max bfb1ba7526 [MLIR][python bindings] Add TypeCaster for returning refined types from python APIs
depends on D150839

This diff uses `MlirTypeID` to register `TypeCaster`s (i.e., `[](PyType pyType) -> DerivedTy { return pyType; }`) for all concrete types (i.e., `PyConcrete<...>`) that are then queried for (by `MlirTypeID`) and called in `struct type_caster<MlirType>::cast`. The result is that anywhere an `MlirType mlirType` is returned from a python binding, that `mlirType` is automatically cast to the correct concrete type. For example:

```
      c0 = arith.ConstantOp(f32, 0.0)
      # CHECK: F32Type(f32)
      print(repr(c0.result.type))

      unranked_tensor_type = UnrankedTensorType.get(f32)
      unranked_tensor = tensor.FromElementsOp(unranked_tensor_type, [c0]).result

      # CHECK: UnrankedTensorType
      print(type(unranked_tensor.type).__name__)
      # CHECK: UnrankedTensorType(tensor<*xf32>)
      print(repr(unranked_tensor.type))
```

This functionality immediately extends to typed attributes (i.e., `attr.type`).

The diff also implements similar functionality for `mlir_type_subclass`es but in a slightly different way - for such types (which have no cpp corresponding `class` or `struct`) the user must provide a type caster in python (similar to how `AttrBuilder` works) or in cpp as a `py::cpp_function`.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D150927
2023-05-26 11:02:05 -05:00

104 lines
3.9 KiB
C++

//===- MainModule.cpp - Main pybind module --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <tuple>
#include "PybindUtils.h"
#include "Globals.h"
#include "IRModule.h"
#include "Pass.h"
namespace py = pybind11;
using namespace mlir;
using namespace py::literals;
using namespace mlir::python;
// -----------------------------------------------------------------------------
// Module initialization.
// -----------------------------------------------------------------------------
PYBIND11_MODULE(_mlir, m) {
m.doc() = "MLIR Python Native Extension";
py::class_<PyGlobals>(m, "_Globals", py::module_local())
.def_property("dialect_search_modules",
&PyGlobals::getDialectSearchPrefixes,
&PyGlobals::setDialectSearchPrefixes)
.def(
"append_dialect_search_prefix",
[](PyGlobals &self, std::string moduleName) {
self.getDialectSearchPrefixes().push_back(std::move(moduleName));
self.clearImportCache();
},
"module_name"_a)
.def("_register_dialect_impl", &PyGlobals::registerDialectImpl,
"dialect_namespace"_a, "dialect_class"_a,
"Testing hook for directly registering a dialect")
.def("_register_operation_impl", &PyGlobals::registerOperationImpl,
"operation_name"_a, "operation_class"_a,
"Testing hook for directly registering an operation");
// Aside from making the globals accessible to python, having python manage
// it is necessary to make sure it is destroyed (and releases its python
// resources) properly.
m.attr("globals") =
py::cast(new PyGlobals, py::return_value_policy::take_ownership);
// Registration decorators.
m.def(
"register_dialect",
[](py::object pyClass) {
std::string dialectNamespace =
pyClass.attr("DIALECT_NAMESPACE").cast<std::string>();
PyGlobals::get().registerDialectImpl(dialectNamespace, pyClass);
return pyClass;
},
"dialect_class"_a,
"Class decorator for registering a custom Dialect wrapper");
m.def(
"register_operation",
[](const py::object &dialectClass) -> py::cpp_function {
return py::cpp_function(
[dialectClass](py::object opClass) -> py::object {
std::string operationName =
opClass.attr("OPERATION_NAME").cast<std::string>();
PyGlobals::get().registerOperationImpl(operationName, opClass);
// Dict-stuff the new opClass by name onto the dialect class.
py::object opClassName = opClass.attr("__name__");
dialectClass.attr(opClassName) = opClass;
return opClass;
});
},
"dialect_class"_a,
"Produce a class decorator for registering an Operation class as part of "
"a dialect");
m.def(
MLIR_PYTHON_CAPI_TYPE_CASTER_REGISTER_ATTR,
[](MlirTypeID mlirTypeID, py::function typeCaster, bool replace) {
PyGlobals::get().registerTypeCaster(mlirTypeID, std::move(typeCaster),
replace);
},
"typeid"_a, "type_caster"_a, "replace"_a = false,
"Register a type caster for casting MLIR types to custom user types.");
// Define and populate IR submodule.
auto irModule = m.def_submodule("ir", "MLIR IR Bindings");
populateIRCore(irModule);
populateIRAffine(irModule);
populateIRAttributes(irModule);
populateIRInterfaces(irModule);
populateIRTypes(irModule);
// Define and populate PassManager submodule.
auto passModule =
m.def_submodule("passmanager", "MLIR Pass Management Bindings");
populatePassManagerSubmodule(passModule);
}