (11 - Index) % 8;
} else {
// Big endian ElemIdx<N> = Index + N
ElemIdx0 = Index;
ElemIdx1 = Index + 1;
ElemIdx2 = Index + 2;
ElemIdx3 = Index + 3;
}
int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
Value *ShuffleCall = Builder.CreateShuffleVector(Op0, Op1, ShuffleElts);
QualType BIRetType = E->getType();
auto RetTy = ConvertType(BIRetType);
return Builder.CreateBitCast(ShuffleCall, RetTy);
}
case PPC::BI__builtin_pack_vector_int128: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
bool isLittleEndian = getTarget().isLittleEndian();
Value *PoisonValue =
llvm::PoisonValue::get(llvm::FixedVectorType::get(Op0->getType(), 2));
Value *Res = Builder.CreateInsertElement(
PoisonValue, Op0, (uint64_t)(isLittleEndian ? 1 : 0));
Res = Builder.CreateInsertElement(Res, Op1,
(uint64_t)(isLittleEndian ? 0 : 1));
return Builder.CreateBitCast(Res, ConvertType(E->getType()));
}
case PPC::BI__builtin_unpack_vector_int128: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
ConstantInt *Index = cast<ConstantInt>(Op1);
Value *Unpacked = Builder.CreateBitCast(
Op0, llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
if (getTarget().isLittleEndian())
Index =
ConstantInt::get(Index->getIntegerType(), 1 - Index->getZExtValue());
return Builder.CreateExtractElement(Unpacked, Index);
}
case PPC::BI__builtin_ppc_sthcx: {
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = Builder.CreateSExt(EmitScalarExpr(E->getArg(1)), Int32Ty);
return Builder.CreateCall(F, {Op0, Op1});
}
// The PPC MMA builtins take a pointer to a __vector_quad as an argument.
// Some of the MMA instructions accumulate their result into an existing
// accumulator whereas the others generate a new accumulator. So we need to
// use custom code generation to expand a builtin call with a pointer to a
// load (if the corresponding instruction accumulates its result) followed by
// the call to the intrinsic and a store of the result.
#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \
case PPC::BI__builtin_##Name:
#include "clang/Basic/BuiltinsPPC.def"
{
SmallVector<Value *, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
if (E->getArg(i)->getType()->isArrayType())
Ops.push_back(
EmitArrayToPointerDecay(E->getArg(i)).emitRawPointer(*this));
else
Ops.push_back(EmitScalarExpr(E->getArg(i)));
// The first argument of these two builtins is a pointer used to store their
// result. However, the llvm intrinsics return their result in multiple
// return values. So, here we emit code extracting these values from the
// intrinsic results and storing them using that pointer.
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
unsigned NumVecs = 2;
auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
NumVecs = 4;
Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
}
llvm::Function *F = CGM.getIntrinsic(Intrinsic);
Address Addr = EmitPointerWithAlignment(E->getArg(1));
Value *Vec = Builder.CreateLoad(Addr);
Value *Call = Builder.CreateCall(F, {Vec});
llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
Value *Ptr = Ops[0];
for (unsigned i=0; i<NumVecs; i++) {
Value *Vec = Builder.CreateExtractValue(Call, i);
llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
}
return Call;
}
if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
BuiltinID == PPC::BI__builtin_mma_build_acc) {
// Reverse the order of the operands for LE, so the
// same builtin call can be used on both LE and BE
// without the need for the programmer to swap operands.
// The operands are reversed starting from the second argument,
// the first operand is the pointer to the pair/accumulator
// that is being built.
if (getTarget().isLittleEndian())
std::reverse(Ops.begin() + 1, Ops.end());
}
bool Accumulate;
switch (BuiltinID) {
#define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \
case PPC::BI__builtin_##Name: \
ID = Intrinsic::ppc_##Intr; \
Accumulate = Acc; \
break;
#include "clang/Basic/BuiltinsPPC.def"
}
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
BuiltinID == PPC::BI__builtin_vsx_stxvp ||
BuiltinID == PPC::BI__builtin_mma_lxvp ||
BuiltinID == PPC::BI__builtin_mma_stxvp) {
if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
BuiltinID == PPC::BI__builtin_mma_lxvp) {
Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
} else {
Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
}
Ops.pop_back();
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, Ops, "");
}
SmallVector<Value*, 4> CallOps;
if (Accumulate) {
Address Addr = EmitPointerWithAlignment(E->getArg(0));
Value *Acc = Builder.CreateLoad(Addr);
CallOps.push_back(Acc);
}
for (unsigned i=1; i<Ops.size(); i++)
CallOps.push_back(Ops[i]);
llvm::Function *F = CGM.getIntrinsic(ID);
Value *Call = Builder.CreateCall(F, CallOps);
return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign());
}
case PPC::BI__builtin_ppc_compare_and_swap:
case PPC::BI__builtin_ppc_compare_and_swaplp: {
Address Addr = EmitPointerWithAlignment(E->getArg(0));
Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
Value *OldVal = Builder.CreateLoad(OldValAddr);
QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
LValue LV = MakeAddrLValue(Addr, AtomicTy);
Value *Op2 = EmitScalarExpr(E->getArg(2));
auto Pair = EmitAtomicCompareExchange(
LV, RValue::get(OldVal), RValue::get(Op2), E->getExprLoc(),
llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
// Unlike c11's atomic_compare_exchange, according to
// https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
// > In either case, the contents of the memory location specified by addr
// > are copied into the memory location specified by old_val_addr.
// But it hasn't specified storing to OldValAddr is atomic or not and
// which order to use. Now following XL's codegen, treat it as a normal
// store.
Value *LoadedVal = Pair.first.getScalarVal();
Builder.CreateStore(LoadedVal, OldValAddr);
return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
}
case PPC::BI__builtin_ppc_fetch_and_add:
case PPC::BI__builtin_ppc_fetch_and_addlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_and:
case PPC::BI__builtin_ppc_fetch_and_andlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_or:
case PPC::BI__builtin_ppc_fetch_and_orlp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_fetch_and_swap:
case PPC::BI__builtin_ppc_fetch_and_swaplp: {
return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
llvm::AtomicOrdering::Monotonic);
}
case PPC::BI__builtin_ppc_ldarx:
case PPC::BI__builtin_ppc_lwarx:
case PPC::BI__builtin_ppc_lharx:
case PPC::BI__builtin_ppc_lbarx:
return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
case PPC::BI__builtin_ppc_mfspr: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
? Int32Ty
: Int64Ty;
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
return Builder.CreateCall(F, {Op0});
}
case PPC::BI__builtin_ppc_mtspr: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
? Int32Ty
: Int64Ty;
Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
return Builder.CreateCall(F, {Op0, Op1});
}
case PPC::BI__builtin_ppc_popcntb: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
llvm::Type *ArgType = ArgValue->getType();
Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
return Builder.CreateCall(F, {ArgValue}, "popcntb");
}
case PPC::BI__builtin_ppc_mtfsf: {
// The builtin takes a uint32 that needs to be cast to an
// f64 to be passed to the intrinsic.
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Cast = Builder.CreateUIToFP(Op1, DoubleTy);
llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
return Builder.CreateCall(F, {Op0, Cast}, "");
}
case PPC::BI__builtin_ppc_swdiv_nochk:
case PPC::BI__builtin_ppc_swdivs_nochk: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
FastMathFlags FMF = Builder.getFastMathFlags();
Builder.getFastMathFlags().setFast();
Value *FDiv = Builder.CreateFDiv(Op0, Op1, "swdiv_nochk");
Builder.getFastMathFlags() &= (FMF);
return FDiv;
}
case PPC::BI__builtin_ppc_fric:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::rint,
Intrinsic::experimental_constrained_rint))
.getScalarVal();
case PPC::BI__builtin_ppc_frim:
case PPC::BI__builtin_ppc_frims:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::floor,
Intrinsic::experimental_constrained_floor))
.getScalarVal();
case PPC::BI__builtin_ppc_frin:
case PPC::BI__builtin_ppc_frins:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::round,
Intrinsic::experimental_constrained_round))
.getScalarVal();
case PPC::BI__builtin_ppc_frip:
case PPC::BI__builtin_ppc_frips:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::ceil,
Intrinsic::experimental_constrained_ceil))
.getScalarVal();
case PPC::BI__builtin_ppc_friz:
case PPC::BI__builtin_ppc_frizs:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::trunc,
Intrinsic::experimental_constrained_trunc))
.getScalarVal();
case PPC::BI__builtin_ppc_fsqrt:
case PPC::BI__builtin_ppc_fsqrts:
return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
*this, E, Intrinsic::sqrt,
Intrinsic::experimental_constrained_sqrt))
.getScalarVal();
case PPC::BI__builtin_ppc_test_data_class: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
return Builder.CreateCall(
CGM.getIntrinsic(Intrinsic::ppc_test_data_class, Op0->getType()),
{Op0, Op1}, "test_data_class");
}
case PPC::BI__builtin_ppc_maxfe: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfe),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_maxfl: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfl),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_maxfs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_maxfs),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfe: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfe),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfl: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfl),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_minfs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
Value *Op2 = EmitScalarExpr(E->getArg(2));
Value *Op3 = EmitScalarExpr(E->getArg(3));
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_minfs),
{Op0, Op1, Op2, Op3});
}
case PPC::BI__builtin_ppc_swdiv:
case PPC::BI__builtin_ppc_swdivs: {
Value *Op0 = EmitScalarExpr(E->getArg(0));
Value *Op1 = EmitScalarExpr(E->getArg(1));
return Builder.CreateFDiv(Op0, Op1, "swdiv");
}
case PPC::BI__builtin_ppc_set_fpscr_rn:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_setrnd),
{EmitScalarExpr(E->getArg(0))});
case PPC::BI__builtin_ppc_mffs:
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::ppc_readflm));
}
}