Sean Callanan bf4b7be68e Removed the == and != operators from ArchSpec, since
equality can be strict or loose and we want code to
explicitly choose one or the other.

Also renamed the Compare function to IsEqualTo, to
avoid confusion.

<rdar://problem/12856749>

llvm-svn: 170152
2012-12-13 22:07:14 +00:00

3822 lines
199 KiB
C++

//===-- ObjectFileMachO.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/MachO.h"
#include "ObjectFileMachO.h"
#include "lldb/lldb-private-log.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/DataBuffer.h"
#include "lldb/Core/FileSpecList.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/RangeMap.h"
#include "lldb/Core/Section.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Core/Timer.h"
#include "lldb/Core/UUID.h"
#include "lldb/Host/Host.h"
#include "lldb/Host/FileSpec.h"
#include "lldb/Symbol/ClangNamespaceDecl.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Target/Platform.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_arm.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_i386.h"
#include "Plugins/Process/Utility/RegisterContextDarwin_x86_64.h"
using namespace lldb;
using namespace lldb_private;
using namespace llvm::MachO;
class RegisterContextDarwin_x86_64_Mach : public RegisterContextDarwin_x86_64
{
public:
RegisterContextDarwin_x86_64_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_x86_64 (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
bool done = false;
while (!done)
{
int flavor = data.GetU32 (&offset);
if (flavor == 0)
done = true;
else
{
uint32_t i;
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (i=0; i<count; ++i)
(&gpr.rax)[i] = data.GetU64(&offset);
SetError (GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU64(&offset);
SetError (EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the the above
// falvors...
break;
default:
done = true;
break;
}
}
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
};
class RegisterContextDarwin_i386_Mach : public RegisterContextDarwin_i386
{
public:
RegisterContextDarwin_i386_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_i386 (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
bool done = false;
while (!done)
{
int flavor = data.GetU32 (&offset);
if (flavor == 0)
done = true;
else
{
uint32_t i;
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (i=0; i<count; ++i)
(&gpr.eax)[i] = data.GetU32(&offset);
SetError (GPRRegSet, Read, 0);
done = true;
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
done = true;
break;
case EXCRegSet:
exc.trapno = data.GetU32(&offset);
exc.err = data.GetU32(&offset);
exc.faultvaddr = data.GetU32(&offset);
SetError (EXCRegSet, Read, 0);
done = true;
break;
case 7:
case 8:
case 9:
// fancy flavors that encapsulate of the the above
// falvors...
break;
default:
done = true;
break;
}
}
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
};
class RegisterContextDarwin_arm_Mach : public RegisterContextDarwin_arm
{
public:
RegisterContextDarwin_arm_Mach (lldb_private::Thread &thread, const DataExtractor &data) :
RegisterContextDarwin_arm (thread, 0)
{
SetRegisterDataFrom_LC_THREAD (data);
}
virtual void
InvalidateAllRegisters ()
{
// Do nothing... registers are always valid...
}
void
SetRegisterDataFrom_LC_THREAD (const DataExtractor &data)
{
uint32_t offset = 0;
SetError (GPRRegSet, Read, -1);
SetError (FPURegSet, Read, -1);
SetError (EXCRegSet, Read, -1);
int flavor = data.GetU32 (&offset);
uint32_t count = data.GetU32 (&offset);
switch (flavor)
{
case GPRRegSet:
for (uint32_t i=0; i<count; ++i)
gpr.r[i] = data.GetU32(&offset);
SetError (GPRRegSet, Read, 0);
break;
case FPURegSet:
// TODO: fill in FPU regs....
//SetError (FPURegSet, Read, -1);
break;
case EXCRegSet:
exc.exception = data.GetU32(&offset);
exc.fsr = data.GetU32(&offset);
exc.far = data.GetU32(&offset);
SetError (EXCRegSet, Read, 0);
break;
}
}
protected:
virtual int
DoReadGPR (lldb::tid_t tid, int flavor, GPR &gpr)
{
return 0;
}
virtual int
DoReadFPU (lldb::tid_t tid, int flavor, FPU &fpu)
{
return 0;
}
virtual int
DoReadEXC (lldb::tid_t tid, int flavor, EXC &exc)
{
return 0;
}
virtual int
DoReadDBG (lldb::tid_t tid, int flavor, DBG &dbg)
{
return -1;
}
virtual int
DoWriteGPR (lldb::tid_t tid, int flavor, const GPR &gpr)
{
return 0;
}
virtual int
DoWriteFPU (lldb::tid_t tid, int flavor, const FPU &fpu)
{
return 0;
}
virtual int
DoWriteEXC (lldb::tid_t tid, int flavor, const EXC &exc)
{
return 0;
}
virtual int
DoWriteDBG (lldb::tid_t tid, int flavor, const DBG &dbg)
{
return -1;
}
};
#define MACHO_NLIST_ARM_SYMBOL_IS_THUMB 0x0008
void
ObjectFileMachO::Initialize()
{
PluginManager::RegisterPlugin (GetPluginNameStatic(),
GetPluginDescriptionStatic(),
CreateInstance,
CreateMemoryInstance);
}
void
ObjectFileMachO::Terminate()
{
PluginManager::UnregisterPlugin (CreateInstance);
}
const char *
ObjectFileMachO::GetPluginNameStatic()
{
return "object-file.mach-o";
}
const char *
ObjectFileMachO::GetPluginDescriptionStatic()
{
return "Mach-o object file reader (32 and 64 bit)";
}
ObjectFile *
ObjectFileMachO::CreateInstance (const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length)
{
if (ObjectFileMachO::MagicBytesMatch(data_sp, offset, length))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, file, offset, length));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
ObjectFile *
ObjectFileMachO::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
DataBufferSP& data_sp,
const ProcessSP &process_sp,
lldb::addr_t header_addr)
{
if (ObjectFileMachO::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
{
std::auto_ptr<ObjectFile> objfile_ap(new ObjectFileMachO (module_sp, data_sp, process_sp, header_addr));
if (objfile_ap.get() && objfile_ap->ParseHeader())
return objfile_ap.release();
}
return NULL;
}
const ConstString &
ObjectFileMachO::GetSegmentNameTEXT()
{
static ConstString g_segment_name_TEXT ("__TEXT");
return g_segment_name_TEXT;
}
const ConstString &
ObjectFileMachO::GetSegmentNameDATA()
{
static ConstString g_segment_name_DATA ("__DATA");
return g_segment_name_DATA;
}
const ConstString &
ObjectFileMachO::GetSegmentNameOBJC()
{
static ConstString g_segment_name_OBJC ("__OBJC");
return g_segment_name_OBJC;
}
const ConstString &
ObjectFileMachO::GetSegmentNameLINKEDIT()
{
static ConstString g_section_name_LINKEDIT ("__LINKEDIT");
return g_section_name_LINKEDIT;
}
const ConstString &
ObjectFileMachO::GetSectionNameEHFrame()
{
static ConstString g_section_name_eh_frame ("__eh_frame");
return g_section_name_eh_frame;
}
static uint32_t
MachHeaderSizeFromMagic(uint32_t magic)
{
switch (magic)
{
case HeaderMagic32:
case HeaderMagic32Swapped:
return sizeof(struct mach_header);
case HeaderMagic64:
case HeaderMagic64Swapped:
return sizeof(struct mach_header_64);
break;
default:
break;
}
return 0;
}
bool
ObjectFileMachO::MagicBytesMatch (DataBufferSP& data_sp,
lldb::addr_t data_offset,
lldb::addr_t data_length)
{
DataExtractor data;
data.SetData (data_sp, data_offset, data_length);
uint32_t offset = 0;
uint32_t magic = data.GetU32(&offset);
return MachHeaderSizeFromMagic(magic) != 0;
}
ObjectFileMachO::ObjectFileMachO(const lldb::ModuleSP &module_sp, DataBufferSP& data_sp, const FileSpec* file, addr_t offset, addr_t length) :
ObjectFile(module_sp, file, offset, length, data_sp),
m_sections_ap(),
m_symtab_ap(),
m_mach_segments(),
m_mach_sections(),
m_entry_point_address(),
m_thread_context_offsets(),
m_thread_context_offsets_valid(false)
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::ObjectFileMachO (const lldb::ModuleSP &module_sp,
lldb::DataBufferSP& header_data_sp,
const lldb::ProcessSP &process_sp,
lldb::addr_t header_addr) :
ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
m_sections_ap(),
m_symtab_ap(),
m_mach_segments(),
m_mach_sections(),
m_entry_point_address(),
m_thread_context_offsets(),
m_thread_context_offsets_valid(false)
{
::memset (&m_header, 0, sizeof(m_header));
::memset (&m_dysymtab, 0, sizeof(m_dysymtab));
}
ObjectFileMachO::~ObjectFileMachO()
{
}
bool
ObjectFileMachO::ParseHeader ()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
bool can_parse = false;
uint32_t offset = 0;
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
// Leave magic in the original byte order
m_header.magic = m_data.GetU32(&offset);
switch (m_header.magic)
{
case HeaderMagic32:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64:
m_data.SetByteOrder (lldb::endian::InlHostByteOrder());
m_data.SetAddressByteSize(8);
can_parse = true;
break;
case HeaderMagic32Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(4);
can_parse = true;
break;
case HeaderMagic64Swapped:
m_data.SetByteOrder(lldb::endian::InlHostByteOrder() == eByteOrderBig ? eByteOrderLittle : eByteOrderBig);
m_data.SetAddressByteSize(8);
can_parse = true;
break;
default:
break;
}
if (can_parse)
{
m_data.GetU32(&offset, &m_header.cputype, 6);
ArchSpec mach_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
// Check if the module has a required architecture
const ArchSpec &module_arch = module_sp->GetArchitecture();
if (module_arch.IsValid() && !module_arch.IsCompatibleMatch(mach_arch))
return false;
if (SetModulesArchitecture (mach_arch))
{
const size_t header_and_lc_size = m_header.sizeofcmds + MachHeaderSizeFromMagic(m_header.magic);
if (m_data.GetByteSize() < header_and_lc_size)
{
DataBufferSP data_sp;
ProcessSP process_sp (m_process_wp.lock());
if (process_sp)
{
data_sp = ReadMemory (process_sp, m_offset, header_and_lc_size);
}
else
{
// Read in all only the load command data from the file on disk
data_sp = m_file.ReadFileContents(m_offset, header_and_lc_size);
if (data_sp->GetByteSize() != header_and_lc_size)
return false;
}
if (data_sp)
m_data.SetData (data_sp);
}
}
return true;
}
else
{
memset(&m_header, 0, sizeof(struct mach_header));
}
}
return false;
}
ByteOrder
ObjectFileMachO::GetByteOrder () const
{
return m_data.GetByteOrder ();
}
bool
ObjectFileMachO::IsExecutable() const
{
return m_header.filetype == HeaderFileTypeExecutable;
}
size_t
ObjectFileMachO::GetAddressByteSize () const
{
return m_data.GetAddressByteSize ();
}
AddressClass
ObjectFileMachO::GetAddressClass (lldb::addr_t file_addr)
{
Symtab *symtab = GetSymtab();
if (symtab)
{
Symbol *symbol = symtab->FindSymbolContainingFileAddress(file_addr);
if (symbol)
{
if (symbol->ValueIsAddress())
{
SectionSP section_sp (symbol->GetAddress().GetSection());
if (section_sp)
{
const SectionType section_type = section_sp->GetType();
switch (section_type)
{
case eSectionTypeInvalid: return eAddressClassUnknown;
case eSectionTypeCode:
if (m_header.cputype == llvm::MachO::CPUTypeARM)
{
// For ARM we have a bit in the n_desc field of the symbol
// that tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSectionTypeContainer: return eAddressClassUnknown;
case eSectionTypeData:
case eSectionTypeDataCString:
case eSectionTypeDataCStringPointers:
case eSectionTypeDataSymbolAddress:
case eSectionTypeData4:
case eSectionTypeData8:
case eSectionTypeData16:
case eSectionTypeDataPointers:
case eSectionTypeZeroFill:
case eSectionTypeDataObjCMessageRefs:
case eSectionTypeDataObjCCFStrings:
return eAddressClassData;
case eSectionTypeDebug:
case eSectionTypeDWARFDebugAbbrev:
case eSectionTypeDWARFDebugAranges:
case eSectionTypeDWARFDebugFrame:
case eSectionTypeDWARFDebugInfo:
case eSectionTypeDWARFDebugLine:
case eSectionTypeDWARFDebugLoc:
case eSectionTypeDWARFDebugMacInfo:
case eSectionTypeDWARFDebugPubNames:
case eSectionTypeDWARFDebugPubTypes:
case eSectionTypeDWARFDebugRanges:
case eSectionTypeDWARFDebugStr:
case eSectionTypeDWARFAppleNames:
case eSectionTypeDWARFAppleTypes:
case eSectionTypeDWARFAppleNamespaces:
case eSectionTypeDWARFAppleObjC:
return eAddressClassDebug;
case eSectionTypeEHFrame: return eAddressClassRuntime;
case eSectionTypeOther: return eAddressClassUnknown;
}
}
}
const SymbolType symbol_type = symbol->GetType();
switch (symbol_type)
{
case eSymbolTypeAny: return eAddressClassUnknown;
case eSymbolTypeAbsolute: return eAddressClassUnknown;
case eSymbolTypeCode:
case eSymbolTypeTrampoline:
if (m_header.cputype == llvm::MachO::CPUTypeARM)
{
// For ARM we have a bit in the n_desc field of the symbol
// that tells us ARM/Thumb which is bit 0x0008.
if (symbol->GetFlags() & MACHO_NLIST_ARM_SYMBOL_IS_THUMB)
return eAddressClassCodeAlternateISA;
}
return eAddressClassCode;
case eSymbolTypeData: return eAddressClassData;
case eSymbolTypeRuntime: return eAddressClassRuntime;
case eSymbolTypeException: return eAddressClassRuntime;
case eSymbolTypeSourceFile: return eAddressClassDebug;
case eSymbolTypeHeaderFile: return eAddressClassDebug;
case eSymbolTypeObjectFile: return eAddressClassDebug;
case eSymbolTypeCommonBlock: return eAddressClassDebug;
case eSymbolTypeBlock: return eAddressClassDebug;
case eSymbolTypeLocal: return eAddressClassData;
case eSymbolTypeParam: return eAddressClassData;
case eSymbolTypeVariable: return eAddressClassData;
case eSymbolTypeVariableType: return eAddressClassDebug;
case eSymbolTypeLineEntry: return eAddressClassDebug;
case eSymbolTypeLineHeader: return eAddressClassDebug;
case eSymbolTypeScopeBegin: return eAddressClassDebug;
case eSymbolTypeScopeEnd: return eAddressClassDebug;
case eSymbolTypeAdditional: return eAddressClassUnknown;
case eSymbolTypeCompiler: return eAddressClassDebug;
case eSymbolTypeInstrumentation:return eAddressClassDebug;
case eSymbolTypeUndefined: return eAddressClassUnknown;
case eSymbolTypeObjCClass: return eAddressClassRuntime;
case eSymbolTypeObjCMetaClass: return eAddressClassRuntime;
case eSymbolTypeObjCIVar: return eAddressClassRuntime;
}
}
}
return eAddressClassUnknown;
}
Symtab *
ObjectFileMachO::GetSymtab()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (m_symtab_ap.get() == NULL)
{
m_symtab_ap.reset(new Symtab(this));
Mutex::Locker symtab_locker (m_symtab_ap->GetMutex());
ParseSymtab (true);
m_symtab_ap->Finalize ();
}
}
return m_symtab_ap.get();
}
SectionList *
ObjectFileMachO::GetSectionList()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (m_sections_ap.get() == NULL)
{
m_sections_ap.reset(new SectionList());
ParseSections();
}
}
return m_sections_ap.get();
}
size_t
ObjectFileMachO::ParseSections ()
{
lldb::user_id_t segID = 0;
lldb::user_id_t sectID = 0;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
const bool is_core = GetType() == eTypeCoreFile;
//bool dump_sections = false;
ModuleSP module_sp (GetModule());
// First look up any LC_ENCRYPTION_INFO load commands
typedef RangeArray<uint32_t, uint32_t, 8> EncryptedFileRanges;
EncryptedFileRanges encrypted_file_ranges;
encryption_info_command encryption_cmd;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &encryption_cmd, 2) == NULL)
break;
if (encryption_cmd.cmd == LoadCommandEncryptionInfo)
{
if (m_data.GetU32(&offset, &encryption_cmd.cryptoff, 3))
{
if (encryption_cmd.cryptid != 0)
{
EncryptedFileRanges::Entry entry;
entry.SetRangeBase(encryption_cmd.cryptoff);
entry.SetByteSize(encryption_cmd.cryptsize);
encrypted_file_ranges.Append(entry);
}
}
}
offset = load_cmd_offset + encryption_cmd.cmdsize;
}
offset = MachHeaderSizeFromMagic(m_header.magic);
struct segment_command_64 load_cmd;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t load_cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandSegment32 || load_cmd.cmd == LoadCommandSegment64)
{
if (m_data.GetU8(&offset, (uint8_t*)load_cmd.segname, 16))
{
load_cmd.vmaddr = m_data.GetAddress(&offset);
load_cmd.vmsize = m_data.GetAddress(&offset);
load_cmd.fileoff = m_data.GetAddress(&offset);
load_cmd.filesize = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &load_cmd.maxprot, 4))
{
const bool segment_is_encrypted = (load_cmd.flags & SegmentCommandFlagBitProtectedVersion1) != 0;
// Keep a list of mach segments around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_segments.push_back (load_cmd);
ConstString segment_name (load_cmd.segname, std::min<int>(strlen(load_cmd.segname), sizeof(load_cmd.segname)));
// Use a segment ID of the segment index shifted left by 8 so they
// never conflict with any of the sections.
SectionSP segment_sp;
if (segment_name || is_core)
{
segment_sp.reset(new Section (module_sp, // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
load_cmd.vmaddr, // File VM address == addresses as they are found in the object file
load_cmd.vmsize, // VM size in bytes of this section
load_cmd.fileoff, // Offset to the data for this section in the file
load_cmd.filesize, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsEncrypted (segment_is_encrypted);
m_sections_ap->AddSection(segment_sp);
}
struct section_64 sect64;
::memset (&sect64, 0, sizeof(sect64));
// Push a section into our mach sections for the section at
// index zero (NListSectionNoSection) if we don't have any
// mach sections yet...
if (m_mach_sections.empty())
m_mach_sections.push_back(sect64);
uint32_t segment_sect_idx;
const lldb::user_id_t first_segment_sectID = sectID + 1;
const uint32_t num_u32s = load_cmd.cmd == LoadCommandSegment32 ? 7 : 8;
for (segment_sect_idx=0; segment_sect_idx<load_cmd.nsects; ++segment_sect_idx)
{
if (m_data.GetU8(&offset, (uint8_t*)sect64.sectname, sizeof(sect64.sectname)) == NULL)
break;
if (m_data.GetU8(&offset, (uint8_t*)sect64.segname, sizeof(sect64.segname)) == NULL)
break;
sect64.addr = m_data.GetAddress(&offset);
sect64.size = m_data.GetAddress(&offset);
if (m_data.GetU32(&offset, &sect64.offset, num_u32s) == NULL)
break;
// Keep a list of mach sections around in case we need to
// get at data that isn't stored in the abstracted Sections.
m_mach_sections.push_back (sect64);
ConstString section_name (sect64.sectname, std::min<size_t>(strlen(sect64.sectname), sizeof(sect64.sectname)));
if (!segment_name)
{
// We have a segment with no name so we need to conjure up
// segments that correspond to the section's segname if there
// isn't already such a section. If there is such a section,
// we resize the section so that it spans all sections.
// We also mark these sections as fake so address matches don't
// hit if they land in the gaps between the child sections.
segment_name.SetTrimmedCStringWithLength(sect64.segname, sizeof(sect64.segname));
segment_sp = m_sections_ap->FindSectionByName (segment_name);
if (segment_sp.get())
{
Section *segment = segment_sp.get();
// Grow the section size as needed.
const lldb::addr_t sect64_min_addr = sect64.addr;
const lldb::addr_t sect64_max_addr = sect64_min_addr + sect64.size;
const lldb::addr_t curr_seg_byte_size = segment->GetByteSize();
const lldb::addr_t curr_seg_min_addr = segment->GetFileAddress();
const lldb::addr_t curr_seg_max_addr = curr_seg_min_addr + curr_seg_byte_size;
if (sect64_min_addr >= curr_seg_min_addr)
{
const lldb::addr_t new_seg_byte_size = sect64_max_addr - curr_seg_min_addr;
// Only grow the section size if needed
if (new_seg_byte_size > curr_seg_byte_size)
segment->SetByteSize (new_seg_byte_size);
}
else
{
// We need to change the base address of the segment and
// adjust the child section offsets for all existing children.
const lldb::addr_t slide_amount = sect64_min_addr - curr_seg_min_addr;
segment->Slide(slide_amount, false);
segment->GetChildren().Slide(-slide_amount, false);
segment->SetByteSize (curr_seg_max_addr - sect64_min_addr);
}
// Grow the section size as needed.
if (sect64.offset)
{
const lldb::addr_t segment_min_file_offset = segment->GetFileOffset();
const lldb::addr_t segment_max_file_offset = segment_min_file_offset + segment->GetFileSize();
const lldb::addr_t section_min_file_offset = sect64.offset;
const lldb::addr_t section_max_file_offset = section_min_file_offset + sect64.size;
const lldb::addr_t new_file_offset = std::min (section_min_file_offset, segment_min_file_offset);
const lldb::addr_t new_file_size = std::max (section_max_file_offset, segment_max_file_offset) - new_file_offset;
segment->SetFileOffset (new_file_offset);
segment->SetFileSize (new_file_size);
}
}
else
{
// Create a fake section for the section's named segment
segment_sp.reset(new Section (segment_sp, // Parent section
module_sp, // Module to which this section belongs
++segID << 8, // Section ID is the 1 based segment index shifted right by 8 bits as not to collide with any of the 256 section IDs that are possible
segment_name, // Name of this section
eSectionTypeContainer, // This section is a container of other sections.
sect64.addr, // File VM address == addresses as they are found in the object file
sect64.size, // VM size in bytes of this section
sect64.offset, // Offset to the data for this section in the file
sect64.offset ? sect64.size : 0, // Size in bytes of this section as found in the the file
load_cmd.flags)); // Flags for this section
segment_sp->SetIsFake(true);
m_sections_ap->AddSection(segment_sp);
segment_sp->SetIsEncrypted (segment_is_encrypted);
}
}
assert (segment_sp.get());
uint32_t mach_sect_type = sect64.flags & SectionFlagMaskSectionType;
static ConstString g_sect_name_objc_data ("__objc_data");
static ConstString g_sect_name_objc_msgrefs ("__objc_msgrefs");
static ConstString g_sect_name_objc_selrefs ("__objc_selrefs");
static ConstString g_sect_name_objc_classrefs ("__objc_classrefs");
static ConstString g_sect_name_objc_superrefs ("__objc_superrefs");
static ConstString g_sect_name_objc_const ("__objc_const");
static ConstString g_sect_name_objc_classlist ("__objc_classlist");
static ConstString g_sect_name_cfstring ("__cfstring");
static ConstString g_sect_name_dwarf_debug_abbrev ("__debug_abbrev");
static ConstString g_sect_name_dwarf_debug_aranges ("__debug_aranges");
static ConstString g_sect_name_dwarf_debug_frame ("__debug_frame");
static ConstString g_sect_name_dwarf_debug_info ("__debug_info");
static ConstString g_sect_name_dwarf_debug_line ("__debug_line");
static ConstString g_sect_name_dwarf_debug_loc ("__debug_loc");
static ConstString g_sect_name_dwarf_debug_macinfo ("__debug_macinfo");
static ConstString g_sect_name_dwarf_debug_pubnames ("__debug_pubnames");
static ConstString g_sect_name_dwarf_debug_pubtypes ("__debug_pubtypes");
static ConstString g_sect_name_dwarf_debug_ranges ("__debug_ranges");
static ConstString g_sect_name_dwarf_debug_str ("__debug_str");
static ConstString g_sect_name_dwarf_apple_names ("__apple_names");
static ConstString g_sect_name_dwarf_apple_types ("__apple_types");
static ConstString g_sect_name_dwarf_apple_namespaces ("__apple_namespac");
static ConstString g_sect_name_dwarf_apple_objc ("__apple_objc");
static ConstString g_sect_name_eh_frame ("__eh_frame");
static ConstString g_sect_name_DATA ("__DATA");
static ConstString g_sect_name_TEXT ("__TEXT");
SectionType sect_type = eSectionTypeOther;
if (section_name == g_sect_name_dwarf_debug_abbrev)
sect_type = eSectionTypeDWARFDebugAbbrev;
else if (section_name == g_sect_name_dwarf_debug_aranges)
sect_type = eSectionTypeDWARFDebugAranges;
else if (section_name == g_sect_name_dwarf_debug_frame)
sect_type = eSectionTypeDWARFDebugFrame;
else if (section_name == g_sect_name_dwarf_debug_info)
sect_type = eSectionTypeDWARFDebugInfo;
else if (section_name == g_sect_name_dwarf_debug_line)
sect_type = eSectionTypeDWARFDebugLine;
else if (section_name == g_sect_name_dwarf_debug_loc)
sect_type = eSectionTypeDWARFDebugLoc;
else if (section_name == g_sect_name_dwarf_debug_macinfo)
sect_type = eSectionTypeDWARFDebugMacInfo;
else if (section_name == g_sect_name_dwarf_debug_pubnames)
sect_type = eSectionTypeDWARFDebugPubNames;
else if (section_name == g_sect_name_dwarf_debug_pubtypes)
sect_type = eSectionTypeDWARFDebugPubTypes;
else if (section_name == g_sect_name_dwarf_debug_ranges)
sect_type = eSectionTypeDWARFDebugRanges;
else if (section_name == g_sect_name_dwarf_debug_str)
sect_type = eSectionTypeDWARFDebugStr;
else if (section_name == g_sect_name_dwarf_apple_names)
sect_type = eSectionTypeDWARFAppleNames;
else if (section_name == g_sect_name_dwarf_apple_types)
sect_type = eSectionTypeDWARFAppleTypes;
else if (section_name == g_sect_name_dwarf_apple_namespaces)
sect_type = eSectionTypeDWARFAppleNamespaces;
else if (section_name == g_sect_name_dwarf_apple_objc)
sect_type = eSectionTypeDWARFAppleObjC;
else if (section_name == g_sect_name_objc_selrefs)
sect_type = eSectionTypeDataCStringPointers;
else if (section_name == g_sect_name_objc_msgrefs)
sect_type = eSectionTypeDataObjCMessageRefs;
else if (section_name == g_sect_name_eh_frame)
sect_type = eSectionTypeEHFrame;
else if (section_name == g_sect_name_cfstring)
sect_type = eSectionTypeDataObjCCFStrings;
else if (section_name == g_sect_name_objc_data ||
section_name == g_sect_name_objc_classrefs ||
section_name == g_sect_name_objc_superrefs ||
section_name == g_sect_name_objc_const ||
section_name == g_sect_name_objc_classlist)
{
sect_type = eSectionTypeDataPointers;
}
if (sect_type == eSectionTypeOther)
{
switch (mach_sect_type)
{
// TODO: categorize sections by other flags for regular sections
case SectionTypeRegular:
if (segment_sp->GetName() == g_sect_name_TEXT)
sect_type = eSectionTypeCode;
else if (segment_sp->GetName() == g_sect_name_DATA)
sect_type = eSectionTypeData;
else
sect_type = eSectionTypeOther;
break;
case SectionTypeZeroFill: sect_type = eSectionTypeZeroFill; break;
case SectionTypeCStringLiterals: sect_type = eSectionTypeDataCString; break; // section with only literal C strings
case SectionType4ByteLiterals: sect_type = eSectionTypeData4; break; // section with only 4 byte literals
case SectionType8ByteLiterals: sect_type = eSectionTypeData8; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: sect_type = eSectionTypeDataPointers; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: sect_type = eSectionTypeDataPointers; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: sect_type = eSectionTypeCode; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: sect_type = eSectionTypeDataPointers; break; // section with only function pointers for termination
case SectionTypeCoalesced: sect_type = eSectionTypeOther; break;
case SectionTypeZeroFillLarge: sect_type = eSectionTypeZeroFill; break;
case SectionTypeInterposing: sect_type = eSectionTypeCode; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: sect_type = eSectionTypeData16; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: sect_type = eSectionTypeDebug; break;
case SectionTypeLazyDylibSymbolPointers: sect_type = eSectionTypeDataPointers; break;
default: break;
}
}
SectionSP section_sp(new Section (segment_sp,
module_sp,
++sectID,
section_name,
sect_type,
sect64.addr - segment_sp->GetFileAddress(),
sect64.size,
sect64.offset,
sect64.offset == 0 ? 0 : sect64.size,
sect64.flags));
// Set the section to be encrypted to match the segment
bool section_is_encrypted = false;
if (!segment_is_encrypted && load_cmd.filesize != 0)
section_is_encrypted = encrypted_file_ranges.FindEntryThatContains(sect64.offset) != NULL;
section_sp->SetIsEncrypted (segment_is_encrypted || section_is_encrypted);
segment_sp->GetChildren().AddSection(section_sp);
if (segment_sp->IsFake())
{
segment_sp.reset();
segment_name.Clear();
}
}
if (segment_sp && m_header.filetype == HeaderFileTypeDSYM)
{
if (first_segment_sectID <= sectID)
{
lldb::user_id_t sect_uid;
for (sect_uid = first_segment_sectID; sect_uid <= sectID; ++sect_uid)
{
SectionSP curr_section_sp(segment_sp->GetChildren().FindSectionByID (sect_uid));
SectionSP next_section_sp;
if (sect_uid + 1 <= sectID)
next_section_sp = segment_sp->GetChildren().FindSectionByID (sect_uid+1);
if (curr_section_sp.get())
{
if (curr_section_sp->GetByteSize() == 0)
{
if (next_section_sp.get() != NULL)
curr_section_sp->SetByteSize ( next_section_sp->GetFileAddress() - curr_section_sp->GetFileAddress() );
else
curr_section_sp->SetByteSize ( load_cmd.vmsize );
}
}
}
}
}
}
}
}
else if (load_cmd.cmd == LoadCommandDynamicSymtabInfo)
{
m_dysymtab.cmd = load_cmd.cmd;
m_dysymtab.cmdsize = load_cmd.cmdsize;
m_data.GetU32 (&offset, &m_dysymtab.ilocalsym, (sizeof(m_dysymtab) / sizeof(uint32_t)) - 2);
}
offset = load_cmd_offset + load_cmd.cmdsize;
}
// if (dump_sections)
// {
// StreamFile s(stdout);
// m_sections_ap->Dump(&s, true);
// }
return sectID; // Return the number of sections we registered with the module
}
class MachSymtabSectionInfo
{
public:
MachSymtabSectionInfo (SectionList *section_list) :
m_section_list (section_list),
m_section_infos()
{
// Get the number of sections down to a depth of 1 to include
// all segments and their sections, but no other sections that
// may be added for debug map or
m_section_infos.resize(section_list->GetNumSections(1));
}
SectionSP
GetSection (uint8_t n_sect, addr_t file_addr)
{
if (n_sect == 0)
return SectionSP();
if (n_sect < m_section_infos.size())
{
if (!m_section_infos[n_sect].section_sp)
{
SectionSP section_sp (m_section_list->FindSectionByID (n_sect));
m_section_infos[n_sect].section_sp = section_sp;
if (section_sp)
{
m_section_infos[n_sect].vm_range.SetBaseAddress (section_sp->GetFileAddress());
m_section_infos[n_sect].vm_range.SetByteSize (section_sp->GetByteSize());
}
else
{
Host::SystemLog (Host::eSystemLogError, "error: unable to find section for section %u\n", n_sect);
}
}
if (m_section_infos[n_sect].vm_range.Contains(file_addr))
{
// Symbol is in section.
return m_section_infos[n_sect].section_sp;
}
else if (m_section_infos[n_sect].vm_range.GetByteSize () == 0 &&
m_section_infos[n_sect].vm_range.GetBaseAddress() == file_addr)
{
// Symbol is in section with zero size, but has the same start
// address as the section. This can happen with linker symbols
// (symbols that start with the letter 'l' or 'L'.
return m_section_infos[n_sect].section_sp;
}
}
return m_section_list->FindSectionContainingFileAddress(file_addr);
}
protected:
struct SectionInfo
{
SectionInfo () :
vm_range(),
section_sp ()
{
}
VMRange vm_range;
SectionSP section_sp;
};
SectionList *m_section_list;
std::vector<SectionInfo> m_section_infos;
};
size_t
ObjectFileMachO::ParseSymtab (bool minimize)
{
Timer scoped_timer(__PRETTY_FUNCTION__,
"ObjectFileMachO::ParseSymtab () module = %s",
m_file.GetFilename().AsCString(""));
ModuleSP module_sp (GetModule());
if (!module_sp)
return 0;
struct symtab_command symtab_load_command = { 0, 0, 0, 0, 0, 0 };
struct linkedit_data_command function_starts_load_command = { 0, 0, 0, 0 };
typedef AddressDataArray<lldb::addr_t, bool, 100> FunctionStarts;
FunctionStarts function_starts;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
LogSP log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
// Read in the load command and load command size
struct load_command lc;
if (m_data.GetU32(&offset, &lc, 2) == NULL)
break;
// Watch for the symbol table load command
switch (lc.cmd)
{
case LoadCommandSymtab:
symtab_load_command.cmd = lc.cmd;
symtab_load_command.cmdsize = lc.cmdsize;
// Read in the rest of the symtab load command
if (m_data.GetU32(&offset, &symtab_load_command.symoff, 4) == 0) // fill in symoff, nsyms, stroff, strsize fields
return 0;
if (symtab_load_command.symoff == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.symoff == 0");
return 0;
}
if (symtab_load_command.stroff == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.stroff == 0");
return 0;
}
if (symtab_load_command.nsyms == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.nsyms == 0");
return 0;
}
if (symtab_load_command.strsize == 0)
{
if (log)
module_sp->LogMessage(log.get(), "LC_SYMTAB.strsize == 0");
return 0;
}
break;
case LoadCommandFunctionStarts:
function_starts_load_command.cmd = lc.cmd;
function_starts_load_command.cmdsize = lc.cmdsize;
if (m_data.GetU32(&offset, &function_starts_load_command.dataoff, 2) == NULL) // fill in symoff, nsyms, stroff, strsize fields
bzero (&function_starts_load_command, sizeof(function_starts_load_command));
break;
default:
break;
}
offset = cmd_offset + lc.cmdsize;
}
if (symtab_load_command.cmd)
{
Symtab *symtab = m_symtab_ap.get();
SectionList *section_list = GetSectionList();
if (section_list == NULL)
return 0;
ProcessSP process_sp (m_process_wp.lock());
Process *process = process_sp.get();
const size_t addr_byte_size = m_data.GetAddressByteSize();
bool bit_width_32 = addr_byte_size == 4;
const size_t nlist_byte_size = bit_width_32 ? sizeof(struct nlist) : sizeof(struct nlist_64);
DataExtractor nlist_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
DataExtractor strtab_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
DataExtractor function_starts_data (NULL, 0, m_data.GetByteOrder(), m_data.GetAddressByteSize());
const addr_t nlist_data_byte_size = symtab_load_command.nsyms * nlist_byte_size;
const addr_t strtab_data_byte_size = symtab_load_command.strsize;
addr_t strtab_addr = LLDB_INVALID_ADDRESS;
if (process)
{
Target &target = process->GetTarget();
SectionSP linkedit_section_sp(section_list->FindSectionByName(GetSegmentNameLINKEDIT()));
// Reading mach file from memory in a process or core file...
if (linkedit_section_sp)
{
const addr_t linkedit_load_addr = linkedit_section_sp->GetLoadBaseAddress(&target);
const addr_t linkedit_file_offset = linkedit_section_sp->GetFileOffset();
const addr_t symoff_addr = linkedit_load_addr + symtab_load_command.symoff - linkedit_file_offset;
strtab_addr = linkedit_load_addr + symtab_load_command.stroff - linkedit_file_offset;
bool data_was_read = false;
#if defined (__APPLE__) && defined (__arm__)
if (m_header.flags & 0x80000000u)
{
// This mach-o memory file is in the dyld shared cache. If this
// program is not remote and this is iOS, then this process will
// share the same shared cache as the process we are debugging and
// we can read the entire __LINKEDIT from the address space in this
// process. This is a needed optimization that is used for local iOS
// debugging only since all shared libraries in the shared cache do
// not have corresponding files that exist in the file system of the
// device. They have been combined into a single file. This means we
// always have to load these files from memory. All of the symbol and
// string tables from all of the __LINKEDIT sections from the shared
// libraries in the shared cache have been merged into a single large
// symbol and string table. Reading all of this symbol and string table
// data across can slow down debug launch times, so we optimize this by
// reading the memory for the __LINKEDIT section from this process.
PlatformSP platform_sp (target.GetPlatform());
if (platform_sp && platform_sp->IsHost())
{
data_was_read = true;
nlist_data.SetData((void *)symoff_addr, nlist_data_byte_size, eByteOrderLittle);
strtab_data.SetData((void *)strtab_addr, strtab_data_byte_size, eByteOrderLittle);
if (function_starts_load_command.cmd)
{
const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset;
function_starts_data.SetData ((void *)func_start_addr, function_starts_load_command.datasize, eByteOrderLittle);
}
}
}
#endif
if (!data_was_read)
{
DataBufferSP nlist_data_sp (ReadMemory (process_sp, symoff_addr, nlist_data_byte_size));
if (nlist_data_sp)
nlist_data.SetData (nlist_data_sp, 0, nlist_data_sp->GetByteSize());
//DataBufferSP strtab_data_sp (ReadMemory (process_sp, strtab_addr, strtab_data_byte_size));
//if (strtab_data_sp)
// strtab_data.SetData (strtab_data_sp, 0, strtab_data_sp->GetByteSize());
if (function_starts_load_command.cmd)
{
const addr_t func_start_addr = linkedit_load_addr + function_starts_load_command.dataoff - linkedit_file_offset;
DataBufferSP func_start_data_sp (ReadMemory (process_sp, func_start_addr, function_starts_load_command.datasize));
if (func_start_data_sp)
function_starts_data.SetData (func_start_data_sp, 0, func_start_data_sp->GetByteSize());
}
}
}
}
else
{
nlist_data.SetData (m_data,
symtab_load_command.symoff,
nlist_data_byte_size);
strtab_data.SetData (m_data,
symtab_load_command.stroff,
strtab_data_byte_size);
if (function_starts_load_command.cmd)
{
function_starts_data.SetData (m_data,
function_starts_load_command.dataoff,
function_starts_load_command.datasize);
}
}
if (nlist_data.GetByteSize() == 0)
{
if (log)
module_sp->LogMessage(log.get(), "failed to read nlist data");
return 0;
}
const bool have_strtab_data = strtab_data.GetByteSize() > 0;
if (!have_strtab_data)
{
if (process)
{
if (strtab_addr == LLDB_INVALID_ADDRESS)
{
if (log)
module_sp->LogMessage(log.get(), "failed to locate the strtab in memory");
return 0;
}
}
else
{
if (log)
module_sp->LogMessage(log.get(), "failed to read strtab data");
return 0;
}
}
const ConstString &g_segment_name_TEXT = GetSegmentNameTEXT();
const ConstString &g_segment_name_DATA = GetSegmentNameDATA();
const ConstString &g_segment_name_OBJC = GetSegmentNameOBJC();
const ConstString &g_section_name_eh_frame = GetSectionNameEHFrame();
SectionSP text_section_sp(section_list->FindSectionByName(g_segment_name_TEXT));
SectionSP data_section_sp(section_list->FindSectionByName(g_segment_name_DATA));
SectionSP objc_section_sp(section_list->FindSectionByName(g_segment_name_OBJC));
SectionSP eh_frame_section_sp;
if (text_section_sp.get())
eh_frame_section_sp = text_section_sp->GetChildren().FindSectionByName (g_section_name_eh_frame);
else
eh_frame_section_sp = section_list->FindSectionByName (g_section_name_eh_frame);
const bool is_arm = (m_header.cputype == llvm::MachO::CPUTypeARM);
if (text_section_sp && function_starts_data.GetByteSize())
{
FunctionStarts::Entry function_start_entry;
function_start_entry.data = false;
uint32_t function_start_offset = 0;
function_start_entry.addr = text_section_sp->GetFileAddress();
uint64_t delta;
while ((delta = function_starts_data.GetULEB128(&function_start_offset)) > 0)
{
// Now append the current entry
function_start_entry.addr += delta;
function_starts.Append(function_start_entry);
}
}
const uint32_t function_starts_count = function_starts.GetSize();
uint8_t TEXT_eh_frame_sectID = eh_frame_section_sp.get() ? eh_frame_section_sp->GetID() : NListSectionNoSection;
uint32_t nlist_data_offset = 0;
uint32_t N_SO_index = UINT32_MAX;
MachSymtabSectionInfo section_info (section_list);
std::vector<uint32_t> N_FUN_indexes;
std::vector<uint32_t> N_NSYM_indexes;
std::vector<uint32_t> N_INCL_indexes;
std::vector<uint32_t> N_BRAC_indexes;
std::vector<uint32_t> N_COMM_indexes;
typedef std::map <uint64_t, uint32_t> ValueToSymbolIndexMap;
typedef std::map <uint32_t, uint32_t> NListIndexToSymbolIndexMap;
ValueToSymbolIndexMap N_FUN_addr_to_sym_idx;
ValueToSymbolIndexMap N_STSYM_addr_to_sym_idx;
// Any symbols that get merged into another will get an entry
// in this map so we know
NListIndexToSymbolIndexMap m_nlist_idx_to_sym_idx;
uint32_t nlist_idx = 0;
Symbol *symbol_ptr = NULL;
uint32_t sym_idx = 0;
Symbol *sym = NULL;
uint32_t num_syms = 0;
std::string memory_symbol_name;
uint32_t unmapped_local_symbols_found = 0;
#if defined (__APPLE__) && defined (__arm__)
// Some recent builds of the dyld_shared_cache (hereafter: DSC) have been optimized by moving LOCAL
// symbols out of the memory mapped portion of the DSC. The symbol information has all been retained,
// but it isn't available in the normal nlist data. However, there *are* duplicate entries of *some*
// LOCAL symbols in the normal nlist data. To handle this situation correctly, we must first attempt
// to parse any DSC unmapped symbol information. If we find any, we set a flag that tells the normal
// nlist parser to ignore all LOCAL symbols.
if (m_header.flags & 0x80000000u)
{
// Before we can start mapping the DSC, we need to make certain the target process is actually
// using the cache we can find.
/*
* TODO (FIXME!)
*
* Consider the case of testing with a separate DSC file.
* If we go through the normal code paths, we will give symbols for the wrong DSC, and
* that is bad. We need to read the target process' all_image_infos struct, and look
* at the values of the processDetachedFromSharedRegion field. If that is set, we should skip
* this code section.
*/
// Next we need to determine the correct path for the dyld shared cache.
ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
char dsc_path[PATH_MAX];
snprintf(dsc_path, sizeof(dsc_path), "%s%s%s",
"/System/Library/Caches/com.apple.dyld/", /* IPHONE_DYLD_SHARED_CACHE_DIR */
"dyld_shared_cache_", /* DYLD_SHARED_CACHE_BASE_NAME */
header_arch.GetArchitectureName());
FileSpec dsc_filespec(dsc_path, false);
// We need definitions of two structures in the on-disk DSC, copy them here manually
struct lldb_copy_dyld_cache_header
{
char magic[16];
uint32_t mappingOffset;
uint32_t mappingCount;
uint32_t imagesOffset;
uint32_t imagesCount;
uint64_t dyldBaseAddress;
uint64_t codeSignatureOffset;
uint64_t codeSignatureSize;
uint64_t slideInfoOffset;
uint64_t slideInfoSize;
uint64_t localSymbolsOffset;
uint64_t localSymbolsSize;
};
struct lldb_copy_dyld_cache_local_symbols_info
{
uint32_t nlistOffset;
uint32_t nlistCount;
uint32_t stringsOffset;
uint32_t stringsSize;
uint32_t entriesOffset;
uint32_t entriesCount;
};
struct lldb_copy_dyld_cache_local_symbols_entry
{
uint32_t dylibOffset;
uint32_t nlistStartIndex;
uint32_t nlistCount;
};
/* The dyld_cache_header has a pointer to the dyld_cache_local_symbols_info structure (localSymbolsOffset).
The dyld_cache_local_symbols_info structure gives us three things:
1. The start and count of the nlist records in the dyld_shared_cache file
2. The start and size of the strings for these nlist records
3. The start and count of dyld_cache_local_symbols_entry entries
There is one dyld_cache_local_symbols_entry per dylib/framework in the dyld shared cache.
The "dylibOffset" field is the Mach-O header of this dylib/framework in the dyld shared cache.
The dyld_cache_local_symbols_entry also lists the start of this dylib/framework's nlist records
and the count of how many nlist records there are for this dylib/framework.
*/
// Process the dsc header to find the unmapped symbols
//
// Save some VM space, do not map the entire cache in one shot.
if (DataBufferSP dsc_data_sp = dsc_filespec.MemoryMapFileContents(0, sizeof(struct lldb_copy_dyld_cache_header)))
{
DataExtractor dsc_header_data(dsc_data_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize());
uint32_t offset = offsetof (struct lldb_copy_dyld_cache_header, mappingOffset);
uint32_t mappingOffset = dsc_header_data.GetU32(&offset);
// If the mappingOffset points to a location inside the header, we've
// opened an old dyld shared cache, and should not proceed further.
if (mappingOffset >= sizeof(struct lldb_copy_dyld_cache_header))
{
offset = offsetof (struct lldb_copy_dyld_cache_header, localSymbolsOffset);
uint64_t localSymbolsOffset = dsc_header_data.GetU64(&offset);
uint64_t localSymbolsSize = dsc_header_data.GetU64(&offset);
if (localSymbolsOffset && localSymbolsSize)
{
// Map the local symbols
if (DataBufferSP dsc_local_symbols_data_sp = dsc_filespec.MemoryMapFileContents(localSymbolsOffset, localSymbolsSize))
{
DataExtractor dsc_local_symbols_data(dsc_local_symbols_data_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize());
offset = 0;
// Read the local_symbols_infos struct in one shot
struct lldb_copy_dyld_cache_local_symbols_info local_symbols_info;
dsc_local_symbols_data.GetU32(&offset, &local_symbols_info.nlistOffset, 6);
// The local_symbols_infos offsets are offsets into local symbols memory, NOT file offsets!
// We first need to identify the local "entry" that matches the current header.
// The "entry" is stored as a file offset in the dyld_shared_cache, so we need to
// adjust the raw m_header value by slide and 0x30000000.
SectionSP text_section_sp(section_list->FindSectionByName(GetSegmentNameTEXT()));
uint32_t header_file_offset = (text_section_sp->GetFileAddress() - 0x30000000);
offset = local_symbols_info.entriesOffset;
for (uint32_t entry_index = 0; entry_index < local_symbols_info.entriesCount; entry_index++)
{
struct lldb_copy_dyld_cache_local_symbols_entry local_symbols_entry;
local_symbols_entry.dylibOffset = dsc_local_symbols_data.GetU32(&offset);
local_symbols_entry.nlistStartIndex = dsc_local_symbols_data.GetU32(&offset);
local_symbols_entry.nlistCount = dsc_local_symbols_data.GetU32(&offset);
if (header_file_offset == local_symbols_entry.dylibOffset)
{
unmapped_local_symbols_found = local_symbols_entry.nlistCount;
// The normal nlist code cannot correctly size the Symbols array, we need to allocate it here.
sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms + unmapped_local_symbols_found - m_dysymtab.nlocalsym);
num_syms = symtab->GetNumSymbols();
nlist_data_offset = local_symbols_info.nlistOffset + (nlist_byte_size * local_symbols_entry.nlistStartIndex);
uint32_t string_table_offset = local_symbols_info.stringsOffset;
for (uint32_t nlist_index = 0; nlist_index < local_symbols_entry.nlistCount; nlist_index++)
{
/////////////////////////////
{
struct nlist_64 nlist;
if (!dsc_local_symbols_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
break;
nlist.n_strx = dsc_local_symbols_data.GetU32_unchecked(&nlist_data_offset);
nlist.n_type = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_sect = dsc_local_symbols_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_desc = dsc_local_symbols_data.GetU16_unchecked (&nlist_data_offset);
nlist.n_value = dsc_local_symbols_data.GetAddress_unchecked (&nlist_data_offset);
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = dsc_local_symbols_data.PeekCStr(string_table_offset + nlist.n_strx);
if (symbol_name == NULL)
{
// No symbol should be NULL, even the symbols with no
// string values should have an offset zero which points
// to an empty C-string
Host::SystemLog (Host::eSystemLogError,
"error: DSC unmapped local symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n",
entry_index,
nlist.n_strx,
module_sp->GetFileSpec().GetDirectory().GetCString(),
module_sp->GetFileSpec().GetFilename().GetCString());
continue;
}
if (symbol_name[0] == '\0')
symbol_name = NULL;
const char *symbol_name_non_abi_mangled = NULL;
SectionSP symbol_section;
uint32_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & NlistMaskStab) != 0);
bool demangled_is_synthesized = false;
assert (sym_idx < num_syms);
sym[sym_idx].SetDebug (is_debug);
if (is_debug)
{
switch (nlist.n_type)
{
case StabGlobalSymbol:
// N_GSYM -- global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They
// have the same address, but we want to ensure that we always find only the real symbol,
// 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass
// symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated
// correctly. To do this right, we should coalesce all the GSYM & global symbols that have the
// same address.
if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O'
&& (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0
|| strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0
|| strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0))
add_nlist = false;
else
{
sym[sym_idx].SetExternal(true);
if (nlist.n_value != 0)
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case StabFunctionName:
// N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabFunction:
// N_FUN -- procedure: name,,n_sect,linenumber,address
if (symbol_name)
{
type = eSymbolTypeCode;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx;
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
}
else
{
type = eSymbolTypeCompiler;
if ( !N_FUN_indexes.empty() )
{
// Copy the size of the function into the original STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains the size which
// we already placed with the original symbol, so don't add it if we want a
// minimal symbol table
if (minimize)
add_nlist = false;
}
}
break;
case StabStaticSymbol:
// N_STSYM -- static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabLocalCommon:
// N_LCSYM -- .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case StabBeginSymbol:
// N_BNSYM
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_NSYM_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
}
break;
case StabEndSymbol:
// N_ENSYM
// Set the size of the N_BNSYM to the terminating index of this N_ENSYM
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
if ( !N_NSYM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_NSYM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
}
break;
case StabSourceFileOptions:
// N_OPT - emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case StabRegisterSymbol:
// N_RSYM - register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case StabSourceLine:
// N_SLINE - src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case StabStructureType:
// N_SSYM - structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case StabSourceFileName:
// N_SO - source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL)
{
if (minimize)
add_nlist = false;
if (N_SO_index != UINT32_MAX)
{
// Set the size of the N_SO to the terminating index of this N_SO
// so that we can always skip the entire N_SO if we need to navigate
// more quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1));
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
}
else
{
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
const bool N_SO_has_full_path = symbol_name[0] == '/';
if (N_SO_has_full_path)
{
if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms))
{
// We have two consecutive N_SO entries where the first contains a directory
// and the second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
}
else
{
// This is the first entry in a N_SO that contains a directory or
// a full path to the source file
N_SO_index = sym_idx;
}
}
else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms))
{
// This is usually the second N_SO entry that contains just the filename,
// so here we combine it with the first one if we are minimizing the symbol table
const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0])
{
std::string full_so_path (so_path);
const size_t double_slash_pos = full_so_path.find("//");
if (double_slash_pos != std::string::npos)
{
// The linker has been generating bad N_SO entries with doubled up paths
// in the format "%s%s" where the first stirng in the DW_AT_comp_dir,
// and the second is the directory for the source file so you end up with
// a path that looks like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path, false);
if (!so_dir.Exists())
{
so_dir.SetFile(&full_so_path[double_slash_pos + 1], false);
if (so_dir.Exists())
{
// Trim off the incorrect path
full_so_path.erase(0, double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
}
else
{
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case StabObjectFileName:
// N_OSO - object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case StabLocalSymbol:
// N_LSYM - local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case StabBeginIncludeFileName:
// N_BINCL - include file beginning: name,,NO_SECT,0,sum
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabEndIncludeFile:
// N_EINCL - include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this N_EINCL
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_INCL_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabIncludeFileName:
// N_SOL - #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
if (minimize)
add_nlist = false;
break;
case StabCompilerParameters:
// N_PARAMS - compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerVersion:
// N_VERSION - compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerOptLevel:
// N_OLEVEL - compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabParameter:
// N_PSYM - parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case StabAlternateEntry:
// N_ENTRY - alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case StabLeftBracket:
// N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabRightBracket:
// N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating index of this N_RBRAC
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if ( !N_BRAC_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabDeletedIncludeFile:
// N_EXCL - deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case StabBeginCommon:
// N_BCOMM - begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case StabEndCommonLocal:
// N_ECOML - end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
// Fall through
case StabEndCommon:
// N_ECOMM - end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_COMM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabLength:
// N_LENG - second stab entry with length information
type = eSymbolTypeAdditional;
break;
default: break;
}
}
else
{
//uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type;
uint8_t n_type = NlistMaskType & nlist.n_type;
sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0);
switch (n_type)
{
case NListTypeIndirect: // N_INDR - Fall through
case NListTypePreboundUndefined:// N_PBUD - Fall through
case NListTypeUndefined: // N_UNDF
type = eSymbolTypeUndefined;
break;
case NListTypeAbsolute: // N_ABS
type = eSymbolTypeAbsolute;
break;
case NListTypeSection: // N_SECT
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if (symbol_section == NULL)
{
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect)
{
type = eSymbolTypeException;
}
else
{
uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType;
switch (section_type)
{
case SectionTypeRegular: break; // regular section
//case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section
case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings
case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals
case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination
//case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced
//case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes)
case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break;
case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break;
default: break;
}
if (type == eSymbolTypeInvalid)
{
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant (text_section_sp.get()))
{
if (symbol_section->IsClear(SectionAttrUserPureInstructions |
SectionAttrUserSelfModifyingCode |
SectionAttrSytemSomeInstructions))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
}
else if (symbol_section->IsDescendant(data_section_sp.get()))
{
if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name)
{
type = eSymbolTypeRuntime;
if (symbol_name &&
symbol_name[0] == '_' &&
symbol_name[1] == 'O' &&
symbol_name[2] == 'B')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(g_objc_v2_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
else if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name)
{
type = eSymbolTypeException;
}
else
{
type = eSymbolTypeData;
}
}
else if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name)
{
type = eSymbolTypeTrampoline;
}
else if (symbol_section->IsDescendant(objc_section_sp.get()))
{
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_");
if (symbol_name_ref.startswith(g_objc_v1_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name + g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
}
break;
}
}
if (add_nlist)
{
uint64_t symbol_value = nlist.n_value;
bool symbol_name_is_mangled = false;
if (symbol_name_non_abi_mangled)
{
sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name));
}
else
{
if (symbol_name && symbol_name[0] == '_')
{
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name)
{
sym[sym_idx].GetMangled().SetValue(ConstString(symbol_name), symbol_name_is_mangled);
}
}
if (is_debug == false)
{
if (type == eSymbolTypeCode)
{
// See if we can find a N_FUN entry for any code symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the function symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_FUN_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_FUN flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
else if (type == eSymbolTypeData)
{
// See if we can find a N_STSYM entry for any data symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the Static symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_STSYM_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_STSYM flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
if (symbol_section)
{
const addr_t section_file_addr = symbol_section->GetFileAddress();
if (symbol_byte_size == 0 && function_starts_count > 0)
{
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses, else get the closest since
// the symbol might be a thumb symbol which has an address with bit zero set
FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry)
{
// Verify that the function start address is the symbol address (ARM)
// or the symbol address + 1 (thumb)
if (func_start_entry->addr != symbol_lookup_file_addr &&
func_start_entry->addr != (symbol_lookup_file_addr + 1))
{
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry)
{
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm)
{
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= 0xfffffffffffffffeull;
}
const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry);
const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry)
{
addr_t next_symbol_file_addr = next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when we calculate the size
// from the current and next address
if (is_arm)
next_symbol_file_addr &= 0xfffffffffffffffeull;
symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr);
}
else
{
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
sym[sym_idx].SetID (nlist_idx);
sym[sym_idx].SetType (type);
sym[sym_idx].GetAddress().SetSection (symbol_section);
sym[sym_idx].GetAddress().SetOffset (symbol_value);
sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
}
else
{
sym[sym_idx].Clear();
}
}
/////////////////////////////
}
break; // No more entries to consider
}
}
}
}
}
}
}
// Must reset this in case it was mutated above!
nlist_data_offset = 0;
#endif
// If the sym array was not created while parsing the DSC unmapped
// symbols, create it now.
if (sym == NULL)
{
sym = symtab->Resize (symtab_load_command.nsyms + m_dysymtab.nindirectsyms);
num_syms = symtab->GetNumSymbols();
}
if (unmapped_local_symbols_found)
{
assert(m_dysymtab.ilocalsym == 0);
nlist_data_offset += (m_dysymtab.nlocalsym * nlist_byte_size);
nlist_idx = m_dysymtab.nlocalsym;
}
else
{
nlist_idx = 0;
}
for (; nlist_idx < symtab_load_command.nsyms; ++nlist_idx)
{
struct nlist_64 nlist;
if (!nlist_data.ValidOffsetForDataOfSize(nlist_data_offset, nlist_byte_size))
break;
nlist.n_strx = nlist_data.GetU32_unchecked(&nlist_data_offset);
nlist.n_type = nlist_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_sect = nlist_data.GetU8_unchecked (&nlist_data_offset);
nlist.n_desc = nlist_data.GetU16_unchecked (&nlist_data_offset);
nlist.n_value = nlist_data.GetAddress_unchecked (&nlist_data_offset);
SymbolType type = eSymbolTypeInvalid;
const char *symbol_name = NULL;
if (have_strtab_data)
{
symbol_name = strtab_data.PeekCStr(nlist.n_strx);
if (symbol_name == NULL)
{
// No symbol should be NULL, even the symbols with no
// string values should have an offset zero which points
// to an empty C-string
Host::SystemLog (Host::eSystemLogError,
"error: symbol[%u] has invalid string table offset 0x%x in %s/%s, ignoring symbol\n",
nlist_idx,
nlist.n_strx,
module_sp->GetFileSpec().GetDirectory().GetCString(),
module_sp->GetFileSpec().GetFilename().GetCString());
continue;
}
if (symbol_name[0] == '\0')
symbol_name = NULL;
}
else
{
const addr_t str_addr = strtab_addr + nlist.n_strx;
Error str_error;
if (process->ReadCStringFromMemory(str_addr, memory_symbol_name, str_error))
symbol_name = memory_symbol_name.c_str();
}
const char *symbol_name_non_abi_mangled = NULL;
SectionSP symbol_section;
uint32_t symbol_byte_size = 0;
bool add_nlist = true;
bool is_debug = ((nlist.n_type & NlistMaskStab) != 0);
bool demangled_is_synthesized = false;
assert (sym_idx < num_syms);
sym[sym_idx].SetDebug (is_debug);
if (is_debug)
{
switch (nlist.n_type)
{
case StabGlobalSymbol:
// N_GSYM -- global symbol: name,,NO_SECT,type,0
// Sometimes the N_GSYM value contains the address.
// FIXME: In the .o files, we have a GSYM and a debug symbol for all the ObjC data. They
// have the same address, but we want to ensure that we always find only the real symbol,
// 'cause we don't currently correctly attribute the GSYM one to the ObjCClass/Ivar/MetaClass
// symbol type. This is a temporary hack to make sure the ObjectiveC symbols get treated
// correctly. To do this right, we should coalesce all the GSYM & global symbols that have the
// same address.
if (symbol_name && symbol_name[0] == '_' && symbol_name[1] == 'O'
&& (strncmp (symbol_name, "_OBJC_IVAR_$_", strlen ("_OBJC_IVAR_$_")) == 0
|| strncmp (symbol_name, "_OBJC_CLASS_$_", strlen ("_OBJC_CLASS_$_")) == 0
|| strncmp (symbol_name, "_OBJC_METACLASS_$_", strlen ("_OBJC_METACLASS_$_")) == 0))
add_nlist = false;
else
{
sym[sym_idx].SetExternal(true);
if (nlist.n_value != 0)
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
}
break;
case StabFunctionName:
// N_FNAME -- procedure name (f77 kludge): name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabFunction:
// N_FUN -- procedure: name,,n_sect,linenumber,address
if (symbol_name)
{
type = eSymbolTypeCode;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_FUN_addr_to_sym_idx[nlist.n_value] = sym_idx;
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_FUN_indexes.push_back(sym_idx);
}
else
{
type = eSymbolTypeCompiler;
if ( !N_FUN_indexes.empty() )
{
// Copy the size of the function into the original STAB entry so we don't have
// to hunt for it later
symtab->SymbolAtIndex(N_FUN_indexes.back())->SetByteSize(nlist.n_value);
N_FUN_indexes.pop_back();
// We don't really need the end function STAB as it contains the size which
// we already placed with the original symbol, so don't add it if we want a
// minimal symbol table
if (minimize)
add_nlist = false;
}
}
break;
case StabStaticSymbol:
// N_STSYM -- static symbol: name,,n_sect,type,address
N_STSYM_addr_to_sym_idx[nlist.n_value] = sym_idx;
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeData;
break;
case StabLocalCommon:
// N_LCSYM -- .lcomm symbol: name,,n_sect,type,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeCommonBlock;
break;
case StabBeginSymbol:
// N_BNSYM
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_NSYM_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
}
break;
case StabEndSymbol:
// N_ENSYM
// Set the size of the N_BNSYM to the terminating index of this N_ENSYM
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if (minimize)
{
// Skip these if we want minimal symbol tables
add_nlist = false;
}
else
{
if ( !N_NSYM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_NSYM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_NSYM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
}
break;
case StabSourceFileOptions:
// N_OPT - emitted with gcc2_compiled and in gcc source
type = eSymbolTypeCompiler;
break;
case StabRegisterSymbol:
// N_RSYM - register sym: name,,NO_SECT,type,register
type = eSymbolTypeVariable;
break;
case StabSourceLine:
// N_SLINE - src line: 0,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
case StabStructureType:
// N_SSYM - structure elt: name,,NO_SECT,type,struct_offset
type = eSymbolTypeVariableType;
break;
case StabSourceFileName:
// N_SO - source file name
type = eSymbolTypeSourceFile;
if (symbol_name == NULL)
{
if (minimize)
add_nlist = false;
if (N_SO_index != UINT32_MAX)
{
// Set the size of the N_SO to the terminating index of this N_SO
// so that we can always skip the entire N_SO if we need to navigate
// more quickly at the source level when parsing STABS
symbol_ptr = symtab->SymbolAtIndex(N_SO_index);
symbol_ptr->SetByteSize(sym_idx + (minimize ? 0 : 1));
symbol_ptr->SetSizeIsSibling(true);
}
N_NSYM_indexes.clear();
N_INCL_indexes.clear();
N_BRAC_indexes.clear();
N_COMM_indexes.clear();
N_FUN_indexes.clear();
N_SO_index = UINT32_MAX;
}
else
{
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
const bool N_SO_has_full_path = symbol_name[0] == '/';
if (N_SO_has_full_path)
{
if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms))
{
// We have two consecutive N_SO entries where the first contains a directory
// and the second contains a full path.
sym[sym_idx - 1].GetMangled().SetValue(ConstString(symbol_name), false);
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
add_nlist = false;
}
else
{
// This is the first entry in a N_SO that contains a directory or
// a full path to the source file
N_SO_index = sym_idx;
}
}
else if (minimize && (N_SO_index == sym_idx - 1) && ((sym_idx - 1) < num_syms))
{
// This is usually the second N_SO entry that contains just the filename,
// so here we combine it with the first one if we are minimizing the symbol table
const char *so_path = sym[sym_idx - 1].GetMangled().GetDemangledName().AsCString();
if (so_path && so_path[0])
{
std::string full_so_path (so_path);
const size_t double_slash_pos = full_so_path.find("//");
if (double_slash_pos != std::string::npos)
{
// The linker has been generating bad N_SO entries with doubled up paths
// in the format "%s%s" where the first stirng in the DW_AT_comp_dir,
// and the second is the directory for the source file so you end up with
// a path that looks like "/tmp/src//tmp/src/"
FileSpec so_dir(so_path, false);
if (!so_dir.Exists())
{
so_dir.SetFile(&full_so_path[double_slash_pos + 1], false);
if (so_dir.Exists())
{
// Trim off the incorrect path
full_so_path.erase(0, double_slash_pos + 1);
}
}
}
if (*full_so_path.rbegin() != '/')
full_so_path += '/';
full_so_path += symbol_name;
sym[sym_idx - 1].GetMangled().SetValue(ConstString(full_so_path.c_str()), false);
add_nlist = false;
m_nlist_idx_to_sym_idx[nlist_idx] = sym_idx - 1;
}
}
else
{
// This could be a relative path to a N_SO
N_SO_index = sym_idx;
}
}
break;
case StabObjectFileName:
// N_OSO - object file name: name,,0,0,st_mtime
type = eSymbolTypeObjectFile;
break;
case StabLocalSymbol:
// N_LSYM - local sym: name,,NO_SECT,type,offset
type = eSymbolTypeLocal;
break;
//----------------------------------------------------------------------
// INCL scopes
//----------------------------------------------------------------------
case StabBeginIncludeFileName:
// N_BINCL - include file beginning: name,,NO_SECT,0,sum
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
N_INCL_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabEndIncludeFile:
// N_EINCL - include file end: name,,NO_SECT,0,0
// Set the size of the N_BINCL to the terminating index of this N_EINCL
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_INCL_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_INCL_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_INCL_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabIncludeFileName:
// N_SOL - #included file name: name,,n_sect,0,address
type = eSymbolTypeHeaderFile;
// We currently don't use the header files on darwin
if (minimize)
add_nlist = false;
break;
case StabCompilerParameters:
// N_PARAMS - compiler parameters: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerVersion:
// N_VERSION - compiler version: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabCompilerOptLevel:
// N_OLEVEL - compiler -O level: name,,NO_SECT,0,0
type = eSymbolTypeCompiler;
break;
case StabParameter:
// N_PSYM - parameter: name,,NO_SECT,type,offset
type = eSymbolTypeVariable;
break;
case StabAlternateEntry:
// N_ENTRY - alternate entry: name,,n_sect,linenumber,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
type = eSymbolTypeLineEntry;
break;
//----------------------------------------------------------------------
// Left and Right Braces
//----------------------------------------------------------------------
case StabLeftBracket:
// N_LBRAC - left bracket: 0,,NO_SECT,nesting level,address
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
N_BRAC_indexes.push_back(sym_idx);
type = eSymbolTypeScopeBegin;
break;
case StabRightBracket:
// N_RBRAC - right bracket: 0,,NO_SECT,nesting level,address
// Set the size of the N_LBRAC to the terminating index of this N_RBRAC
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if ( !N_BRAC_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_BRAC_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_BRAC_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabDeletedIncludeFile:
// N_EXCL - deleted include file: name,,NO_SECT,0,sum
type = eSymbolTypeHeaderFile;
break;
//----------------------------------------------------------------------
// COMM scopes
//----------------------------------------------------------------------
case StabBeginCommon:
// N_BCOMM - begin common: name,,NO_SECT,0,0
// We use the current number of symbols in the symbol table in lieu of
// using nlist_idx in case we ever start trimming entries out
type = eSymbolTypeScopeBegin;
N_COMM_indexes.push_back(sym_idx);
break;
case StabEndCommonLocal:
// N_ECOML - end common (local name): 0,,n_sect,0,address
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
// Fall through
case StabEndCommon:
// N_ECOMM - end common: name,,n_sect,0,0
// Set the size of the N_BCOMM to the terminating index of this N_ECOMM/N_ECOML
// so that we can always skip the entire symbol if we need to navigate
// more quickly at the source level when parsing STABS
if ( !N_COMM_indexes.empty() )
{
symbol_ptr = symtab->SymbolAtIndex(N_COMM_indexes.back());
symbol_ptr->SetByteSize(sym_idx + 1);
symbol_ptr->SetSizeIsSibling(true);
N_COMM_indexes.pop_back();
}
type = eSymbolTypeScopeEnd;
break;
case StabLength:
// N_LENG - second stab entry with length information
type = eSymbolTypeAdditional;
break;
default: break;
}
}
else
{
//uint8_t n_pext = NlistMaskPrivateExternal & nlist.n_type;
uint8_t n_type = NlistMaskType & nlist.n_type;
sym[sym_idx].SetExternal((NlistMaskExternal & nlist.n_type) != 0);
switch (n_type)
{
case NListTypeIndirect: // N_INDR - Fall through
case NListTypePreboundUndefined:// N_PBUD - Fall through
case NListTypeUndefined: // N_UNDF
type = eSymbolTypeUndefined;
break;
case NListTypeAbsolute: // N_ABS
type = eSymbolTypeAbsolute;
break;
case NListTypeSection: // N_SECT
{
symbol_section = section_info.GetSection (nlist.n_sect, nlist.n_value);
if (!symbol_section)
{
// TODO: warn about this?
add_nlist = false;
break;
}
if (TEXT_eh_frame_sectID == nlist.n_sect)
{
type = eSymbolTypeException;
}
else
{
uint32_t section_type = symbol_section->Get() & SectionFlagMaskSectionType;
switch (section_type)
{
case SectionTypeRegular: break; // regular section
//case SectionTypeZeroFill: type = eSymbolTypeData; break; // zero fill on demand section
case SectionTypeCStringLiterals: type = eSymbolTypeData; break; // section with only literal C strings
case SectionType4ByteLiterals: type = eSymbolTypeData; break; // section with only 4 byte literals
case SectionType8ByteLiterals: type = eSymbolTypeData; break; // section with only 8 byte literals
case SectionTypeLiteralPointers: type = eSymbolTypeTrampoline; break; // section with only pointers to literals
case SectionTypeNonLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only non-lazy symbol pointers
case SectionTypeLazySymbolPointers: type = eSymbolTypeTrampoline; break; // section with only lazy symbol pointers
case SectionTypeSymbolStubs: type = eSymbolTypeTrampoline; break; // section with only symbol stubs, byte size of stub in the reserved2 field
case SectionTypeModuleInitFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for initialization
case SectionTypeModuleTermFunctionPointers: type = eSymbolTypeCode; break; // section with only function pointers for termination
//case SectionTypeCoalesced: type = eSymbolType; break; // section contains symbols that are to be coalesced
//case SectionTypeZeroFillLarge: type = eSymbolTypeData; break; // zero fill on demand section (that can be larger than 4 gigabytes)
case SectionTypeInterposing: type = eSymbolTypeTrampoline; break; // section with only pairs of function pointers for interposing
case SectionType16ByteLiterals: type = eSymbolTypeData; break; // section with only 16 byte literals
case SectionTypeDTraceObjectFormat: type = eSymbolTypeInstrumentation; break;
case SectionTypeLazyDylibSymbolPointers: type = eSymbolTypeTrampoline; break;
default: break;
}
if (type == eSymbolTypeInvalid)
{
const char *symbol_sect_name = symbol_section->GetName().AsCString();
if (symbol_section->IsDescendant (text_section_sp.get()))
{
if (symbol_section->IsClear(SectionAttrUserPureInstructions |
SectionAttrUserSelfModifyingCode |
SectionAttrSytemSomeInstructions))
type = eSymbolTypeData;
else
type = eSymbolTypeCode;
}
else
if (symbol_section->IsDescendant(data_section_sp.get()))
{
if (symbol_sect_name && ::strstr (symbol_sect_name, "__objc") == symbol_sect_name)
{
type = eSymbolTypeRuntime;
if (symbol_name &&
symbol_name[0] == '_' &&
symbol_name[1] == 'O' &&
symbol_name[2] == 'B')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v2_prefix_class ("_OBJC_CLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_metaclass ("_OBJC_METACLASS_$_");
static const llvm::StringRef g_objc_v2_prefix_ivar ("_OBJC_IVAR_$_");
if (symbol_name_ref.startswith(g_objc_v2_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_metaclass))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_metaclass.size();
type = eSymbolTypeObjCMetaClass;
demangled_is_synthesized = true;
}
else if (symbol_name_ref.startswith(g_objc_v2_prefix_ivar))
{
symbol_name_non_abi_mangled = symbol_name + 1;
symbol_name = symbol_name + g_objc_v2_prefix_ivar.size();
type = eSymbolTypeObjCIVar;
demangled_is_synthesized = true;
}
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__gcc_except_tab") == symbol_sect_name)
{
type = eSymbolTypeException;
}
else
{
type = eSymbolTypeData;
}
}
else
if (symbol_sect_name && ::strstr (symbol_sect_name, "__IMPORT") == symbol_sect_name)
{
type = eSymbolTypeTrampoline;
}
else
if (symbol_section->IsDescendant(objc_section_sp.get()))
{
type = eSymbolTypeRuntime;
if (symbol_name && symbol_name[0] == '.')
{
llvm::StringRef symbol_name_ref(symbol_name);
static const llvm::StringRef g_objc_v1_prefix_class (".objc_class_name_");
if (symbol_name_ref.startswith(g_objc_v1_prefix_class))
{
symbol_name_non_abi_mangled = symbol_name;
symbol_name = symbol_name + g_objc_v1_prefix_class.size();
type = eSymbolTypeObjCClass;
demangled_is_synthesized = true;
}
}
}
}
}
}
break;
}
}
if (add_nlist)
{
uint64_t symbol_value = nlist.n_value;
bool symbol_name_is_mangled = false;
if (symbol_name_non_abi_mangled)
{
sym[sym_idx].GetMangled().SetMangledName (ConstString(symbol_name_non_abi_mangled));
sym[sym_idx].GetMangled().SetDemangledName (ConstString(symbol_name));
}
else
{
if (symbol_name && symbol_name[0] == '_')
{
symbol_name_is_mangled = symbol_name[1] == '_';
symbol_name++; // Skip the leading underscore
}
if (symbol_name)
{
sym[sym_idx].GetMangled().SetValue(ConstString(symbol_name), symbol_name_is_mangled);
}
}
if (is_debug == false)
{
if (type == eSymbolTypeCode)
{
// See if we can find a N_FUN entry for any code symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the function symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_FUN_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_FUN_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_FUN flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
else if (type == eSymbolTypeData)
{
// See if we can find a N_STSYM entry for any data symbols.
// If we do find a match, and the name matches, then we
// can merge the two into just the Static symbol to avoid
// duplicate entries in the symbol table
ValueToSymbolIndexMap::const_iterator pos = N_STSYM_addr_to_sym_idx.find (nlist.n_value);
if (pos != N_STSYM_addr_to_sym_idx.end())
{
if ((symbol_name_is_mangled == true && sym[sym_idx].GetMangled().GetMangledName() == sym[pos->second].GetMangled().GetMangledName()) ||
(symbol_name_is_mangled == false && sym[sym_idx].GetMangled().GetDemangledName() == sym[pos->second].GetMangled().GetDemangledName()))
{
m_nlist_idx_to_sym_idx[nlist_idx] = pos->second;
// We just need the flags from the linker symbol, so put these flags
// into the N_STSYM flags to avoid duplicate symbols in the symbol table
sym[pos->second].SetFlags (nlist.n_type << 16 | nlist.n_desc);
sym[sym_idx].Clear();
continue;
}
}
}
}
if (symbol_section)
{
const addr_t section_file_addr = symbol_section->GetFileAddress();
if (symbol_byte_size == 0 && function_starts_count > 0)
{
addr_t symbol_lookup_file_addr = nlist.n_value;
// Do an exact address match for non-ARM addresses, else get the closest since
// the symbol might be a thumb symbol which has an address with bit zero set
FunctionStarts::Entry *func_start_entry = function_starts.FindEntry (symbol_lookup_file_addr, !is_arm);
if (is_arm && func_start_entry)
{
// Verify that the function start address is the symbol address (ARM)
// or the symbol address + 1 (thumb)
if (func_start_entry->addr != symbol_lookup_file_addr &&
func_start_entry->addr != (symbol_lookup_file_addr + 1))
{
// Not the right entry, NULL it out...
func_start_entry = NULL;
}
}
if (func_start_entry)
{
func_start_entry->data = true;
addr_t symbol_file_addr = func_start_entry->addr;
if (is_arm)
symbol_file_addr &= 0xfffffffffffffffeull;
const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry);
const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry)
{
addr_t next_symbol_file_addr = next_func_start_entry->addr;
// Be sure the clear the Thumb address bit when we calculate the size
// from the current and next address
if (is_arm)
next_symbol_file_addr &= 0xfffffffffffffffeull;
symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr);
}
else
{
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
}
}
symbol_value -= section_file_addr;
}
sym[sym_idx].SetID (nlist_idx);
sym[sym_idx].SetType (type);
sym[sym_idx].GetAddress().SetSection (symbol_section);
sym[sym_idx].GetAddress().SetOffset (symbol_value);
sym[sym_idx].SetFlags (nlist.n_type << 16 | nlist.n_desc);
if (symbol_byte_size > 0)
sym[sym_idx].SetByteSize(symbol_byte_size);
if (demangled_is_synthesized)
sym[sym_idx].SetDemangledNameIsSynthesized(true);
++sym_idx;
}
else
{
sym[sym_idx].Clear();
}
}
// STAB N_GSYM entries end up having a symbol type eSymbolTypeGlobal and when the symbol value
// is zero, the address of the global ends up being in a non-STAB entry. Try and fix up all
// such entries by figuring out what the address for the global is by looking up this non-STAB
// entry and copying the value into the debug symbol's value to save us the hassle in the
// debug symbol parser.
Symbol *global_symbol = NULL;
for (nlist_idx = 0;
nlist_idx < symtab_load_command.nsyms && (global_symbol = symtab->FindSymbolWithType (eSymbolTypeData, Symtab::eDebugYes, Symtab::eVisibilityAny, nlist_idx)) != NULL;
nlist_idx++)
{
if (global_symbol->GetAddress().GetFileAddress() == 0)
{
std::vector<uint32_t> indexes;
if (symtab->AppendSymbolIndexesWithName (global_symbol->GetMangled().GetName(), indexes) > 0)
{
std::vector<uint32_t>::const_iterator pos;
std::vector<uint32_t>::const_iterator end = indexes.end();
for (pos = indexes.begin(); pos != end; ++pos)
{
symbol_ptr = symtab->SymbolAtIndex(*pos);
if (symbol_ptr != global_symbol && symbol_ptr->IsDebug() == false)
{
global_symbol->GetAddress() = symbol_ptr->GetAddress();
break;
}
}
}
}
}
uint32_t synthetic_sym_id = symtab_load_command.nsyms;
if (function_starts_count > 0)
{
char synthetic_function_symbol[PATH_MAX];
uint32_t num_synthetic_function_symbols = 0;
for (i=0; i<function_starts_count; ++i)
{
if (function_starts.GetEntryRef (i).data == false)
++num_synthetic_function_symbols;
}
if (num_synthetic_function_symbols > 0)
{
if (num_syms < sym_idx + num_synthetic_function_symbols)
{
num_syms = sym_idx + num_synthetic_function_symbols;
sym = symtab->Resize (num_syms);
}
uint32_t synthetic_function_symbol_idx = 0;
for (i=0; i<function_starts_count; ++i)
{
const FunctionStarts::Entry *func_start_entry = function_starts.GetEntryAtIndex (i);
if (func_start_entry->data == false)
{
addr_t symbol_file_addr = func_start_entry->addr;
uint32_t symbol_flags = 0;
if (is_arm)
{
if (symbol_file_addr & 1)
symbol_flags = MACHO_NLIST_ARM_SYMBOL_IS_THUMB;
symbol_file_addr &= 0xfffffffffffffffeull;
}
Address symbol_addr;
if (module_sp->ResolveFileAddress (symbol_file_addr, symbol_addr))
{
SectionSP symbol_section (symbol_addr.GetSection());
uint32_t symbol_byte_size = 0;
if (symbol_section)
{
const addr_t section_file_addr = symbol_section->GetFileAddress();
const FunctionStarts::Entry *next_func_start_entry = function_starts.FindNextEntry (func_start_entry);
const addr_t section_end_file_addr = section_file_addr + symbol_section->GetByteSize();
if (next_func_start_entry)
{
addr_t next_symbol_file_addr = next_func_start_entry->addr;
if (is_arm)
next_symbol_file_addr &= 0xfffffffffffffffeull;
symbol_byte_size = std::min<lldb::addr_t>(next_symbol_file_addr - symbol_file_addr, section_end_file_addr - symbol_file_addr);
}
else
{
symbol_byte_size = section_end_file_addr - symbol_file_addr;
}
snprintf (synthetic_function_symbol,
sizeof(synthetic_function_symbol),
"___lldb_unnamed_function%u$$%s",
++synthetic_function_symbol_idx,
module_sp->GetFileSpec().GetFilename().GetCString());
sym[sym_idx].SetID (synthetic_sym_id++);
sym[sym_idx].GetMangled().SetDemangledName(ConstString(synthetic_function_symbol));
sym[sym_idx].SetType (eSymbolTypeCode);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddress() = symbol_addr;
if (symbol_flags)
sym[sym_idx].SetFlags (symbol_flags);
if (symbol_byte_size)
sym[sym_idx].SetByteSize (symbol_byte_size);
++sym_idx;
}
}
}
}
}
}
// Trim our symbols down to just what we ended up with after
// removing any symbols.
if (sym_idx < num_syms)
{
num_syms = sym_idx;
sym = symtab->Resize (num_syms);
}
// Now synthesize indirect symbols
if (m_dysymtab.nindirectsyms != 0)
{
DataExtractor indirect_symbol_index_data (m_data, m_dysymtab.indirectsymoff, m_dysymtab.nindirectsyms * 4);
if (indirect_symbol_index_data.GetByteSize())
{
NListIndexToSymbolIndexMap::const_iterator end_index_pos = m_nlist_idx_to_sym_idx.end();
for (uint32_t sect_idx = 1; sect_idx < m_mach_sections.size(); ++sect_idx)
{
if ((m_mach_sections[sect_idx].flags & SectionFlagMaskSectionType) == SectionTypeSymbolStubs)
{
uint32_t symbol_stub_byte_size = m_mach_sections[sect_idx].reserved2;
if (symbol_stub_byte_size == 0)
continue;
const uint32_t num_symbol_stubs = m_mach_sections[sect_idx].size / symbol_stub_byte_size;
if (num_symbol_stubs == 0)
continue;
const uint32_t symbol_stub_index_offset = m_mach_sections[sect_idx].reserved1;
for (uint32_t stub_idx = 0; stub_idx < num_symbol_stubs; ++stub_idx)
{
const uint32_t symbol_stub_index = symbol_stub_index_offset + stub_idx;
const lldb::addr_t symbol_stub_addr = m_mach_sections[sect_idx].addr + (stub_idx * symbol_stub_byte_size);
uint32_t symbol_stub_offset = symbol_stub_index * 4;
if (indirect_symbol_index_data.ValidOffsetForDataOfSize(symbol_stub_offset, 4))
{
const uint32_t stub_sym_id = indirect_symbol_index_data.GetU32 (&symbol_stub_offset);
if (stub_sym_id & (IndirectSymbolAbsolute | IndirectSymbolLocal))
continue;
NListIndexToSymbolIndexMap::const_iterator index_pos = m_nlist_idx_to_sym_idx.find (stub_sym_id);
Symbol *stub_symbol = NULL;
if (index_pos != end_index_pos)
{
// We have a remapping from the original nlist index to
// a current symbol index, so just look this up by index
stub_symbol = symtab->SymbolAtIndex (index_pos->second);
}
else
{
// We need to lookup a symbol using the original nlist
// symbol index since this index is coming from the
// S_SYMBOL_STUBS
stub_symbol = symtab->FindSymbolByID (stub_sym_id);
}
if (stub_symbol)
{
Address so_addr(symbol_stub_addr, section_list);
if (stub_symbol->GetType() == eSymbolTypeUndefined)
{
// Change the external symbol into a trampoline that makes sense
// These symbols were N_UNDF N_EXT, and are useless to us, so we
// can re-use them so we don't have to make up a synthetic symbol
// for no good reason.
stub_symbol->SetType (eSymbolTypeTrampoline);
stub_symbol->SetExternal (false);
stub_symbol->GetAddress() = so_addr;
stub_symbol->SetByteSize (symbol_stub_byte_size);
}
else
{
// Make a synthetic symbol to describe the trampoline stub
Mangled stub_symbol_mangled_name(stub_symbol->GetMangled());
if (sym_idx >= num_syms)
{
sym = symtab->Resize (++num_syms);
stub_symbol = NULL; // this pointer no longer valid
}
sym[sym_idx].SetID (synthetic_sym_id++);
sym[sym_idx].GetMangled() = stub_symbol_mangled_name;
sym[sym_idx].SetType (eSymbolTypeTrampoline);
sym[sym_idx].SetIsSynthetic (true);
sym[sym_idx].GetAddress() = so_addr;
sym[sym_idx].SetByteSize (symbol_stub_byte_size);
++sym_idx;
}
}
else
{
if (log)
log->Warning ("symbol stub referencing symbol table symbol %u that isn't in our minimal symbol table, fix this!!!", stub_sym_id);
}
}
}
}
}
}
}
return symtab->GetNumSymbols();
}
return 0;
}
void
ObjectFileMachO::Dump (Stream *s)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
s->Printf("%p: ", this);
s->Indent();
if (m_header.magic == HeaderMagic64 || m_header.magic == HeaderMagic64Swapped)
s->PutCString("ObjectFileMachO64");
else
s->PutCString("ObjectFileMachO32");
ArchSpec header_arch(eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
*s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n";
if (m_sections_ap.get())
m_sections_ap->Dump(s, NULL, true, UINT32_MAX);
if (m_symtab_ap.get())
m_symtab_ap->Dump(s, NULL, eSortOrderNone);
}
}
bool
ObjectFileMachO::GetUUID (lldb_private::UUID* uuid)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct uuid_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandUUID)
{
const uint8_t *uuid_bytes = m_data.PeekData(offset, 16);
if (uuid_bytes)
{
// OpenCL on Mac OS X uses the same UUID for each of its object files.
// We pretend these object files have no UUID to prevent crashing.
const uint8_t opencl_uuid[] = { 0x8c, 0x8e, 0xb3, 0x9b,
0x3b, 0xa8,
0x4b, 0x16,
0xb6, 0xa4,
0x27, 0x63, 0xbb, 0x14, 0xf0, 0x0d };
if (!memcmp(uuid_bytes, opencl_uuid, 16))
return false;
uuid->SetBytes (uuid_bytes);
return true;
}
return false;
}
offset = cmd_offset + load_cmd.cmdsize;
}
}
return false;
}
uint32_t
ObjectFileMachO::GetDependentModules (FileSpecList& files)
{
uint32_t count = 0;
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
const bool resolve_path = false; // Don't resolve the dependend file paths since they may not reside on this system
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandDylibLoad:
case LoadCommandDylibLoadWeak:
case LoadCommandDylibReexport:
case LoadCommandDynamicLinkerLoad:
case LoadCommandFixedVMShlibLoad:
case LoadCommandDylibLoadUpward:
{
uint32_t name_offset = cmd_offset + m_data.GetU32(&offset);
const char *path = m_data.PeekCStr(name_offset);
// Skip any path that starts with '@' since these are usually:
// @executable_path/.../file
// @rpath/.../file
if (path && path[0] != '@')
{
FileSpec file_spec(path, resolve_path);
if (files.AppendIfUnique(file_spec))
count++;
}
}
break;
default:
break;
}
offset = cmd_offset + load_cmd.cmdsize;
}
}
return count;
}
lldb_private::Address
ObjectFileMachO::GetEntryPointAddress ()
{
// If the object file is not an executable it can't hold the entry point. m_entry_point_address
// is initialized to an invalid address, so we can just return that.
// If m_entry_point_address is valid it means we've found it already, so return the cached value.
if (!IsExecutable() || m_entry_point_address.IsValid())
return m_entry_point_address;
// Otherwise, look for the UnixThread or Thread command. The data for the Thread command is given in
// /usr/include/mach-o.h, but it is basically:
//
// uint32_t flavor - this is the flavor argument you would pass to thread_get_state
// uint32_t count - this is the count of longs in the thread state data
// struct XXX_thread_state state - this is the structure from <machine/thread_status.h> corresponding to the flavor.
// <repeat this trio>
//
// So we just keep reading the various register flavors till we find the GPR one, then read the PC out of there.
// FIXME: We will need to have a "RegisterContext data provider" class at some point that can get all the registers
// out of data in this form & attach them to a given thread. That should underlie the MacOS X User process plugin,
// and we'll also need it for the MacOS X Core File process plugin. When we have that we can also use it here.
//
// For now we hard-code the offsets and flavors we need:
//
//
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct load_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t i;
lldb::addr_t start_address = LLDB_INVALID_ADDRESS;
bool done = false;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
switch (load_cmd.cmd)
{
case LoadCommandUnixThread:
case LoadCommandThread:
{
while (offset < cmd_offset + load_cmd.cmdsize)
{
uint32_t flavor = m_data.GetU32(&offset);
uint32_t count = m_data.GetU32(&offset);
if (count == 0)
{
// We've gotten off somehow, log and exit;
return m_entry_point_address;
}
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
if (flavor == 1) // ARM_THREAD_STATE from mach/arm/thread_status.h
{
offset += 60; // This is the offset of pc in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeI386:
if (flavor == 1) // x86_THREAD_STATE32 from mach/i386/thread_status.h
{
offset += 40; // This is the offset of eip in the GPR thread state data structure.
start_address = m_data.GetU32(&offset);
done = true;
}
break;
case llvm::MachO::CPUTypeX86_64:
if (flavor == 4) // x86_THREAD_STATE64 from mach/i386/thread_status.h
{
offset += 16 * 8; // This is the offset of rip in the GPR thread state data structure.
start_address = m_data.GetU64(&offset);
done = true;
}
break;
default:
return m_entry_point_address;
}
// Haven't found the GPR flavor yet, skip over the data for this flavor:
if (done)
break;
offset += count * 4;
}
}
break;
case LoadCommandMain:
{
ConstString text_segment_name ("__TEXT");
uint64_t entryoffset = m_data.GetU64(&offset);
SectionSP text_segment_sp = GetSectionList()->FindSectionByName(text_segment_name);
if (text_segment_sp)
{
done = true;
start_address = text_segment_sp->GetFileAddress() + entryoffset;
}
}
default:
break;
}
if (done)
break;
// Go to the next load command:
offset = cmd_offset + load_cmd.cmdsize;
}
if (start_address != LLDB_INVALID_ADDRESS)
{
// We got the start address from the load commands, so now resolve that address in the sections
// of this ObjectFile:
if (!m_entry_point_address.ResolveAddressUsingFileSections (start_address, GetSectionList()))
{
m_entry_point_address.Clear();
}
}
else
{
// We couldn't read the UnixThread load command - maybe it wasn't there. As a fallback look for the
// "start" symbol in the main executable.
ModuleSP module_sp (GetModule());
if (module_sp)
{
SymbolContextList contexts;
SymbolContext context;
if (module_sp->FindSymbolsWithNameAndType(ConstString ("start"), eSymbolTypeCode, contexts))
{
if (contexts.GetContextAtIndex(0, context))
m_entry_point_address = context.symbol->GetAddress();
}
}
}
}
return m_entry_point_address;
}
lldb_private::Address
ObjectFileMachO::GetHeaderAddress ()
{
lldb_private::Address header_addr;
SectionList *section_list = GetSectionList();
if (section_list)
{
SectionSP text_segment_sp (section_list->FindSectionByName (GetSegmentNameTEXT()));
if (text_segment_sp)
{
header_addr.SetSection (text_segment_sp);
header_addr.SetOffset (0);
}
}
return header_addr;
}
uint32_t
ObjectFileMachO::GetNumThreadContexts ()
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
{
m_thread_context_offsets_valid = true;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
FileRangeArray::Entry file_range;
thread_command thread_cmd;
for (uint32_t i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &thread_cmd, 2) == NULL)
break;
if (thread_cmd.cmd == LoadCommandThread)
{
file_range.SetRangeBase (offset);
file_range.SetByteSize (thread_cmd.cmdsize - 8);
m_thread_context_offsets.Append (file_range);
}
offset = cmd_offset + thread_cmd.cmdsize;
}
}
}
return m_thread_context_offsets.GetSize();
}
lldb::RegisterContextSP
ObjectFileMachO::GetThreadContextAtIndex (uint32_t idx, lldb_private::Thread &thread)
{
lldb::RegisterContextSP reg_ctx_sp;
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
if (!m_thread_context_offsets_valid)
GetNumThreadContexts ();
const FileRangeArray::Entry *thread_context_file_range = m_thread_context_offsets.GetEntryAtIndex (idx);
if (thread_context_file_range)
{
DataExtractor data (m_data,
thread_context_file_range->GetRangeBase(),
thread_context_file_range->GetByteSize());
switch (m_header.cputype)
{
case llvm::MachO::CPUTypeARM:
reg_ctx_sp.reset (new RegisterContextDarwin_arm_Mach (thread, data));
break;
case llvm::MachO::CPUTypeI386:
reg_ctx_sp.reset (new RegisterContextDarwin_i386_Mach (thread, data));
break;
case llvm::MachO::CPUTypeX86_64:
reg_ctx_sp.reset (new RegisterContextDarwin_x86_64_Mach (thread, data));
break;
}
}
}
return reg_ctx_sp;
}
ObjectFile::Type
ObjectFileMachO::CalculateType()
{
switch (m_header.filetype)
{
case HeaderFileTypeObject: // 0x1u MH_OBJECT
if (GetAddressByteSize () == 4)
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid))
{
// this checking for the UUID load command is not enough
// we could eventually look for the symbol named
// "OSKextGetCurrentIdentifier" as this is required of kexts
if (m_strata == eStrataInvalid)
m_strata = eStrataKernel;
return eTypeSharedLibrary;
}
}
return eTypeObjectFile;
case HeaderFileTypeExecutable: return eTypeExecutable; // 0x2u MH_EXECUTE
case HeaderFileTypeFixedVMShlib: return eTypeSharedLibrary; // 0x3u MH_FVMLIB
case HeaderFileTypeCore: return eTypeCoreFile; // 0x4u MH_CORE
case HeaderFileTypePreloadedExecutable: return eTypeSharedLibrary; // 0x5u MH_PRELOAD
case HeaderFileTypeDynamicShlib: return eTypeSharedLibrary; // 0x6u MH_DYLIB
case HeaderFileTypeDynamicLinkEditor: return eTypeDynamicLinker; // 0x7u MH_DYLINKER
case HeaderFileTypeBundle: return eTypeSharedLibrary; // 0x8u MH_BUNDLE
case HeaderFileTypeDynamicShlibStub: return eTypeStubLibrary; // 0x9u MH_DYLIB_STUB
case HeaderFileTypeDSYM: return eTypeDebugInfo; // 0xAu MH_DSYM
case HeaderFileTypeKextBundle: return eTypeSharedLibrary; // 0xBu MH_KEXT_BUNDLE
default:
break;
}
return eTypeUnknown;
}
ObjectFile::Strata
ObjectFileMachO::CalculateStrata()
{
switch (m_header.filetype)
{
case HeaderFileTypeObject: // 0x1u MH_OBJECT
{
// 32 bit kexts are just object files, but they do have a valid
// UUID load command.
UUID uuid;
if (GetUUID(&uuid))
{
// this checking for the UUID load command is not enough
// we could eventually look for the symbol named
// "OSKextGetCurrentIdentifier" as this is required of kexts
if (m_type == eTypeInvalid)
m_type = eTypeSharedLibrary;
return eStrataKernel;
}
}
return eStrataUnknown;
case HeaderFileTypeExecutable: // 0x2u MH_EXECUTE
// Check for the MH_DYLDLINK bit in the flags
if (m_header.flags & HeaderFlagBitIsDynamicLinkObject)
{
return eStrataUser;
}
else
{
SectionList *section_list = GetSectionList();
if (section_list)
{
static ConstString g_kld_section_name ("__KLD");
if (section_list->FindSectionByName(g_kld_section_name))
return eStrataKernel;
}
}
return eStrataRawImage;
case HeaderFileTypeFixedVMShlib: return eStrataUser; // 0x3u MH_FVMLIB
case HeaderFileTypeCore: return eStrataUnknown; // 0x4u MH_CORE
case HeaderFileTypePreloadedExecutable: return eStrataRawImage; // 0x5u MH_PRELOAD
case HeaderFileTypeDynamicShlib: return eStrataUser; // 0x6u MH_DYLIB
case HeaderFileTypeDynamicLinkEditor: return eStrataUser; // 0x7u MH_DYLINKER
case HeaderFileTypeBundle: return eStrataUser; // 0x8u MH_BUNDLE
case HeaderFileTypeDynamicShlibStub: return eStrataUser; // 0x9u MH_DYLIB_STUB
case HeaderFileTypeDSYM: return eStrataUnknown; // 0xAu MH_DSYM
case HeaderFileTypeKextBundle: return eStrataKernel; // 0xBu MH_KEXT_BUNDLE
default:
break;
}
return eStrataUnknown;
}
uint32_t
ObjectFileMachO::GetVersion (uint32_t *versions, uint32_t num_versions)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
struct dylib_command load_cmd;
uint32_t offset = MachHeaderSizeFromMagic(m_header.magic);
uint32_t version_cmd = 0;
uint64_t version = 0;
uint32_t i;
for (i=0; i<m_header.ncmds; ++i)
{
const uint32_t cmd_offset = offset;
if (m_data.GetU32(&offset, &load_cmd, 2) == NULL)
break;
if (load_cmd.cmd == LoadCommandDylibIdent)
{
if (version_cmd == 0)
{
version_cmd = load_cmd.cmd;
if (m_data.GetU32(&offset, &load_cmd.dylib, 4) == NULL)
break;
version = load_cmd.dylib.current_version;
}
break; // Break for now unless there is another more complete version
// number load command in the future.
}
offset = cmd_offset + load_cmd.cmdsize;
}
if (version_cmd == LoadCommandDylibIdent)
{
if (versions != NULL && num_versions > 0)
{
if (num_versions > 0)
versions[0] = (version & 0xFFFF0000ull) >> 16;
if (num_versions > 1)
versions[1] = (version & 0x0000FF00ull) >> 8;
if (num_versions > 2)
versions[2] = (version & 0x000000FFull);
// Fill in an remaining version numbers with invalid values
for (i=3; i<num_versions; ++i)
versions[i] = UINT32_MAX;
}
// The LC_ID_DYLIB load command has a version with 3 version numbers
// in it, so always return 3
return 3;
}
}
return false;
}
bool
ObjectFileMachO::GetArchitecture (ArchSpec &arch)
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
arch.SetArchitecture (eArchTypeMachO, m_header.cputype, m_header.cpusubtype);
// Files with type MH_PRELOAD are currently used in cases where the image
// debugs at the addresses in the file itself. Below we set the OS to
// unknown to make sure we use the DynamicLoaderStatic()...
if (m_header.filetype == HeaderFileTypePreloadedExecutable)
{
arch.GetTriple().setOS (llvm::Triple::UnknownOS);
}
return true;
}
return false;
}
//------------------------------------------------------------------
// PluginInterface protocol
//------------------------------------------------------------------
const char *
ObjectFileMachO::GetPluginName()
{
return "ObjectFileMachO";
}
const char *
ObjectFileMachO::GetShortPluginName()
{
return GetPluginNameStatic();
}
uint32_t
ObjectFileMachO::GetPluginVersion()
{
return 1;
}