Alexey Bataev 413a66f339
[LV, VP]VP intrinsics support for the Loop Vectorizer + adding new tail-folding mode using EVL. (#76172)
This patch introduces generating VP intrinsics in the Loop Vectorizer.

Currently the Loop Vectorizer supports vector predication in a very
limited capacity via tail-folding and masked load/store/gather/scatter
intrinsics. However, this does not let architectures with active vector
length predication support take advantage of their capabilities.
Architectures with general masked predication support also can only take
advantage of predication on memory operations. By having a way for the
Loop Vectorizer to generate Vector Predication intrinsics, which (will)
provide a target-independent way to model predicated vector
instructions. These architectures can make better use of their
predication capabilities.

Our first approach (implemented in this patch) builds on top of the
existing tail-folding mechanism in the LV (just adds a new tail-folding
mode using EVL), but instead of generating masked intrinsics for memory
operations it generates VP intrinsics for loads/stores instructions. The
patch adds a new VPlanTransforms to replace the wide header predicate
compare with EVL and updates codegen for load/stores to use VP
store/load with EVL.

Other important part of this approach is how the Explicit Vector Length
is computed. (VP intrinsics define this vector length parameter as
Explicit Vector Length (EVL)). We use an experimental intrinsic
`get_vector_length`, that can be lowered to architecture specific
instruction(s) to compute EVL.

Also, added a new recipe to emit instructions for computing EVL. Using
VPlan in this way will eventually help build and compare VPlans
corresponding to different strategies and alternatives.

Differential Revision: https://reviews.llvm.org/D99750
2024-04-04 18:30:17 -04:00

1428 lines
50 KiB
C++

//===- VPlan.cpp - Vectorizer Plan ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This is the LLVM vectorization plan. It represents a candidate for
/// vectorization, allowing to plan and optimize how to vectorize a given loop
/// before generating LLVM-IR.
/// The vectorizer uses vectorization plans to estimate the costs of potential
/// candidates and if profitable to execute the desired plan, generating vector
/// LLVM-IR code.
///
//===----------------------------------------------------------------------===//
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <cassert>
#include <string>
#include <vector>
using namespace llvm;
using namespace llvm::VPlanPatternMatch;
namespace llvm {
extern cl::opt<bool> EnableVPlanNativePath;
}
#define DEBUG_TYPE "vplan"
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) {
const VPInstruction *Instr = dyn_cast<VPInstruction>(&V);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
V.print(OS, SlotTracker);
return OS;
}
#endif
Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder,
const ElementCount &VF) const {
switch (LaneKind) {
case VPLane::Kind::ScalableLast:
// Lane = RuntimeVF - VF.getKnownMinValue() + Lane
return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF),
Builder.getInt32(VF.getKnownMinValue() - Lane));
case VPLane::Kind::First:
return Builder.getInt32(Lane);
}
llvm_unreachable("Unknown lane kind");
}
VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def)
: SubclassID(SC), UnderlyingVal(UV), Def(Def) {
if (Def)
Def->addDefinedValue(this);
}
VPValue::~VPValue() {
assert(Users.empty() && "trying to delete a VPValue with remaining users");
if (Def)
Def->removeDefinedValue(this);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const {
if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def))
R->print(OS, "", SlotTracker);
else
printAsOperand(OS, SlotTracker);
}
void VPValue::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), SlotTracker);
dbgs() << "\n";
}
void VPDef::dump() const {
const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this);
VPSlotTracker SlotTracker(
(Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr);
print(dbgs(), "", SlotTracker);
dbgs() << "\n";
}
#endif
VPRecipeBase *VPValue::getDefiningRecipe() {
return cast_or_null<VPRecipeBase>(Def);
}
const VPRecipeBase *VPValue::getDefiningRecipe() const {
return cast_or_null<VPRecipeBase>(Def);
}
// Get the top-most entry block of \p Start. This is the entry block of the
// containing VPlan. This function is templated to support both const and non-const blocks
template <typename T> static T *getPlanEntry(T *Start) {
T *Next = Start;
T *Current = Start;
while ((Next = Next->getParent()))
Current = Next;
SmallSetVector<T *, 8> WorkList;
WorkList.insert(Current);
for (unsigned i = 0; i < WorkList.size(); i++) {
T *Current = WorkList[i];
if (Current->getNumPredecessors() == 0)
return Current;
auto &Predecessors = Current->getPredecessors();
WorkList.insert(Predecessors.begin(), Predecessors.end());
}
llvm_unreachable("VPlan without any entry node without predecessors");
}
VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; }
const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; }
/// \return the VPBasicBlock that is the entry of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getEntryBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getEntry();
return cast<VPBasicBlock>(Block);
}
void VPBlockBase::setPlan(VPlan *ParentPlan) {
assert(
(ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) &&
"Can only set plan on its entry or preheader block.");
Plan = ParentPlan;
}
/// \return the VPBasicBlock that is the exit of Block, possibly indirectly.
const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const {
const VPBlockBase *Block = this;
while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBasicBlock *VPBlockBase::getExitingBasicBlock() {
VPBlockBase *Block = this;
while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
Block = Region->getExiting();
return cast<VPBasicBlock>(Block);
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() {
if (!Successors.empty() || !Parent)
return this;
assert(Parent->getExiting() == this &&
"Block w/o successors not the exiting block of its parent.");
return Parent->getEnclosingBlockWithSuccessors();
}
VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() {
if (!Predecessors.empty() || !Parent)
return this;
assert(Parent->getEntry() == this &&
"Block w/o predecessors not the entry of its parent.");
return Parent->getEnclosingBlockWithPredecessors();
}
void VPBlockBase::deleteCFG(VPBlockBase *Entry) {
for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry)))
delete Block;
}
VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() {
iterator It = begin();
while (It != end() && It->isPhi())
It++;
return It;
}
VPTransformState::VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
DominatorTree *DT, IRBuilderBase &Builder,
InnerLoopVectorizer *ILV, VPlan *Plan,
LLVMContext &Ctx)
: VF(VF), UF(UF), LI(LI), DT(DT), Builder(Builder), ILV(ILV), Plan(Plan),
LVer(nullptr),
TypeAnalysis(Plan->getCanonicalIV()->getScalarType(), Ctx) {}
Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) {
if (Def->isLiveIn())
return Def->getLiveInIRValue();
if (hasScalarValue(Def, Instance)) {
return Data
.PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)];
}
assert(hasVectorValue(Def, Instance.Part));
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
if (!VecPart->getType()->isVectorTy()) {
assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar");
return VecPart;
}
// TODO: Cache created scalar values.
Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF);
auto *Extract = Builder.CreateExtractElement(VecPart, Lane);
// set(Def, Extract, Instance);
return Extract;
}
Value *VPTransformState::get(VPValue *Def, unsigned Part, bool NeedsScalar) {
if (NeedsScalar) {
assert((VF.isScalar() || Def->isLiveIn() ||
(hasScalarValue(Def, VPIteration(Part, 0)) &&
Data.PerPartScalars[Def][Part].size() == 1)) &&
"Trying to access a single scalar per part but has multiple scalars "
"per part.");
return get(Def, VPIteration(Part, 0));
}
// If Values have been set for this Def return the one relevant for \p Part.
if (hasVectorValue(Def, Part))
return Data.PerPartOutput[Def][Part];
auto GetBroadcastInstrs = [this, Def](Value *V) {
bool SafeToHoist = Def->isDefinedOutsideVectorRegions();
if (VF.isScalar())
return V;
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist) {
BasicBlock *LoopVectorPreHeader = CFG.VPBB2IRBB[cast<VPBasicBlock>(
Plan->getVectorLoopRegion()->getSinglePredecessor())];
if (LoopVectorPreHeader)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
}
// Place the code for broadcasting invariant variables in the new preheader.
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
};
if (!hasScalarValue(Def, {Part, 0})) {
assert(Def->isLiveIn() && "expected a live-in");
if (Part != 0)
return get(Def, 0);
Value *IRV = Def->getLiveInIRValue();
Value *B = GetBroadcastInstrs(IRV);
set(Def, B, Part);
return B;
}
Value *ScalarValue = get(Def, {Part, 0});
// If we aren't vectorizing, we can just copy the scalar map values over
// to the vector map.
if (VF.isScalar()) {
set(Def, ScalarValue, Part);
return ScalarValue;
}
bool IsUniform = vputils::isUniformAfterVectorization(Def);
unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1;
// Check if there is a scalar value for the selected lane.
if (!hasScalarValue(Def, {Part, LastLane})) {
// At the moment, VPWidenIntOrFpInductionRecipes, VPScalarIVStepsRecipes and
// VPExpandSCEVRecipes can also be uniform.
assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||
isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe()) ||
isa<VPExpandSCEVRecipe>(Def->getDefiningRecipe())) &&
"unexpected recipe found to be invariant");
IsUniform = true;
LastLane = 0;
}
auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane}));
// Set the insert point after the last scalarized instruction or after the
// last PHI, if LastInst is a PHI. This ensures the insertelement sequence
// will directly follow the scalar definitions.
auto OldIP = Builder.saveIP();
auto NewIP =
isa<PHINode>(LastInst)
? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI())
: std::next(BasicBlock::iterator(LastInst));
Builder.SetInsertPoint(&*NewIP);
// However, if we are vectorizing, we need to construct the vector values.
// If the value is known to be uniform after vectorization, we can just
// broadcast the scalar value corresponding to lane zero for each unroll
// iteration. Otherwise, we construct the vector values using
// insertelement instructions. Since the resulting vectors are stored in
// State, we will only generate the insertelements once.
Value *VectorValue = nullptr;
if (IsUniform) {
VectorValue = GetBroadcastInstrs(ScalarValue);
set(Def, VectorValue, Part);
} else {
// Initialize packing with insertelements to start from undef.
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF));
set(Def, Undef, Part);
for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane)
packScalarIntoVectorValue(Def, {Part, Lane});
VectorValue = get(Def, Part);
}
Builder.restoreIP(OldIP);
return VectorValue;
}
BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) {
VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion();
return VPBB2IRBB[LoopRegion->getPreheaderVPBB()];
}
void VPTransformState::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void VPTransformState::addMetadata(Value *To, Instruction *From) {
// No source instruction to transfer metadata from?
if (!From)
return;
if (Instruction *ToI = dyn_cast<Instruction>(To)) {
propagateMetadata(ToI, From);
addNewMetadata(ToI, From);
}
}
void VPTransformState::setDebugLocFrom(DebugLoc DL) {
const DILocation *DIL = DL;
// When a FSDiscriminator is enabled, we don't need to add the multiply
// factors to the discriminators.
if (DIL &&
Builder.GetInsertBlock()
->getParent()
->shouldEmitDebugInfoForProfiling() &&
!EnableFSDiscriminator) {
// FIXME: For scalable vectors, assume vscale=1.
auto NewDIL =
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
if (NewDIL)
Builder.SetCurrentDebugLocation(*NewDIL);
else
LLVM_DEBUG(dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL->getLine());
} else
Builder.SetCurrentDebugLocation(DIL);
}
void VPTransformState::packScalarIntoVectorValue(VPValue *Def,
const VPIteration &Instance) {
Value *ScalarInst = get(Def, Instance);
Value *VectorValue = get(Def, Instance.Part);
VectorValue = Builder.CreateInsertElement(
VectorValue, ScalarInst, Instance.Lane.getAsRuntimeExpr(Builder, VF));
set(Def, VectorValue, Instance.Part);
}
BasicBlock *
VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) {
// BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks.
// Pred stands for Predessor. Prev stands for Previous - last visited/created.
BasicBlock *PrevBB = CFG.PrevBB;
BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(),
PrevBB->getParent(), CFG.ExitBB);
LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n');
// Hook up the new basic block to its predecessors.
for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) {
VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock();
auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors();
BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB];
assert(PredBB && "Predecessor basic-block not found building successor.");
auto *PredBBTerminator = PredBB->getTerminator();
LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n');
auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator);
if (isa<UnreachableInst>(PredBBTerminator)) {
assert(PredVPSuccessors.size() == 1 &&
"Predecessor ending w/o branch must have single successor.");
DebugLoc DL = PredBBTerminator->getDebugLoc();
PredBBTerminator->eraseFromParent();
auto *Br = BranchInst::Create(NewBB, PredBB);
Br->setDebugLoc(DL);
} else if (TermBr && !TermBr->isConditional()) {
TermBr->setSuccessor(0, NewBB);
} else {
// Set each forward successor here when it is created, excluding
// backedges. A backward successor is set when the branch is created.
unsigned idx = PredVPSuccessors.front() == this ? 0 : 1;
assert(!TermBr->getSuccessor(idx) &&
"Trying to reset an existing successor block.");
TermBr->setSuccessor(idx, NewBB);
}
}
return NewBB;
}
void VPBasicBlock::execute(VPTransformState *State) {
bool Replica = State->Instance && !State->Instance->isFirstIteration();
VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB;
VPBlockBase *SingleHPred = nullptr;
BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible.
auto IsLoopRegion = [](VPBlockBase *BB) {
auto *R = dyn_cast<VPRegionBlock>(BB);
return R && !R->isReplicator();
};
// 1. Create an IR basic block, or reuse the last one or ExitBB if possible.
if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) {
// ExitBB can be re-used for the exit block of the Plan.
NewBB = State->CFG.ExitBB;
State->CFG.PrevBB = NewBB;
State->Builder.SetInsertPoint(NewBB->getFirstNonPHI());
// Update the branch instruction in the predecessor to branch to ExitBB.
VPBlockBase *PredVPB = getSingleHierarchicalPredecessor();
VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock();
assert(PredVPB->getSingleSuccessor() == this &&
"predecessor must have the current block as only successor");
BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB];
// The Exit block of a loop is always set to be successor 0 of the Exiting
// block.
cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB);
} else if (PrevVPBB && /* A */
!((SingleHPred = getSingleHierarchicalPredecessor()) &&
SingleHPred->getExitingBasicBlock() == PrevVPBB &&
PrevVPBB->getSingleHierarchicalSuccessor() &&
(SingleHPred->getParent() == getEnclosingLoopRegion() &&
!IsLoopRegion(SingleHPred))) && /* B */
!(Replica && getPredecessors().empty())) { /* C */
// The last IR basic block is reused, as an optimization, in three cases:
// A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null;
// B. when the current VPBB has a single (hierarchical) predecessor which
// is PrevVPBB and the latter has a single (hierarchical) successor which
// both are in the same non-replicator region; and
// C. when the current VPBB is an entry of a region replica - where PrevVPBB
// is the exiting VPBB of this region from a previous instance, or the
// predecessor of this region.
NewBB = createEmptyBasicBlock(State->CFG);
State->Builder.SetInsertPoint(NewBB);
// Temporarily terminate with unreachable until CFG is rewired.
UnreachableInst *Terminator = State->Builder.CreateUnreachable();
// Register NewBB in its loop. In innermost loops its the same for all
// BB's.
if (State->CurrentVectorLoop)
State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI);
State->Builder.SetInsertPoint(Terminator);
State->CFG.PrevBB = NewBB;
}
// 2. Fill the IR basic block with IR instructions.
LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName()
<< " in BB:" << NewBB->getName() << '\n');
State->CFG.VPBB2IRBB[this] = NewBB;
State->CFG.PrevVPBB = this;
for (VPRecipeBase &Recipe : Recipes)
Recipe.execute(*State);
LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB);
}
void VPBasicBlock::dropAllReferences(VPValue *NewValue) {
for (VPRecipeBase &R : Recipes) {
for (auto *Def : R.definedValues())
Def->replaceAllUsesWith(NewValue);
for (unsigned I = 0, E = R.getNumOperands(); I != E; I++)
R.setOperand(I, NewValue);
}
}
VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) {
assert((SplitAt == end() || SplitAt->getParent() == this) &&
"can only split at a position in the same block");
SmallVector<VPBlockBase *, 2> Succs(successors());
// First, disconnect the current block from its successors.
for (VPBlockBase *Succ : Succs)
VPBlockUtils::disconnectBlocks(this, Succ);
// Create new empty block after the block to split.
auto *SplitBlock = new VPBasicBlock(getName() + ".split");
VPBlockUtils::insertBlockAfter(SplitBlock, this);
// Add successors for block to split to new block.
for (VPBlockBase *Succ : Succs)
VPBlockUtils::connectBlocks(SplitBlock, Succ);
// Finally, move the recipes starting at SplitAt to new block.
for (VPRecipeBase &ToMove :
make_early_inc_range(make_range(SplitAt, this->end())))
ToMove.moveBefore(*SplitBlock, SplitBlock->end());
return SplitBlock;
}
VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() {
VPRegionBlock *P = getParent();
if (P && P->isReplicator()) {
P = P->getParent();
assert(!cast<VPRegionBlock>(P)->isReplicator() &&
"unexpected nested replicate regions");
}
return P;
}
static bool hasConditionalTerminator(const VPBasicBlock *VPBB) {
if (VPBB->empty()) {
assert(
VPBB->getNumSuccessors() < 2 &&
"block with multiple successors doesn't have a recipe as terminator");
return false;
}
const VPRecipeBase *R = &VPBB->back();
bool IsCondBranch = isa<VPBranchOnMaskRecipe>(R) ||
match(R, m_BranchOnCond(m_VPValue())) ||
match(R, m_BranchOnCount(m_VPValue(), m_VPValue()));
(void)IsCondBranch;
if (VPBB->getNumSuccessors() >= 2 ||
(VPBB->isExiting() && !VPBB->getParent()->isReplicator())) {
assert(IsCondBranch && "block with multiple successors not terminated by "
"conditional branch recipe");
return true;
}
assert(
!IsCondBranch &&
"block with 0 or 1 successors terminated by conditional branch recipe");
return false;
}
VPRecipeBase *VPBasicBlock::getTerminator() {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
const VPRecipeBase *VPBasicBlock::getTerminator() const {
if (hasConditionalTerminator(this))
return &back();
return nullptr;
}
bool VPBasicBlock::isExiting() const {
return getParent() && getParent()->getExitingBasicBlock() == this;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const {
if (getSuccessors().empty()) {
O << Indent << "No successors\n";
} else {
O << Indent << "Successor(s): ";
ListSeparator LS;
for (auto *Succ : getSuccessors())
O << LS << Succ->getName();
O << '\n';
}
}
void VPBasicBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << getName() << ":\n";
auto RecipeIndent = Indent + " ";
for (const VPRecipeBase &Recipe : *this) {
Recipe.print(O, RecipeIndent, SlotTracker);
O << '\n';
}
printSuccessors(O, Indent);
}
#endif
static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry);
// Clone the CFG for all nodes in the single-entry-single-exit region reachable
// from \p Entry, this includes cloning the blocks and their recipes. Operands
// of cloned recipes will NOT be updated. Remapping of operands must be done
// separately. Returns a pair with the the new entry and exiting blocks of the
// cloned region.
static std::pair<VPBlockBase *, VPBlockBase *> cloneSESE(VPBlockBase *Entry) {
DenseMap<VPBlockBase *, VPBlockBase *> Old2NewVPBlocks;
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> RPOT(
Entry);
for (VPBlockBase *BB : RPOT) {
VPBlockBase *NewBB = BB->clone();
for (VPBlockBase *Pred : BB->getPredecessors())
VPBlockUtils::connectBlocks(Old2NewVPBlocks[Pred], NewBB);
Old2NewVPBlocks[BB] = NewBB;
}
#if !defined(NDEBUG)
// Verify that the order of predecessors and successors matches in the cloned
// version.
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
NewRPOT(Old2NewVPBlocks[Entry]);
for (const auto &[OldBB, NewBB] : zip(RPOT, NewRPOT)) {
for (const auto &[OldPred, NewPred] :
zip(OldBB->getPredecessors(), NewBB->getPredecessors()))
assert(NewPred == Old2NewVPBlocks[OldPred] && "Different predecessors");
for (const auto &[OldSucc, NewSucc] :
zip(OldBB->successors(), NewBB->successors()))
assert(NewSucc == Old2NewVPBlocks[OldSucc] && "Different successors");
}
#endif
return std::make_pair(Old2NewVPBlocks[Entry],
Old2NewVPBlocks[*reverse(RPOT).begin()]);
}
VPRegionBlock *VPRegionBlock::clone() {
const auto &[NewEntry, NewExiting] = cloneSESE(getEntry());
auto *NewRegion =
new VPRegionBlock(NewEntry, NewExiting, getName(), isReplicator());
for (VPBlockBase *Block : vp_depth_first_shallow(NewEntry))
Block->setParent(NewRegion);
return NewRegion;
}
void VPRegionBlock::dropAllReferences(VPValue *NewValue) {
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
// Drop all references in VPBasicBlocks and replace all uses with
// DummyValue.
Block->dropAllReferences(NewValue);
}
void VPRegionBlock::execute(VPTransformState *State) {
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(Entry);
if (!isReplicator()) {
// Create and register the new vector loop.
Loop *PrevLoop = State->CurrentVectorLoop;
State->CurrentVectorLoop = State->LI->AllocateLoop();
BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()];
Loop *ParentLoop = State->LI->getLoopFor(VectorPH);
// Insert the new loop into the loop nest and register the new basic blocks
// before calling any utilities such as SCEV that require valid LoopInfo.
if (ParentLoop)
ParentLoop->addChildLoop(State->CurrentVectorLoop);
else
State->LI->addTopLevelLoop(State->CurrentVectorLoop);
// Visit the VPBlocks connected to "this", starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
State->CurrentVectorLoop = PrevLoop;
return;
}
assert(!State->Instance && "Replicating a Region with non-null instance.");
// Enter replicating mode.
State->Instance = VPIteration(0, 0);
for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) {
State->Instance->Part = Part;
assert(!State->VF.isScalable() && "VF is assumed to be non scalable.");
for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF;
++Lane) {
State->Instance->Lane = VPLane(Lane, VPLane::Kind::First);
// Visit the VPBlocks connected to \p this, starting from it.
for (VPBlockBase *Block : RPOT) {
LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n');
Block->execute(State);
}
}
}
// Exit replicating mode.
State->Instance.reset();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPRegionBlock::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {";
auto NewIndent = Indent + " ";
for (auto *BlockBase : vp_depth_first_shallow(Entry)) {
O << '\n';
BlockBase->print(O, NewIndent, SlotTracker);
}
O << Indent << "}\n";
printSuccessors(O, Indent);
}
#endif
VPlan::~VPlan() {
for (auto &KV : LiveOuts)
delete KV.second;
LiveOuts.clear();
if (Entry) {
VPValue DummyValue;
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
Block->dropAllReferences(&DummyValue);
VPBlockBase::deleteCFG(Entry);
Preheader->dropAllReferences(&DummyValue);
delete Preheader;
}
for (VPValue *VPV : VPLiveInsToFree)
delete VPV;
if (BackedgeTakenCount)
delete BackedgeTakenCount;
}
VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) {
VPBasicBlock *Preheader = new VPBasicBlock("ph");
VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph");
auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader);
Plan->TripCount =
vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE);
// Create empty VPRegionBlock, to be filled during processing later.
auto *TopRegion = new VPRegionBlock("vector loop", false /*isReplicator*/);
VPBlockUtils::insertBlockAfter(TopRegion, VecPreheader);
VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block");
VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion);
return Plan;
}
void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV,
Value *CanonicalIVStartValue,
VPTransformState &State) {
// Check if the backedge taken count is needed, and if so build it.
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
auto *TCMO = Builder.CreateSub(TripCountV,
ConstantInt::get(TripCountV->getType(), 1),
"trip.count.minus.1");
BackedgeTakenCount->setUnderlyingValue(TCMO);
}
VectorTripCount.setUnderlyingValue(VectorTripCountV);
IRBuilder<> Builder(State.CFG.PrevBB->getTerminator());
// FIXME: Model VF * UF computation completely in VPlan.
VFxUF.setUnderlyingValue(
createStepForVF(Builder, TripCountV->getType(), State.VF, State.UF));
// When vectorizing the epilogue loop, the canonical induction start value
// needs to be changed from zero to the value after the main vector loop.
// FIXME: Improve modeling for canonical IV start values in the epilogue loop.
if (CanonicalIVStartValue) {
VPValue *VPV = getOrAddLiveIn(CanonicalIVStartValue);
auto *IV = getCanonicalIV();
assert(all_of(IV->users(),
[](const VPUser *U) {
return isa<VPScalarIVStepsRecipe>(U) ||
isa<VPScalarCastRecipe>(U) ||
isa<VPDerivedIVRecipe>(U) ||
cast<VPInstruction>(U)->getOpcode() ==
Instruction::Add;
}) &&
"the canonical IV should only be used by its increment or "
"ScalarIVSteps when resetting the start value");
IV->setOperand(0, VPV);
}
}
/// Generate the code inside the preheader and body of the vectorized loop.
/// Assumes a single pre-header basic-block was created for this. Introduce
/// additional basic-blocks as needed, and fill them all.
void VPlan::execute(VPTransformState *State) {
// Initialize CFG state.
State->CFG.PrevVPBB = nullptr;
State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor();
BasicBlock *VectorPreHeader = State->CFG.PrevBB;
State->Builder.SetInsertPoint(VectorPreHeader->getTerminator());
// Generate code in the loop pre-header and body.
for (VPBlockBase *Block : vp_depth_first_shallow(Entry))
Block->execute(State);
VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock();
BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB];
// Fix the latch value of canonical, reduction and first-order recurrences
// phis in the vector loop.
VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock();
for (VPRecipeBase &R : Header->phis()) {
// Skip phi-like recipes that generate their backedege values themselves.
if (isa<VPWidenPHIRecipe>(&R))
continue;
if (isa<VPWidenPointerInductionRecipe>(&R) ||
isa<VPWidenIntOrFpInductionRecipe>(&R)) {
PHINode *Phi = nullptr;
if (isa<VPWidenIntOrFpInductionRecipe>(&R)) {
Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0));
} else {
auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R);
assert(!WidenPhi->onlyScalarsGenerated(State->VF.isScalable()) &&
"recipe generating only scalars should have been replaced");
auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0));
Phi = cast<PHINode>(GEP->getPointerOperand());
}
Phi->setIncomingBlock(1, VectorLatchBB);
// Move the last step to the end of the latch block. This ensures
// consistent placement of all induction updates.
Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1));
Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode());
continue;
}
auto *PhiR = cast<VPHeaderPHIRecipe>(&R);
// For canonical IV, first-order recurrences and in-order reduction phis,
// only a single part is generated, which provides the last part from the
// previous iteration. For non-ordered reductions all UF parts are
// generated.
bool SinglePartNeeded =
isa<VPCanonicalIVPHIRecipe>(PhiR) ||
isa<VPFirstOrderRecurrencePHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
(isa<VPReductionPHIRecipe>(PhiR) &&
cast<VPReductionPHIRecipe>(PhiR)->isOrdered());
bool NeedsScalar =
isa<VPCanonicalIVPHIRecipe, VPEVLBasedIVPHIRecipe>(PhiR) ||
(isa<VPReductionPHIRecipe>(PhiR) &&
cast<VPReductionPHIRecipe>(PhiR)->isInLoop());
unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF;
for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) {
Value *Phi = State->get(PhiR, Part, NeedsScalar);
Value *Val =
State->get(PhiR->getBackedgeValue(),
SinglePartNeeded ? State->UF - 1 : Part, NeedsScalar);
cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB);
}
}
// We do not attempt to preserve DT for outer loop vectorization currently.
if (!EnableVPlanNativePath) {
BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header];
State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader);
updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB,
State->CFG.ExitBB);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPlan::printLiveIns(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
if (VFxUF.getNumUsers() > 0) {
O << "\nLive-in ";
VFxUF.printAsOperand(O, SlotTracker);
O << " = VF * UF";
}
if (VectorTripCount.getNumUsers() > 0) {
O << "\nLive-in ";
VectorTripCount.printAsOperand(O, SlotTracker);
O << " = vector-trip-count";
}
if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) {
O << "\nLive-in ";
BackedgeTakenCount->printAsOperand(O, SlotTracker);
O << " = backedge-taken count";
}
O << "\n";
if (TripCount->isLiveIn())
O << "Live-in ";
TripCount->printAsOperand(O, SlotTracker);
O << " = original trip-count";
O << "\n";
}
LLVM_DUMP_METHOD
void VPlan::print(raw_ostream &O) const {
VPSlotTracker SlotTracker(this);
O << "VPlan '" << getName() << "' {";
printLiveIns(O);
if (!getPreheader()->empty()) {
O << "\n";
getPreheader()->print(O, "", SlotTracker);
}
for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) {
O << '\n';
Block->print(O, "", SlotTracker);
}
if (!LiveOuts.empty())
O << "\n";
for (const auto &KV : LiveOuts) {
KV.second->print(O, SlotTracker);
}
O << "}\n";
}
std::string VPlan::getName() const {
std::string Out;
raw_string_ostream RSO(Out);
RSO << Name << " for ";
if (!VFs.empty()) {
RSO << "VF={" << VFs[0];
for (ElementCount VF : drop_begin(VFs))
RSO << "," << VF;
RSO << "},";
}
if (UFs.empty()) {
RSO << "UF>=1";
} else {
RSO << "UF={" << UFs[0];
for (unsigned UF : drop_begin(UFs))
RSO << "," << UF;
RSO << "}";
}
return Out;
}
LLVM_DUMP_METHOD
void VPlan::printDOT(raw_ostream &O) const {
VPlanPrinter Printer(O, *this);
Printer.dump();
}
LLVM_DUMP_METHOD
void VPlan::dump() const { print(dbgs()); }
#endif
void VPlan::addLiveOut(PHINode *PN, VPValue *V) {
assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists");
LiveOuts.insert({PN, new VPLiveOut(PN, V)});
}
void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB,
BasicBlock *LoopLatchBB,
BasicBlock *LoopExitBB) {
// The vector body may be more than a single basic-block by this point.
// Update the dominator tree information inside the vector body by propagating
// it from header to latch, expecting only triangular control-flow, if any.
BasicBlock *PostDomSucc = nullptr;
for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) {
// Get the list of successors of this block.
std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB));
assert(Succs.size() <= 2 &&
"Basic block in vector loop has more than 2 successors.");
PostDomSucc = Succs[0];
if (Succs.size() == 1) {
assert(PostDomSucc->getSinglePredecessor() &&
"PostDom successor has more than one predecessor.");
DT->addNewBlock(PostDomSucc, BB);
continue;
}
BasicBlock *InterimSucc = Succs[1];
if (PostDomSucc->getSingleSuccessor() == InterimSucc) {
PostDomSucc = Succs[1];
InterimSucc = Succs[0];
}
assert(InterimSucc->getSingleSuccessor() == PostDomSucc &&
"One successor of a basic block does not lead to the other.");
assert(InterimSucc->getSinglePredecessor() &&
"Interim successor has more than one predecessor.");
assert(PostDomSucc->hasNPredecessors(2) &&
"PostDom successor has more than two predecessors.");
DT->addNewBlock(InterimSucc, BB);
DT->addNewBlock(PostDomSucc, BB);
}
// Latch block is a new dominator for the loop exit.
DT->changeImmediateDominator(LoopExitBB, LoopLatchBB);
assert(DT->verify(DominatorTree::VerificationLevel::Fast));
}
static void remapOperands(VPBlockBase *Entry, VPBlockBase *NewEntry,
DenseMap<VPValue *, VPValue *> &Old2NewVPValues) {
// Update the operands of all cloned recipes starting at NewEntry. This
// traverses all reachable blocks. This is done in two steps, to handle cycles
// in PHI recipes.
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
OldDeepRPOT(Entry);
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<VPBlockBase *>>
NewDeepRPOT(NewEntry);
// First, collect all mappings from old to new VPValues defined by cloned
// recipes.
for (const auto &[OldBB, NewBB] :
zip(VPBlockUtils::blocksOnly<VPBasicBlock>(OldDeepRPOT),
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT))) {
assert(OldBB->getRecipeList().size() == NewBB->getRecipeList().size() &&
"blocks must have the same number of recipes");
for (const auto &[OldR, NewR] : zip(*OldBB, *NewBB)) {
assert(OldR.getNumOperands() == NewR.getNumOperands() &&
"recipes must have the same number of operands");
assert(OldR.getNumDefinedValues() == NewR.getNumDefinedValues() &&
"recipes must define the same number of operands");
for (const auto &[OldV, NewV] :
zip(OldR.definedValues(), NewR.definedValues()))
Old2NewVPValues[OldV] = NewV;
}
}
// Update all operands to use cloned VPValues.
for (VPBasicBlock *NewBB :
VPBlockUtils::blocksOnly<VPBasicBlock>(NewDeepRPOT)) {
for (VPRecipeBase &NewR : *NewBB)
for (unsigned I = 0, E = NewR.getNumOperands(); I != E; ++I) {
VPValue *NewOp = Old2NewVPValues.lookup(NewR.getOperand(I));
NewR.setOperand(I, NewOp);
}
}
}
VPlan *VPlan::duplicate() {
// Clone blocks.
VPBasicBlock *NewPreheader = Preheader->clone();
const auto &[NewEntry, __] = cloneSESE(Entry);
// Create VPlan, clone live-ins and remap operands in the cloned blocks.
auto *NewPlan = new VPlan(NewPreheader, cast<VPBasicBlock>(NewEntry));
DenseMap<VPValue *, VPValue *> Old2NewVPValues;
for (VPValue *OldLiveIn : VPLiveInsToFree) {
Old2NewVPValues[OldLiveIn] =
NewPlan->getOrAddLiveIn(OldLiveIn->getLiveInIRValue());
}
Old2NewVPValues[&VectorTripCount] = &NewPlan->VectorTripCount;
Old2NewVPValues[&VFxUF] = &NewPlan->VFxUF;
if (BackedgeTakenCount) {
NewPlan->BackedgeTakenCount = new VPValue();
Old2NewVPValues[BackedgeTakenCount] = NewPlan->BackedgeTakenCount;
}
assert(TripCount && "trip count must be set");
if (TripCount->isLiveIn())
Old2NewVPValues[TripCount] =
NewPlan->getOrAddLiveIn(TripCount->getLiveInIRValue());
// else NewTripCount will be created and inserted into Old2NewVPValues when
// TripCount is cloned. In any case NewPlan->TripCount is updated below.
remapOperands(Preheader, NewPreheader, Old2NewVPValues);
remapOperands(Entry, NewEntry, Old2NewVPValues);
// Clone live-outs.
for (const auto &[_, LO] : LiveOuts)
NewPlan->addLiveOut(LO->getPhi(), Old2NewVPValues[LO->getOperand(0)]);
// Initialize remaining fields of cloned VPlan.
NewPlan->VFs = VFs;
NewPlan->UFs = UFs;
// TODO: Adjust names.
NewPlan->Name = Name;
assert(Old2NewVPValues.contains(TripCount) &&
"TripCount must have been added to Old2NewVPValues");
NewPlan->TripCount = Old2NewVPValues[TripCount];
return NewPlan;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Twine VPlanPrinter::getUID(const VPBlockBase *Block) {
return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") +
Twine(getOrCreateBID(Block));
}
Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) {
const std::string &Name = Block->getName();
if (!Name.empty())
return Name;
return "VPB" + Twine(getOrCreateBID(Block));
}
void VPlanPrinter::dump() {
Depth = 1;
bumpIndent(0);
OS << "digraph VPlan {\n";
OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan";
if (!Plan.getName().empty())
OS << "\\n" << DOT::EscapeString(Plan.getName());
{
// Print live-ins.
std::string Str;
raw_string_ostream SS(Str);
Plan.printLiveIns(SS);
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
for (auto Line : Lines)
OS << DOT::EscapeString(Line.str()) << "\\n";
}
OS << "\"]\n";
OS << "node [shape=rect, fontname=Courier, fontsize=30]\n";
OS << "edge [fontname=Courier, fontsize=30]\n";
OS << "compound=true\n";
dumpBlock(Plan.getPreheader());
for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry()))
dumpBlock(Block);
OS << "}\n";
}
void VPlanPrinter::dumpBlock(const VPBlockBase *Block) {
if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block))
dumpBasicBlock(BasicBlock);
else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
dumpRegion(Region);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To,
bool Hidden, const Twine &Label) {
// Due to "dot" we print an edge between two regions as an edge between the
// exiting basic block and the entry basic of the respective regions.
const VPBlockBase *Tail = From->getExitingBasicBlock();
const VPBlockBase *Head = To->getEntryBasicBlock();
OS << Indent << getUID(Tail) << " -> " << getUID(Head);
OS << " [ label=\"" << Label << '\"';
if (Tail != From)
OS << " ltail=" << getUID(From);
if (Head != To)
OS << " lhead=" << getUID(To);
if (Hidden)
OS << "; splines=none";
OS << "]\n";
}
void VPlanPrinter::dumpEdges(const VPBlockBase *Block) {
auto &Successors = Block->getSuccessors();
if (Successors.size() == 1)
drawEdge(Block, Successors.front(), false, "");
else if (Successors.size() == 2) {
drawEdge(Block, Successors.front(), false, "T");
drawEdge(Block, Successors.back(), false, "F");
} else {
unsigned SuccessorNumber = 0;
for (auto *Successor : Successors)
drawEdge(Block, Successor, false, Twine(SuccessorNumber++));
}
}
void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) {
// Implement dot-formatted dump by performing plain-text dump into the
// temporary storage followed by some post-processing.
OS << Indent << getUID(BasicBlock) << " [label =\n";
bumpIndent(1);
std::string Str;
raw_string_ostream SS(Str);
// Use no indentation as we need to wrap the lines into quotes ourselves.
BasicBlock->print(SS, "", SlotTracker);
// We need to process each line of the output separately, so split
// single-string plain-text dump.
SmallVector<StringRef, 0> Lines;
StringRef(Str).rtrim('\n').split(Lines, "\n");
auto EmitLine = [&](StringRef Line, StringRef Suffix) {
OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix;
};
// Don't need the "+" after the last line.
for (auto Line : make_range(Lines.begin(), Lines.end() - 1))
EmitLine(Line, " +\n");
EmitLine(Lines.back(), "\n");
bumpIndent(-1);
OS << Indent << "]\n";
dumpEdges(BasicBlock);
}
void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) {
OS << Indent << "subgraph " << getUID(Region) << " {\n";
bumpIndent(1);
OS << Indent << "fontname=Courier\n"
<< Indent << "label=\""
<< DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ")
<< DOT::EscapeString(Region->getName()) << "\"\n";
// Dump the blocks of the region.
assert(Region->getEntry() && "Region contains no inner blocks.");
for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry()))
dumpBlock(Block);
bumpIndent(-1);
OS << Indent << "}\n";
dumpEdges(Region);
}
void VPlanIngredient::print(raw_ostream &O) const {
if (auto *Inst = dyn_cast<Instruction>(V)) {
if (!Inst->getType()->isVoidTy()) {
Inst->printAsOperand(O, false);
O << " = ";
}
O << Inst->getOpcodeName() << " ";
unsigned E = Inst->getNumOperands();
if (E > 0) {
Inst->getOperand(0)->printAsOperand(O, false);
for (unsigned I = 1; I < E; ++I)
Inst->getOperand(I)->printAsOperand(O << ", ", false);
}
} else // !Inst
V->printAsOperand(O, false);
}
#endif
template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT);
void VPValue::replaceAllUsesWith(VPValue *New) {
replaceUsesWithIf(New, [](VPUser &, unsigned) { return true; });
}
void VPValue::replaceUsesWithIf(
VPValue *New,
llvm::function_ref<bool(VPUser &U, unsigned Idx)> ShouldReplace) {
// Note that this early exit is required for correctness; the implementation
// below relies on the number of users for this VPValue to decrease, which
// isn't the case if this == New.
if (this == New)
return;
for (unsigned J = 0; J < getNumUsers();) {
VPUser *User = Users[J];
bool RemovedUser = false;
for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) {
if (User->getOperand(I) != this || !ShouldReplace(*User, I))
continue;
RemovedUser = true;
User->setOperand(I, New);
}
// If a user got removed after updating the current user, the next user to
// update will be moved to the current position, so we only need to
// increment the index if the number of users did not change.
if (!RemovedUser)
J++;
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const {
if (const Value *UV = getUnderlyingValue()) {
OS << "ir<";
UV->printAsOperand(OS, false);
OS << ">";
return;
}
unsigned Slot = Tracker.getSlot(this);
if (Slot == unsigned(-1))
OS << "<badref>";
else
OS << "vp<%" << Tracker.getSlot(this) << ">";
}
void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const {
interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) {
Op->printAsOperand(O, SlotTracker);
});
}
#endif
void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region,
Old2NewTy &Old2New,
InterleavedAccessInfo &IAI) {
ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>>
RPOT(Region->getEntry());
for (VPBlockBase *Base : RPOT) {
visitBlock(Base, Old2New, IAI);
}
}
void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI) {
if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) {
for (VPRecipeBase &VPI : *VPBB) {
if (isa<VPWidenPHIRecipe>(&VPI))
continue;
assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions");
auto *VPInst = cast<VPInstruction>(&VPI);
auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue());
if (!Inst)
continue;
auto *IG = IAI.getInterleaveGroup(Inst);
if (!IG)
continue;
auto NewIGIter = Old2New.find(IG);
if (NewIGIter == Old2New.end())
Old2New[IG] = new InterleaveGroup<VPInstruction>(
IG->getFactor(), IG->isReverse(), IG->getAlign());
if (Inst == IG->getInsertPos())
Old2New[IG]->setInsertPos(VPInst);
InterleaveGroupMap[VPInst] = Old2New[IG];
InterleaveGroupMap[VPInst]->insertMember(
VPInst, IG->getIndex(Inst),
Align(IG->isReverse() ? (-1) * int(IG->getFactor())
: IG->getFactor()));
}
} else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block))
visitRegion(Region, Old2New, IAI);
else
llvm_unreachable("Unsupported kind of VPBlock.");
}
VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan,
InterleavedAccessInfo &IAI) {
Old2NewTy Old2New;
visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI);
}
void VPSlotTracker::assignSlot(const VPValue *V) {
assert(!Slots.contains(V) && "VPValue already has a slot!");
Slots[V] = NextSlot++;
}
void VPSlotTracker::assignSlots(const VPlan &Plan) {
if (Plan.VFxUF.getNumUsers() > 0)
assignSlot(&Plan.VFxUF);
assignSlot(&Plan.VectorTripCount);
if (Plan.BackedgeTakenCount)
assignSlot(Plan.BackedgeTakenCount);
assignSlots(Plan.getPreheader());
ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>>
RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry()));
for (const VPBasicBlock *VPBB :
VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT))
assignSlots(VPBB);
}
void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) {
for (const VPRecipeBase &Recipe : *VPBB)
for (VPValue *Def : Recipe.definedValues())
assignSlot(Def);
}
bool vputils::onlyFirstLaneUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstLaneUsed(Def); });
}
bool vputils::onlyFirstPartUsed(const VPValue *Def) {
return all_of(Def->users(),
[Def](const VPUser *U) { return U->onlyFirstPartUsed(Def); });
}
VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr,
ScalarEvolution &SE) {
if (auto *Expanded = Plan.getSCEVExpansion(Expr))
return Expanded;
VPValue *Expanded = nullptr;
if (auto *E = dyn_cast<SCEVConstant>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else if (auto *E = dyn_cast<SCEVUnknown>(Expr))
Expanded = Plan.getOrAddLiveIn(E->getValue());
else {
Expanded = new VPExpandSCEVRecipe(Expr, SE);
Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe());
}
Plan.addSCEVExpansion(Expr, Expanded);
return Expanded;
}