
When storing a scalable vector and loading a fixed-size vector, where the scalable vector is known to be larger based on vscale_range, perform store-to-load forwarding through temporary @llvm.vector.extract calls. InstCombine then folds the insert/extract pair away. The usecase is shown in https://godbolt.org/z/KT3sMrMbd, which shows that clang generates IR that matches this pattern when the "arm_sve_vector_bits" attribute is used: ```c typedef svfloat32_t svfloat32_fixed_t __attribute__((arm_sve_vector_bits(512))); struct svfloat32_wrapped_t { svfloat32_fixed_t v; }; static inline svfloat32_wrapped_t add(svfloat32_wrapped_t a, svfloat32_wrapped_t b) { return {svadd_f32_x(svptrue_b32(), a.v, b.v)}; } svfloat32_wrapped_t foo(svfloat32_wrapped_t a, svfloat32_wrapped_t b) { // The IR pattern this patch matches is generated for this return: return add(a, b); } ```
481 lines
19 KiB
C++
481 lines
19 KiB
C++
#include "llvm/Transforms/Utils/VNCoercion.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
|
|
#define DEBUG_TYPE "vncoerce"
|
|
|
|
namespace llvm {
|
|
namespace VNCoercion {
|
|
|
|
static bool isFirstClassAggregateOrScalableType(Type *Ty) {
|
|
return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
|
|
}
|
|
|
|
/// Return true if coerceAvailableValueToLoadType will succeed.
|
|
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
|
|
Function *F) {
|
|
Type *StoredTy = StoredVal->getType();
|
|
if (StoredTy == LoadTy)
|
|
return true;
|
|
|
|
const DataLayout &DL = F->getDataLayout();
|
|
TypeSize MinStoreSize = DL.getTypeSizeInBits(StoredTy);
|
|
TypeSize LoadSize = DL.getTypeSizeInBits(LoadTy);
|
|
if (isa<ScalableVectorType>(StoredTy) && isa<ScalableVectorType>(LoadTy) &&
|
|
MinStoreSize == LoadSize)
|
|
return true;
|
|
|
|
// If the loaded/stored value is a first class array/struct, don't try to
|
|
// transform them. We need to be able to bitcast to integer. For scalable
|
|
// vectors forwarded to fixed-sized vectors @llvm.vector.extract is used.
|
|
if (isa<ScalableVectorType>(StoredTy) && isa<FixedVectorType>(LoadTy)) {
|
|
if (StoredTy->getScalarType() != LoadTy->getScalarType())
|
|
return false;
|
|
|
|
// If it is known at compile-time that the VScale is larger than one,
|
|
// use that information to allow for wider loads.
|
|
const auto &Attrs = F->getAttributes().getFnAttrs();
|
|
unsigned MinVScale = Attrs.getVScaleRangeMin();
|
|
MinStoreSize =
|
|
TypeSize::getFixed(MinStoreSize.getKnownMinValue() * MinVScale);
|
|
} else if (isFirstClassAggregateOrScalableType(LoadTy) ||
|
|
isFirstClassAggregateOrScalableType(StoredTy)) {
|
|
return false;
|
|
}
|
|
|
|
// The store size must be byte-aligned to support future type casts.
|
|
if (llvm::alignTo(MinStoreSize, 8) != MinStoreSize)
|
|
return false;
|
|
|
|
// The store has to be at least as big as the load.
|
|
if (!TypeSize::isKnownGE(MinStoreSize, LoadSize))
|
|
return false;
|
|
|
|
bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
|
|
bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
|
|
// Don't coerce non-integral pointers to integers or vice versa.
|
|
if (StoredNI != LoadNI) {
|
|
// As a special case, allow coercion of memset used to initialize
|
|
// an array w/null. Despite non-integral pointers not generally having a
|
|
// specific bit pattern, we do assume null is zero.
|
|
if (auto *CI = dyn_cast<Constant>(StoredVal))
|
|
return CI->isNullValue();
|
|
return false;
|
|
} else if (StoredNI && LoadNI &&
|
|
StoredTy->getPointerAddressSpace() !=
|
|
LoadTy->getPointerAddressSpace()) {
|
|
return false;
|
|
}
|
|
|
|
// The implementation below uses inttoptr for vectors of unequal size; we
|
|
// can't allow this for non integral pointers. We could teach it to extract
|
|
// exact subvectors if desired.
|
|
if (StoredNI && (StoredTy->isScalableTy() || MinStoreSize != LoadSize))
|
|
return false;
|
|
|
|
if (StoredTy->isTargetExtTy() || LoadTy->isTargetExtTy())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If we saw a store of a value to memory, and
|
|
/// then a load from a must-aliased pointer of a different type, try to coerce
|
|
/// the stored value. LoadedTy is the type of the load we want to replace.
|
|
/// IRB is IRBuilder used to insert new instructions.
|
|
///
|
|
/// If we can't do it, return null.
|
|
Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
|
|
IRBuilderBase &Helper, Function *F) {
|
|
assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, F) &&
|
|
"precondition violation - materialization can't fail");
|
|
const DataLayout &DL = F->getDataLayout();
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
// If this is already the right type, just return it.
|
|
Type *StoredValTy = StoredVal->getType();
|
|
|
|
// If this is a scalable vector forwarded to a fixed vector load, create
|
|
// a @llvm.vector.extract instead of bitcasts.
|
|
if (isa<ScalableVectorType>(StoredVal->getType()) &&
|
|
isa<FixedVectorType>(LoadedTy)) {
|
|
return Helper.CreateIntrinsic(LoadedTy, Intrinsic::vector_extract,
|
|
{StoredVal, Helper.getInt64(0)});
|
|
}
|
|
|
|
TypeSize StoredValSize = DL.getTypeSizeInBits(StoredValTy);
|
|
TypeSize LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
|
|
|
|
// If the store and reload are the same size, we can always reuse it.
|
|
if (StoredValSize == LoadedValSize) {
|
|
// Pointer to Pointer -> use bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
} else {
|
|
// Convert source pointers to integers, which can be bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
Type *TypeToCastTo = LoadedTy;
|
|
if (TypeToCastTo->isPtrOrPtrVectorTy())
|
|
TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
|
|
|
|
if (StoredValTy != TypeToCastTo)
|
|
StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
|
|
|
|
// Cast to pointer if the load needs a pointer type.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
// If the loaded value is smaller than the available value, then we can
|
|
// extract out a piece from it. If the available value is too small, then we
|
|
// can't do anything.
|
|
assert(!StoredValSize.isScalable() &&
|
|
TypeSize::isKnownGE(StoredValSize, LoadedValSize) &&
|
|
"canCoerceMustAliasedValueToLoad fail");
|
|
|
|
// Convert source pointers to integers, which can be manipulated.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// Convert vectors and fp to integer, which can be manipulated.
|
|
if (!StoredValTy->isIntegerTy()) {
|
|
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
|
|
StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// If this is a big-endian system, we need to shift the value down to the low
|
|
// bits so that a truncate will work.
|
|
if (DL.isBigEndian()) {
|
|
uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedValue() -
|
|
DL.getTypeStoreSizeInBits(LoadedTy).getFixedValue();
|
|
StoredVal = Helper.CreateLShr(
|
|
StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
|
|
}
|
|
|
|
// Truncate the integer to the right size now.
|
|
Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
|
|
StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
|
|
|
|
if (LoadedTy != NewIntTy) {
|
|
// If the result is a pointer, inttoptr.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
else
|
|
// Otherwise, bitcast.
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering memory write (store, memset, memcpy, memmove). This
|
|
/// means that the write *may* provide bits used by the load but we can't be
|
|
/// sure because the pointers don't must-alias.
|
|
///
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up. This returns -1 if we have to give up, or a byte number in the stored
|
|
/// value of the piece that feeds the load.
|
|
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
|
|
Value *WritePtr,
|
|
uint64_t WriteSizeInBits,
|
|
const DataLayout &DL) {
|
|
// If the loaded/stored value is a first class array/struct, or scalable type,
|
|
// don't try to transform them. We need to be able to bitcast to integer.
|
|
if (isFirstClassAggregateOrScalableType(LoadTy))
|
|
return -1;
|
|
|
|
int64_t StoreOffset = 0, LoadOffset = 0;
|
|
Value *StoreBase =
|
|
GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
|
|
Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
|
|
if (StoreBase != LoadBase)
|
|
return -1;
|
|
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue();
|
|
|
|
if ((WriteSizeInBits & 7) | (LoadSize & 7))
|
|
return -1;
|
|
uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
|
|
LoadSize /= 8;
|
|
|
|
// If the Load isn't completely contained within the stored bits, we don't
|
|
// have all the bits to feed it. We could do something crazy in the future
|
|
// (issue a smaller load then merge the bits in) but this seems unlikely to be
|
|
// valuable.
|
|
if (StoreOffset > LoadOffset ||
|
|
StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
|
|
return -1;
|
|
|
|
// Okay, we can do this transformation. Return the number of bytes into the
|
|
// store that the load is.
|
|
return LoadOffset - StoreOffset;
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering store.
|
|
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
|
|
StoreInst *DepSI, const DataLayout &DL) {
|
|
auto *StoredVal = DepSI->getValueOperand();
|
|
|
|
// Cannot handle reading from store of first-class aggregate or scalable type.
|
|
if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DepSI->getFunction()))
|
|
return -1;
|
|
|
|
Value *StorePtr = DepSI->getPointerOperand();
|
|
uint64_t StoreSize =
|
|
DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedValue();
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
|
|
DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being clobbered by another load. See if
|
|
/// the other load can feed into the second load.
|
|
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
|
|
const DataLayout &DL) {
|
|
// Cannot handle reading from store of first-class aggregate or scalable type.
|
|
if (isFirstClassAggregateOrScalableType(DepLI->getType()))
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DepLI->getFunction()))
|
|
return -1;
|
|
|
|
Value *DepPtr = DepLI->getPointerOperand();
|
|
uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedValue();
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
|
|
}
|
|
|
|
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
|
|
MemIntrinsic *MI, const DataLayout &DL) {
|
|
// If the mem operation is a non-constant size, we can't handle it.
|
|
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (!SizeCst)
|
|
return -1;
|
|
uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
|
|
|
|
// If this is memset, we just need to see if the offset is valid in the size
|
|
// of the memset..
|
|
if (const auto *memset_inst = dyn_cast<MemSetInst>(MI)) {
|
|
if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
|
|
auto *CI = dyn_cast<ConstantInt>(memset_inst->getValue());
|
|
if (!CI || !CI->isZero())
|
|
return -1;
|
|
}
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
}
|
|
|
|
// If we have a memcpy/memmove, the only case we can handle is if this is a
|
|
// copy from constant memory. In that case, we can read directly from the
|
|
// constant memory.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(MI);
|
|
|
|
Constant *Src = dyn_cast<Constant>(MTI->getSource());
|
|
if (!Src)
|
|
return -1;
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
|
|
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
|
|
return -1;
|
|
|
|
// See if the access is within the bounds of the transfer.
|
|
int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
if (Offset == -1)
|
|
return Offset;
|
|
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
|
|
if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
|
|
return Offset;
|
|
return -1;
|
|
}
|
|
|
|
static Value *getStoreValueForLoadHelper(Value *SrcVal, unsigned Offset,
|
|
Type *LoadTy, IRBuilderBase &Builder,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = SrcVal->getType()->getContext();
|
|
|
|
// If two pointers are in the same address space, they have the same size,
|
|
// so we don't need to do any truncation, etc. This avoids introducing
|
|
// ptrtoint instructions for pointers that may be non-integral.
|
|
if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
|
|
cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
|
|
cast<PointerType>(LoadTy)->getAddressSpace()) {
|
|
return SrcVal;
|
|
}
|
|
|
|
// Return scalable values directly to avoid needing to bitcast to integer
|
|
// types, as we do not support non-zero Offsets.
|
|
if (isa<ScalableVectorType>(LoadTy)) {
|
|
assert(Offset == 0 && "Expected a zero offset for scalable types");
|
|
return SrcVal;
|
|
}
|
|
|
|
// For the case of a scalable vector being forwarded to a fixed-sized load,
|
|
// only equal element types are allowed and a @llvm.vector.extract will be
|
|
// used instead of bitcasts.
|
|
if (isa<ScalableVectorType>(SrcVal->getType()) &&
|
|
isa<FixedVectorType>(LoadTy)) {
|
|
assert(Offset == 0 &&
|
|
SrcVal->getType()->getScalarType() == LoadTy->getScalarType());
|
|
return SrcVal;
|
|
}
|
|
|
|
uint64_t StoreSize =
|
|
(DL.getTypeSizeInBits(SrcVal->getType()).getFixedValue() + 7) / 8;
|
|
uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedValue() + 7) / 8;
|
|
// Compute which bits of the stored value are being used by the load. Convert
|
|
// to an integer type to start with.
|
|
if (SrcVal->getType()->isPtrOrPtrVectorTy())
|
|
SrcVal =
|
|
Builder.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
|
|
if (!SrcVal->getType()->isIntegerTy())
|
|
SrcVal =
|
|
Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
|
|
|
|
// Shift the bits to the least significant depending on endianness.
|
|
unsigned ShiftAmt;
|
|
if (DL.isLittleEndian())
|
|
ShiftAmt = Offset * 8;
|
|
else
|
|
ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
|
|
if (ShiftAmt)
|
|
SrcVal = Builder.CreateLShr(SrcVal,
|
|
ConstantInt::get(SrcVal->getType(), ShiftAmt));
|
|
|
|
if (LoadSize != StoreSize)
|
|
SrcVal = Builder.CreateTruncOrBitCast(SrcVal,
|
|
IntegerType::get(Ctx, LoadSize * 8));
|
|
return SrcVal;
|
|
}
|
|
|
|
Value *getValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
|
|
Instruction *InsertPt, Function *F) {
|
|
const DataLayout &DL = F->getDataLayout();
|
|
#ifndef NDEBUG
|
|
TypeSize MinSrcValSize = DL.getTypeStoreSize(SrcVal->getType());
|
|
TypeSize LoadSize = DL.getTypeStoreSize(LoadTy);
|
|
if (MinSrcValSize.isScalable() && !LoadSize.isScalable())
|
|
MinSrcValSize =
|
|
TypeSize::getFixed(MinSrcValSize.getKnownMinValue() *
|
|
F->getAttributes().getFnAttrs().getVScaleRangeMin());
|
|
assert((MinSrcValSize.isScalable() || Offset + LoadSize <= MinSrcValSize) &&
|
|
"Expected Offset + LoadSize <= SrcValSize");
|
|
assert((!MinSrcValSize.isScalable() ||
|
|
(Offset == 0 && TypeSize::isKnownLE(LoadSize, MinSrcValSize))) &&
|
|
"Expected offset of zero and LoadSize <= SrcValSize");
|
|
#endif
|
|
IRBuilder<> Builder(InsertPt);
|
|
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
|
|
return coerceAvailableValueToLoadType(SrcVal, LoadTy, Builder, F);
|
|
}
|
|
|
|
Constant *getConstantValueForLoad(Constant *SrcVal, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
#ifndef NDEBUG
|
|
unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType()).getFixedValue();
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedValue();
|
|
assert(Offset + LoadSize <= SrcValSize);
|
|
#endif
|
|
return ConstantFoldLoadFromConst(SrcVal, LoadTy, APInt(32, Offset), DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering mem intrinsic.
|
|
Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, Instruction *InsertPt,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = LoadTy->getContext();
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
|
|
IRBuilder<> Builder(InsertPt);
|
|
|
|
// We know that this method is only called when the mem transfer fully
|
|
// provides the bits for the load.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
|
|
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
|
|
// independently of what the offset is.
|
|
Value *Val = MSI->getValue();
|
|
if (LoadSize != 1)
|
|
Val =
|
|
Builder.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
|
|
Value *OneElt = Val;
|
|
|
|
// Splat the value out to the right number of bits.
|
|
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
|
|
// If we can double the number of bytes set, do it.
|
|
if (NumBytesSet * 2 <= LoadSize) {
|
|
Value *ShVal = Builder.CreateShl(
|
|
Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
|
|
Val = Builder.CreateOr(Val, ShVal);
|
|
NumBytesSet <<= 1;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise insert one byte at a time.
|
|
Value *ShVal =
|
|
Builder.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
|
|
Val = Builder.CreateOr(OneElt, ShVal);
|
|
++NumBytesSet;
|
|
}
|
|
|
|
return coerceAvailableValueToLoadType(Val, LoadTy, Builder,
|
|
InsertPt->getFunction());
|
|
}
|
|
|
|
// Otherwise, this is a memcpy/memmove from a constant global.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
|
|
Constant *Src = cast<Constant>(MTI->getSource());
|
|
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
|
|
return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
|
|
DL);
|
|
}
|
|
|
|
Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
LLVMContext &Ctx = LoadTy->getContext();
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedValue() / 8;
|
|
|
|
// We know that this method is only called when the mem transfer fully
|
|
// provides the bits for the load.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
|
|
auto *Val = dyn_cast<ConstantInt>(MSI->getValue());
|
|
if (!Val)
|
|
return nullptr;
|
|
|
|
Val = ConstantInt::get(Ctx, APInt::getSplat(LoadSize * 8, Val->getValue()));
|
|
return ConstantFoldLoadFromConst(Val, LoadTy, DL);
|
|
}
|
|
|
|
// Otherwise, this is a memcpy/memmove from a constant global.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
|
|
Constant *Src = cast<Constant>(MTI->getSource());
|
|
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
|
|
return ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset),
|
|
DL);
|
|
}
|
|
} // namespace VNCoercion
|
|
} // namespace llvm
|