llvm-project/mlir/lib/Bindings/Python/DialectTransform.cpp
max bfb1ba7526 [MLIR][python bindings] Add TypeCaster for returning refined types from python APIs
depends on D150839

This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:

```
      c0 = arith.ConstantOp(f32, 0.0)
      # CHECK: F32Type(f32)
      print(repr(c0.result.type))

      unranked_tensor_type = UnrankedTensorType.get(f32)
      unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result

      # CHECK: UnrankedTensorType
      print(type(unranked_tensor.type).__name__)
      # CHECK: UnrankedTensorType(tensor<*xf32>)
      print(repr(unranked_tensor.type))
```

This functionality immediately extends to typed attributes (i.e., `attr.type`).

The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D150927
2023-05-26 11:02:05 -05:00

66 lines
2.5 KiB
C++

//===- DialectTransform.cpp - 'transform' dialect submodule ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir-c/Dialect/Transform.h"
#include "mlir-c/IR.h"
#include "mlir-c/Support.h"
#include "mlir/Bindings/Python/PybindAdaptors.h"
namespace py = pybind11;
using namespace mlir;
using namespace mlir::python;
using namespace mlir::python::adaptors;
void populateDialectTransformSubmodule(const pybind11::module &m) {
//===-------------------------------------------------------------------===//
// AnyOpType
//===-------------------------------------------------------------------===//
auto anyOpType =
mlir_type_subclass(m, "AnyOpType", mlirTypeIsATransformAnyOpType);
anyOpType.def_classmethod(
"get",
[](py::object cls, MlirContext ctx) {
return cls(mlirTransformAnyOpTypeGet(ctx));
},
"Get an instance of AnyOpType in the given context.", py::arg("cls"),
py::arg("context") = py::none());
//===-------------------------------------------------------------------===//
// OperationType
//===-------------------------------------------------------------------===//
auto operationType =
mlir_type_subclass(m, "OperationType", mlirTypeIsATransformOperationType,
mlirTransformOperationTypeGetTypeID);
operationType.def_classmethod(
"get",
[](py::object cls, const std::string &operationName, MlirContext ctx) {
MlirStringRef cOperationName =
mlirStringRefCreate(operationName.data(), operationName.size());
return cls(mlirTransformOperationTypeGet(ctx, cOperationName));
},
"Get an instance of OperationType for the given kind in the given "
"context",
py::arg("cls"), py::arg("operation_name"),
py::arg("context") = py::none());
operationType.def_property_readonly(
"operation_name",
[](MlirType type) {
MlirStringRef operationName =
mlirTransformOperationTypeGetOperationName(type);
return py::str(operationName.data, operationName.length);
},
"Get the name of the payload operation accepted by the handle.");
}
PYBIND11_MODULE(_mlirDialectsTransform, m) {
m.doc() = "MLIR Transform dialect.";
populateDialectTransformSubmodule(m);
}