llvm-project/clang/lib/StaticAnalyzer/Checkers/STLAlgorithmModeling.cpp
Fangyi Zhou 6078f5eb21
Reland [Clang][analyzer] replace Stmt* with ConstCFGElement in SymbolConjured (#137355)
Closes #57270.

This PR changes the `Stmt *` field in `SymbolConjured` with
`CFGBlock::ConstCFGElementRef`. The motivation is that, when conjuring a
symbol, there might not always be a statement available, causing
information to be lost for conjured symbols, whereas the CFGElementRef
can always be provided at the callsite.

Following the idea, this PR changes callsites of functions to create
conjured symbols, and replaces them with appropriate `CFGElementRef`s.

There is a caveat at loop widening, where the correct location is the
CFG terminator (which is not an element and does not have a ref). In
this case, the first element in the block is passed as a location.

Previous PR #128251, Reverted at #137304.
2025-05-12 14:19:44 +02:00

205 lines
7.8 KiB
C++

//===-- STLAlgorithmModeling.cpp ----------------------------------*- C++ -*--//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Models STL algorithms.
//
//===----------------------------------------------------------------------===//
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "Iterator.h"
using namespace clang;
using namespace ento;
using namespace iterator;
namespace {
class STLAlgorithmModeling : public Checker<eval::Call> {
bool evalFind(CheckerContext &C, const CallEvent &Call) const;
void Find(CheckerContext &C, const CallEvent &Call, unsigned paramNum) const;
using FnCheck = bool (STLAlgorithmModeling::*)(CheckerContext &,
const CallEvent &Call) const;
const CallDescriptionMap<FnCheck> Callbacks = {
{{CDM::SimpleFunc, {"std", "find"}, 3}, &STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find"}, 4}, &STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if_not"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_if_not"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_first_of"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "find_end"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "lower_bound"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "lower_bound"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "upper_bound"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "upper_bound"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 3},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search"}, 6},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 4},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 5},
&STLAlgorithmModeling::evalFind},
{{CDM::SimpleFunc, {"std", "search_n"}, 6},
&STLAlgorithmModeling::evalFind},
};
public:
STLAlgorithmModeling() = default;
bool AggressiveStdFindModeling = false;
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
}; //
bool STLAlgorithmModeling::evalCall(const CallEvent &Call,
CheckerContext &C) const {
const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
if (!CE)
return false;
const FnCheck *Handler = Callbacks.lookup(Call);
if (!Handler)
return false;
return (this->**Handler)(C, Call);
}
bool STLAlgorithmModeling::evalFind(CheckerContext &C,
const CallEvent &Call) const {
const auto *CE = dyn_cast<CallExpr>(Call.getOriginExpr());
// std::find()-like functions either take their primary range in the first
// two parameters, or if the first parameter is "execution policy" then in
// the second and third. This means that the second parameter must always be
// an iterator.
if (!isIteratorType(CE->getArg(1)->getType()))
return false;
// If no "execution policy" parameter is used then the first argument is the
// beginning of the range.
if (isIteratorType(CE->getArg(0)->getType())) {
Find(C, Call, 0);
return true;
}
// If "execution policy" parameter is used then the second argument is the
// beginning of the range.
if (isIteratorType(CE->getArg(2)->getType())) {
Find(C, Call, 1);
return true;
}
return false;
}
void STLAlgorithmModeling::Find(CheckerContext &C, const CallEvent &Call,
unsigned paramNum) const {
const auto *CE = dyn_cast<CallExpr>(Call.getOriginExpr());
const auto &Elem = Call.getCFGElementRef();
auto State = C.getState();
auto &SVB = C.getSValBuilder();
const auto *LCtx = C.getLocationContext();
SVal RetVal = SVB.conjureSymbolVal(nullptr, Elem, LCtx, C.blockCount());
SVal Param = State->getSVal(CE->getArg(paramNum), LCtx);
auto StateFound = State->BindExpr(CE, LCtx, RetVal);
// If we have an iterator position for the range-begin argument then we can
// assume that in case of successful search the position of the found element
// is not ahead of it.
// FIXME: Reverse iterators
const auto *Pos = getIteratorPosition(State, Param);
if (Pos) {
StateFound = createIteratorPosition(StateFound, RetVal, Pos->getContainer(),
Elem, LCtx, C.blockCount());
const auto *NewPos = getIteratorPosition(StateFound, RetVal);
assert(NewPos && "Failed to create new iterator position.");
SVal GreaterOrEqual = SVB.evalBinOp(StateFound, BO_GE,
nonloc::SymbolVal(NewPos->getOffset()),
nonloc::SymbolVal(Pos->getOffset()),
SVB.getConditionType());
assert(isa<DefinedSVal>(GreaterOrEqual) &&
"Symbol comparison must be a `DefinedSVal`");
StateFound = StateFound->assume(GreaterOrEqual.castAs<DefinedSVal>(), true);
}
Param = State->getSVal(CE->getArg(paramNum + 1), LCtx);
// If we have an iterator position for the range-end argument then we can
// assume that in case of successful search the position of the found element
// is ahead of it.
// FIXME: Reverse iterators
Pos = getIteratorPosition(State, Param);
if (Pos) {
StateFound = createIteratorPosition(StateFound, RetVal, Pos->getContainer(),
Elem, LCtx, C.blockCount());
const auto *NewPos = getIteratorPosition(StateFound, RetVal);
assert(NewPos && "Failed to create new iterator position.");
SVal Less = SVB.evalBinOp(StateFound, BO_LT,
nonloc::SymbolVal(NewPos->getOffset()),
nonloc::SymbolVal(Pos->getOffset()),
SVB.getConditionType());
assert(isa<DefinedSVal>(Less) &&
"Symbol comparison must be a `DefinedSVal`");
StateFound = StateFound->assume(Less.castAs<DefinedSVal>(), true);
}
C.addTransition(StateFound);
if (AggressiveStdFindModeling) {
auto StateNotFound = State->BindExpr(CE, LCtx, Param);
C.addTransition(StateNotFound);
}
}
} // namespace
void ento::registerSTLAlgorithmModeling(CheckerManager &Mgr) {
auto *Checker = Mgr.registerChecker<STLAlgorithmModeling>();
Checker->AggressiveStdFindModeling =
Mgr.getAnalyzerOptions().getCheckerBooleanOption(Checker,
"AggressiveStdFindModeling");
}
bool ento::shouldRegisterSTLAlgorithmModeling(const CheckerManager &mgr) {
return true;
}