llvm-project/llvm/lib/DebugInfo/DWARF/DWARFContext.cpp
Kevin Frei bfdd78233f
Aggregate errors from llvm-dwarfdump --verify (#79648)
The amount and format of output from `llvm-dwarfdump --verify` makes it
quite difficult to know if a change to a tool that produces or modifies
DWARF is causing new problems, or is fixing existing problems. This diff
adds a categorized summary of issues found by the DWARF verifier, on by
default, at the bottom of the error output.

The change includes a new `--error-display` option with 4 settings:

* `--error-display=quiet`: Only display if errors occurred, but no
details or summary are printed.
* `--error-display=summary`: Only display the aggregated summary of
errors with no error detail.
* `--error-display=details`: Only display the detailed error messages
with no summary (previous behavior)
* `--error-display=full`: Display both the detailed error messages and
the aggregated summary of errors (the default)

I changed a handful of tests that were failing due to new output, adding
the flag to use the old behavior for all but a couple. For those two I
added the new aggregated output to the expected output of the test.

The `OutputCategoryAggregator` is a pretty simple little class that
@clayborg suggested to allow code to only be run to dump detail if it's
enabled, while still collating counts of the category. Knowing that the
lambda passed in is only conditionally executed is pretty important
(handling errors has to be done *outside* the lambda). I'm happy to move
this somewhere else (and change/improve it) to be more broadly useful if
folks would like.

---------

Co-authored-by: Kevin Frei <freik@meta.com>
2024-02-01 08:47:11 -08:00

2476 lines
91 KiB
C++

//===- DWARFContext.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugArangeSet.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAranges.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugFrame.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugMacro.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugRnglists.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFGdbIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFListTable.h"
#include "llvm/DebugInfo/DWARF/DWARFLocationExpression.h"
#include "llvm/DebugInfo/DWARF/DWARFRelocMap.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFTypeUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFUnitIndex.h"
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Decompressor.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/RelocationResolver.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <deque>
#include <map>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
#define DEBUG_TYPE "dwarf"
using DWARFLineTable = DWARFDebugLine::LineTable;
using FileLineInfoKind = DILineInfoSpecifier::FileLineInfoKind;
using FunctionNameKind = DILineInfoSpecifier::FunctionNameKind;
void fixupIndexV4(DWARFContext &C, DWARFUnitIndex &Index) {
using EntryType = DWARFUnitIndex::Entry::SectionContribution;
using EntryMap = DenseMap<uint32_t, EntryType>;
EntryMap Map;
const auto &DObj = C.getDWARFObj();
if (DObj.getCUIndexSection().empty())
return;
uint64_t Offset = 0;
uint32_t TruncOffset = 0;
DObj.forEachInfoDWOSections([&](const DWARFSection &S) {
if (!(C.getParseCUTUIndexManually() ||
S.Data.size() >= std::numeric_limits<uint32_t>::max()))
return;
DWARFDataExtractor Data(DObj, S, C.isLittleEndian(), 0);
while (Data.isValidOffset(Offset)) {
DWARFUnitHeader Header;
if (Error ExtractionErr = Header.extract(
C, Data, &Offset, DWARFSectionKind::DW_SECT_INFO)) {
C.getWarningHandler()(
createError("Failed to parse CU header in DWP file: " +
toString(std::move(ExtractionErr))));
Map.clear();
break;
}
auto Iter = Map.insert({TruncOffset,
{Header.getOffset(), Header.getNextUnitOffset() -
Header.getOffset()}});
if (!Iter.second) {
logAllUnhandledErrors(
createError("Collision occured between for truncated offset 0x" +
Twine::utohexstr(TruncOffset)),
errs());
Map.clear();
return;
}
Offset = Header.getNextUnitOffset();
TruncOffset = Offset;
}
});
if (Map.empty())
return;
for (DWARFUnitIndex::Entry &E : Index.getMutableRows()) {
if (!E.isValid())
continue;
DWARFUnitIndex::Entry::SectionContribution &CUOff = E.getContribution();
auto Iter = Map.find(CUOff.getOffset());
if (Iter == Map.end()) {
logAllUnhandledErrors(createError("Could not find CU offset 0x" +
Twine::utohexstr(CUOff.getOffset()) +
" in the Map"),
errs());
break;
}
CUOff.setOffset(Iter->second.getOffset());
if (CUOff.getOffset() != Iter->second.getOffset())
logAllUnhandledErrors(createError("Length of CU in CU index doesn't "
"match calculated length at offset 0x" +
Twine::utohexstr(CUOff.getOffset())),
errs());
}
}
void fixupIndexV5(DWARFContext &C, DWARFUnitIndex &Index) {
DenseMap<uint64_t, uint64_t> Map;
const auto &DObj = C.getDWARFObj();
DObj.forEachInfoDWOSections([&](const DWARFSection &S) {
if (!(C.getParseCUTUIndexManually() ||
S.Data.size() >= std::numeric_limits<uint32_t>::max()))
return;
DWARFDataExtractor Data(DObj, S, C.isLittleEndian(), 0);
uint64_t Offset = 0;
while (Data.isValidOffset(Offset)) {
DWARFUnitHeader Header;
if (Error ExtractionErr = Header.extract(
C, Data, &Offset, DWARFSectionKind::DW_SECT_INFO)) {
C.getWarningHandler()(
createError("Failed to parse CU header in DWP file: " +
toString(std::move(ExtractionErr))));
break;
}
bool CU = Header.getUnitType() == DW_UT_split_compile;
uint64_t Sig = CU ? *Header.getDWOId() : Header.getTypeHash();
Map[Sig] = Header.getOffset();
Offset = Header.getNextUnitOffset();
}
});
if (Map.empty())
return;
for (DWARFUnitIndex::Entry &E : Index.getMutableRows()) {
if (!E.isValid())
continue;
DWARFUnitIndex::Entry::SectionContribution &CUOff = E.getContribution();
auto Iter = Map.find(E.getSignature());
if (Iter == Map.end()) {
logAllUnhandledErrors(
createError("Could not find unit with signature 0x" +
Twine::utohexstr(E.getSignature()) + " in the Map"),
errs());
break;
}
CUOff.setOffset(Iter->second);
}
}
void fixupIndex(DWARFContext &C, DWARFUnitIndex &Index) {
if (Index.getVersion() < 5)
fixupIndexV4(C, Index);
else
fixupIndexV5(C, Index);
}
template <typename T>
static T &getAccelTable(std::unique_ptr<T> &Cache, const DWARFObject &Obj,
const DWARFSection &Section, StringRef StringSection,
bool IsLittleEndian) {
if (Cache)
return *Cache;
DWARFDataExtractor AccelSection(Obj, Section, IsLittleEndian, 0);
DataExtractor StrData(StringSection, IsLittleEndian, 0);
Cache = std::make_unique<T>(AccelSection, StrData);
if (Error E = Cache->extract())
llvm::consumeError(std::move(E));
return *Cache;
}
std::unique_ptr<DWARFDebugMacro>
DWARFContext::DWARFContextState::parseMacroOrMacinfo(MacroSecType SectionType) {
auto Macro = std::make_unique<DWARFDebugMacro>();
auto ParseAndDump = [&](DWARFDataExtractor &Data, bool IsMacro) {
if (Error Err = IsMacro ? Macro->parseMacro(SectionType == MacroSection
? D.compile_units()
: D.dwo_compile_units(),
SectionType == MacroSection
? D.getStringExtractor()
: D.getStringDWOExtractor(),
Data)
: Macro->parseMacinfo(Data)) {
D.getRecoverableErrorHandler()(std::move(Err));
Macro = nullptr;
}
};
const DWARFObject &DObj = D.getDWARFObj();
switch (SectionType) {
case MacinfoSection: {
DWARFDataExtractor Data(DObj.getMacinfoSection(), D.isLittleEndian(), 0);
ParseAndDump(Data, /*IsMacro=*/false);
break;
}
case MacinfoDwoSection: {
DWARFDataExtractor Data(DObj.getMacinfoDWOSection(), D.isLittleEndian(), 0);
ParseAndDump(Data, /*IsMacro=*/false);
break;
}
case MacroSection: {
DWARFDataExtractor Data(DObj, DObj.getMacroSection(), D.isLittleEndian(),
0);
ParseAndDump(Data, /*IsMacro=*/true);
break;
}
case MacroDwoSection: {
DWARFDataExtractor Data(DObj.getMacroDWOSection(), D.isLittleEndian(), 0);
ParseAndDump(Data, /*IsMacro=*/true);
break;
}
}
return Macro;
}
class ThreadUnsafeDWARFContextState : public DWARFContext::DWARFContextState {
DWARFUnitVector NormalUnits;
std::optional<DenseMap<uint64_t, DWARFTypeUnit *>> NormalTypeUnits;
std::unique_ptr<DWARFUnitIndex> CUIndex;
std::unique_ptr<DWARFGdbIndex> GdbIndex;
std::unique_ptr<DWARFUnitIndex> TUIndex;
std::unique_ptr<DWARFDebugAbbrev> Abbrev;
std::unique_ptr<DWARFDebugLoc> Loc;
std::unique_ptr<DWARFDebugAranges> Aranges;
std::unique_ptr<DWARFDebugLine> Line;
std::unique_ptr<DWARFDebugFrame> DebugFrame;
std::unique_ptr<DWARFDebugFrame> EHFrame;
std::unique_ptr<DWARFDebugMacro> Macro;
std::unique_ptr<DWARFDebugMacro> Macinfo;
std::unique_ptr<DWARFDebugNames> Names;
std::unique_ptr<AppleAcceleratorTable> AppleNames;
std::unique_ptr<AppleAcceleratorTable> AppleTypes;
std::unique_ptr<AppleAcceleratorTable> AppleNamespaces;
std::unique_ptr<AppleAcceleratorTable> AppleObjC;
DWARFUnitVector DWOUnits;
std::optional<DenseMap<uint64_t, DWARFTypeUnit *>> DWOTypeUnits;
std::unique_ptr<DWARFDebugAbbrev> AbbrevDWO;
std::unique_ptr<DWARFDebugMacro> MacinfoDWO;
std::unique_ptr<DWARFDebugMacro> MacroDWO;
struct DWOFile {
object::OwningBinary<object::ObjectFile> File;
std::unique_ptr<DWARFContext> Context;
};
StringMap<std::weak_ptr<DWOFile>> DWOFiles;
std::weak_ptr<DWOFile> DWP;
bool CheckedForDWP = false;
std::string DWPName;
public:
ThreadUnsafeDWARFContextState(DWARFContext &DC, std::string &DWP) :
DWARFContext::DWARFContextState(DC),
DWPName(std::move(DWP)) {}
DWARFUnitVector &getNormalUnits() override {
if (NormalUnits.empty()) {
const DWARFObject &DObj = D.getDWARFObj();
DObj.forEachInfoSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(D, S, DW_SECT_INFO);
});
NormalUnits.finishedInfoUnits();
DObj.forEachTypesSections([&](const DWARFSection &S) {
NormalUnits.addUnitsForSection(D, S, DW_SECT_EXT_TYPES);
});
}
return NormalUnits;
}
DWARFUnitVector &getDWOUnits(bool Lazy) override {
if (DWOUnits.empty()) {
const DWARFObject &DObj = D.getDWARFObj();
DObj.forEachInfoDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(D, S, DW_SECT_INFO, Lazy);
});
DWOUnits.finishedInfoUnits();
DObj.forEachTypesDWOSections([&](const DWARFSection &S) {
DWOUnits.addUnitsForDWOSection(D, S, DW_SECT_EXT_TYPES, Lazy);
});
}
return DWOUnits;
}
const DWARFDebugAbbrev *getDebugAbbrevDWO() override {
if (AbbrevDWO)
return AbbrevDWO.get();
const DWARFObject &DObj = D.getDWARFObj();
DataExtractor abbrData(DObj.getAbbrevDWOSection(), D.isLittleEndian(), 0);
AbbrevDWO = std::make_unique<DWARFDebugAbbrev>(abbrData);
return AbbrevDWO.get();
}
const DWARFUnitIndex &getCUIndex() override {
if (CUIndex)
return *CUIndex;
DataExtractor Data(D.getDWARFObj().getCUIndexSection(),
D.isLittleEndian(), 0);
CUIndex = std::make_unique<DWARFUnitIndex>(DW_SECT_INFO);
if (CUIndex->parse(Data))
fixupIndex(D, *CUIndex);
return *CUIndex;
}
const DWARFUnitIndex &getTUIndex() override {
if (TUIndex)
return *TUIndex;
DataExtractor Data(D.getDWARFObj().getTUIndexSection(),
D.isLittleEndian(), 0);
TUIndex = std::make_unique<DWARFUnitIndex>(DW_SECT_EXT_TYPES);
bool isParseSuccessful = TUIndex->parse(Data);
// If we are parsing TU-index and for .debug_types section we don't need
// to do anything.
if (isParseSuccessful && TUIndex->getVersion() != 2)
fixupIndex(D, *TUIndex);
return *TUIndex;
}
DWARFGdbIndex &getGdbIndex() override {
if (GdbIndex)
return *GdbIndex;
DataExtractor Data(D.getDWARFObj().getGdbIndexSection(), true /*LE*/, 0);
GdbIndex = std::make_unique<DWARFGdbIndex>();
GdbIndex->parse(Data);
return *GdbIndex;
}
const DWARFDebugAbbrev *getDebugAbbrev() override {
if (Abbrev)
return Abbrev.get();
DataExtractor Data(D.getDWARFObj().getAbbrevSection(),
D.isLittleEndian(), 0);
Abbrev = std::make_unique<DWARFDebugAbbrev>(Data);
return Abbrev.get();
}
const DWARFDebugLoc *getDebugLoc() override {
if (Loc)
return Loc.get();
const DWARFObject &DObj = D.getDWARFObj();
// Assume all units have the same address byte size.
auto Data =
D.getNumCompileUnits()
? DWARFDataExtractor(DObj, DObj.getLocSection(), D.isLittleEndian(),
D.getUnitAtIndex(0)->getAddressByteSize())
: DWARFDataExtractor("", D.isLittleEndian(), 0);
Loc = std::make_unique<DWARFDebugLoc>(std::move(Data));
return Loc.get();
}
const DWARFDebugAranges *getDebugAranges() override {
if (Aranges)
return Aranges.get();
Aranges = std::make_unique<DWARFDebugAranges>();
Aranges->generate(&D);
return Aranges.get();
}
Expected<const DWARFDebugLine::LineTable *>
getLineTableForUnit(DWARFUnit *U, function_ref<void(Error)> RecoverableErrorHandler) override {
if (!Line)
Line = std::make_unique<DWARFDebugLine>();
auto UnitDIE = U->getUnitDIE();
if (!UnitDIE)
return nullptr;
auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
if (!Offset)
return nullptr; // No line table for this compile unit.
uint64_t stmtOffset = *Offset + U->getLineTableOffset();
// See if the line table is cached.
if (const DWARFLineTable *lt = Line->getLineTable(stmtOffset))
return lt;
// Make sure the offset is good before we try to parse.
if (stmtOffset >= U->getLineSection().Data.size())
return nullptr;
// We have to parse it first.
DWARFDataExtractor Data(U->getContext().getDWARFObj(), U->getLineSection(),
U->isLittleEndian(), U->getAddressByteSize());
return Line->getOrParseLineTable(Data, stmtOffset, U->getContext(), U,
RecoverableErrorHandler);
}
void clearLineTableForUnit(DWARFUnit *U) override {
if (!Line)
return;
auto UnitDIE = U->getUnitDIE();
if (!UnitDIE)
return;
auto Offset = toSectionOffset(UnitDIE.find(DW_AT_stmt_list));
if (!Offset)
return;
uint64_t stmtOffset = *Offset + U->getLineTableOffset();
Line->clearLineTable(stmtOffset);
}
Expected<const DWARFDebugFrame *> getDebugFrame() override {
if (DebugFrame)
return DebugFrame.get();
const DWARFObject &DObj = D.getDWARFObj();
const DWARFSection &DS = DObj.getFrameSection();
// There's a "bug" in the DWARFv3 standard with respect to the target address
// size within debug frame sections. While DWARF is supposed to be independent
// of its container, FDEs have fields with size being "target address size",
// which isn't specified in DWARF in general. It's only specified for CUs, but
// .eh_frame can appear without a .debug_info section. Follow the example of
// other tools (libdwarf) and extract this from the container (ObjectFile
// provides this information). This problem is fixed in DWARFv4
// See this dwarf-discuss discussion for more details:
// http://lists.dwarfstd.org/htdig.cgi/dwarf-discuss-dwarfstd.org/2011-December/001173.html
DWARFDataExtractor Data(DObj, DS, D.isLittleEndian(),
DObj.getAddressSize());
auto DF =
std::make_unique<DWARFDebugFrame>(D.getArch(), /*IsEH=*/false,
DS.Address);
if (Error E = DF->parse(Data))
return std::move(E);
DebugFrame.swap(DF);
return DebugFrame.get();
}
Expected<const DWARFDebugFrame *> getEHFrame() override {
if (EHFrame)
return EHFrame.get();
const DWARFObject &DObj = D.getDWARFObj();
const DWARFSection &DS = DObj.getEHFrameSection();
DWARFDataExtractor Data(DObj, DS, D.isLittleEndian(),
DObj.getAddressSize());
auto DF =
std::make_unique<DWARFDebugFrame>(D.getArch(), /*IsEH=*/true,
DS.Address);
if (Error E = DF->parse(Data))
return std::move(E);
EHFrame.swap(DF);
return EHFrame.get();
}
const DWARFDebugMacro *getDebugMacinfo() override {
if (!Macinfo)
Macinfo = parseMacroOrMacinfo(MacinfoSection);
return Macinfo.get();
}
const DWARFDebugMacro *getDebugMacinfoDWO() override {
if (!MacinfoDWO)
MacinfoDWO = parseMacroOrMacinfo(MacinfoDwoSection);
return MacinfoDWO.get();
}
const DWARFDebugMacro *getDebugMacro() override {
if (!Macro)
Macro = parseMacroOrMacinfo(MacroSection);
return Macro.get();
}
const DWARFDebugMacro *getDebugMacroDWO() override {
if (!MacroDWO)
MacroDWO = parseMacroOrMacinfo(MacroDwoSection);
return MacroDWO.get();
}
const DWARFDebugNames &getDebugNames() override {
const DWARFObject &DObj = D.getDWARFObj();
return getAccelTable(Names, DObj, DObj.getNamesSection(),
DObj.getStrSection(), D.isLittleEndian());
}
const AppleAcceleratorTable &getAppleNames() override {
const DWARFObject &DObj = D.getDWARFObj();
return getAccelTable(AppleNames, DObj, DObj.getAppleNamesSection(),
DObj.getStrSection(), D.isLittleEndian());
}
const AppleAcceleratorTable &getAppleTypes() override {
const DWARFObject &DObj = D.getDWARFObj();
return getAccelTable(AppleTypes, DObj, DObj.getAppleTypesSection(),
DObj.getStrSection(), D.isLittleEndian());
}
const AppleAcceleratorTable &getAppleNamespaces() override {
const DWARFObject &DObj = D.getDWARFObj();
return getAccelTable(AppleNamespaces, DObj,
DObj.getAppleNamespacesSection(),
DObj.getStrSection(), D.isLittleEndian());
}
const AppleAcceleratorTable &getAppleObjC() override {
const DWARFObject &DObj = D.getDWARFObj();
return getAccelTable(AppleObjC, DObj, DObj.getAppleObjCSection(),
DObj.getStrSection(), D.isLittleEndian());
}
std::shared_ptr<DWARFContext>
getDWOContext(StringRef AbsolutePath) override {
if (auto S = DWP.lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
std::weak_ptr<DWOFile> *Entry = &DWOFiles[AbsolutePath];
if (auto S = Entry->lock()) {
DWARFContext *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
const DWARFObject &DObj = D.getDWARFObj();
Expected<OwningBinary<ObjectFile>> Obj = [&] {
if (!CheckedForDWP) {
SmallString<128> DWPName;
auto Obj = object::ObjectFile::createObjectFile(
this->DWPName.empty()
? (DObj.getFileName() + ".dwp").toStringRef(DWPName)
: StringRef(this->DWPName));
if (Obj) {
Entry = &DWP;
return Obj;
} else {
CheckedForDWP = true;
// TODO: Should this error be handled (maybe in a high verbosity mode)
// before falling back to .dwo files?
consumeError(Obj.takeError());
}
}
return object::ObjectFile::createObjectFile(AbsolutePath);
}();
if (!Obj) {
// TODO: Actually report errors helpfully.
consumeError(Obj.takeError());
return nullptr;
}
auto S = std::make_shared<DWOFile>();
S->File = std::move(Obj.get());
// Allow multi-threaded access if there is a .dwp file as the CU index and
// TU index might be accessed from multiple threads.
bool ThreadSafe = isThreadSafe();
S->Context = DWARFContext::create(
*S->File.getBinary(), DWARFContext::ProcessDebugRelocations::Ignore,
nullptr, "", WithColor::defaultErrorHandler,
WithColor::defaultWarningHandler, ThreadSafe);
*Entry = S;
auto *Ctxt = S->Context.get();
return std::shared_ptr<DWARFContext>(std::move(S), Ctxt);
}
bool isThreadSafe() const override { return false; }
const DenseMap<uint64_t, DWARFTypeUnit *> &getNormalTypeUnitMap() {
if (!NormalTypeUnits) {
NormalTypeUnits.emplace();
for (const auto &U :D.normal_units()) {
if (DWARFTypeUnit *TU = dyn_cast<DWARFTypeUnit>(U.get()))
(*NormalTypeUnits)[TU->getTypeHash()] = TU;
}
}
return *NormalTypeUnits;
}
const DenseMap<uint64_t, DWARFTypeUnit *> &getDWOTypeUnitMap() {
if (!DWOTypeUnits) {
DWOTypeUnits.emplace();
for (const auto &U :D.dwo_units()) {
if (DWARFTypeUnit *TU = dyn_cast<DWARFTypeUnit>(U.get()))
(*DWOTypeUnits)[TU->getTypeHash()] = TU;
}
}
return *DWOTypeUnits;
}
const DenseMap<uint64_t, DWARFTypeUnit *> &
getTypeUnitMap(bool IsDWO) override {
if (IsDWO)
return getDWOTypeUnitMap();
else
return getNormalTypeUnitMap();
}
};
class ThreadSafeState : public ThreadUnsafeDWARFContextState {
std::recursive_mutex Mutex;
public:
ThreadSafeState(DWARFContext &DC, std::string &DWP) :
ThreadUnsafeDWARFContextState(DC, DWP) {}
DWARFUnitVector &getNormalUnits() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getNormalUnits();
}
DWARFUnitVector &getDWOUnits(bool Lazy) override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
// We need to not do lazy parsing when we need thread safety as
// DWARFUnitVector, in lazy mode, will slowly add things to itself and
// will cause problems in a multi-threaded environment.
return ThreadUnsafeDWARFContextState::getDWOUnits(false);
}
const DWARFUnitIndex &getCUIndex() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getCUIndex();
}
const DWARFDebugAbbrev *getDebugAbbrevDWO() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugAbbrevDWO();
}
const DWARFUnitIndex &getTUIndex() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getTUIndex();
}
DWARFGdbIndex &getGdbIndex() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getGdbIndex();
}
const DWARFDebugAbbrev *getDebugAbbrev() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugAbbrev();
}
const DWARFDebugLoc *getDebugLoc() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugLoc();
}
const DWARFDebugAranges *getDebugAranges() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugAranges();
}
Expected<const DWARFDebugLine::LineTable *>
getLineTableForUnit(DWARFUnit *U, function_ref<void(Error)> RecoverableErrorHandler) override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getLineTableForUnit(U, RecoverableErrorHandler);
}
void clearLineTableForUnit(DWARFUnit *U) override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::clearLineTableForUnit(U);
}
Expected<const DWARFDebugFrame *> getDebugFrame() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugFrame();
}
Expected<const DWARFDebugFrame *> getEHFrame() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getEHFrame();
}
const DWARFDebugMacro *getDebugMacinfo() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugMacinfo();
}
const DWARFDebugMacro *getDebugMacinfoDWO() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugMacinfoDWO();
}
const DWARFDebugMacro *getDebugMacro() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugMacro();
}
const DWARFDebugMacro *getDebugMacroDWO() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugMacroDWO();
}
const DWARFDebugNames &getDebugNames() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDebugNames();
}
const AppleAcceleratorTable &getAppleNames() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getAppleNames();
}
const AppleAcceleratorTable &getAppleTypes() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getAppleTypes();
}
const AppleAcceleratorTable &getAppleNamespaces() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getAppleNamespaces();
}
const AppleAcceleratorTable &getAppleObjC() override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getAppleObjC();
}
std::shared_ptr<DWARFContext>
getDWOContext(StringRef AbsolutePath) override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getDWOContext(AbsolutePath);
}
bool isThreadSafe() const override { return true; }
const DenseMap<uint64_t, DWARFTypeUnit *> &
getTypeUnitMap(bool IsDWO) override {
std::unique_lock<std::recursive_mutex> LockGuard(Mutex);
return ThreadUnsafeDWARFContextState::getTypeUnitMap(IsDWO);
}
};
DWARFContext::DWARFContext(std::unique_ptr<const DWARFObject> DObj,
std::string DWPName,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler,
bool ThreadSafe)
: DIContext(CK_DWARF),
RecoverableErrorHandler(RecoverableErrorHandler),
WarningHandler(WarningHandler), DObj(std::move(DObj)) {
if (ThreadSafe)
State = std::make_unique<ThreadSafeState>(*this, DWPName);
else
State = std::make_unique<ThreadUnsafeDWARFContextState>(*this, DWPName);
}
DWARFContext::~DWARFContext() = default;
/// Dump the UUID load command.
static void dumpUUID(raw_ostream &OS, const ObjectFile &Obj) {
auto *MachO = dyn_cast<MachOObjectFile>(&Obj);
if (!MachO)
return;
for (auto LC : MachO->load_commands()) {
raw_ostream::uuid_t UUID;
if (LC.C.cmd == MachO::LC_UUID) {
if (LC.C.cmdsize < sizeof(UUID) + sizeof(LC.C)) {
OS << "error: UUID load command is too short.\n";
return;
}
OS << "UUID: ";
memcpy(&UUID, LC.Ptr+sizeof(LC.C), sizeof(UUID));
OS.write_uuid(UUID);
Triple T = MachO->getArchTriple();
OS << " (" << T.getArchName() << ')';
OS << ' ' << MachO->getFileName() << '\n';
}
}
}
using ContributionCollection =
std::vector<std::optional<StrOffsetsContributionDescriptor>>;
// Collect all the contributions to the string offsets table from all units,
// sort them by their starting offsets and remove duplicates.
static ContributionCollection
collectContributionData(DWARFContext::unit_iterator_range Units) {
ContributionCollection Contributions;
for (const auto &U : Units)
if (const auto &C = U->getStringOffsetsTableContribution())
Contributions.push_back(C);
// Sort the contributions so that any invalid ones are placed at
// the start of the contributions vector. This way they are reported
// first.
llvm::sort(Contributions,
[](const std::optional<StrOffsetsContributionDescriptor> &L,
const std::optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base < R->Base;
return R.has_value();
});
// Uniquify contributions, as it is possible that units (specifically
// type units in dwo or dwp files) share contributions. We don't want
// to report them more than once.
Contributions.erase(
std::unique(Contributions.begin(), Contributions.end(),
[](const std::optional<StrOffsetsContributionDescriptor> &L,
const std::optional<StrOffsetsContributionDescriptor> &R) {
if (L && R)
return L->Base == R->Base && L->Size == R->Size;
return false;
}),
Contributions.end());
return Contributions;
}
// Dump a DWARF string offsets section. This may be a DWARF v5 formatted
// string offsets section, where each compile or type unit contributes a
// number of entries (string offsets), with each contribution preceded by
// a header containing size and version number. Alternatively, it may be a
// monolithic series of string offsets, as generated by the pre-DWARF v5
// implementation of split DWARF; however, in that case we still need to
// collect contributions of units because the size of the offsets (4 or 8
// bytes) depends on the format of the referencing unit (DWARF32 or DWARF64).
static void dumpStringOffsetsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
StringRef SectionName,
const DWARFObject &Obj,
const DWARFSection &StringOffsetsSection,
StringRef StringSection,
DWARFContext::unit_iterator_range Units,
bool LittleEndian) {
auto Contributions = collectContributionData(Units);
DWARFDataExtractor StrOffsetExt(Obj, StringOffsetsSection, LittleEndian, 0);
DataExtractor StrData(StringSection, LittleEndian, 0);
uint64_t SectionSize = StringOffsetsSection.Data.size();
uint64_t Offset = 0;
for (auto &Contribution : Contributions) {
// Report an ill-formed contribution.
if (!Contribution) {
OS << "error: invalid contribution to string offsets table in section ."
<< SectionName << ".\n";
return;
}
dwarf::DwarfFormat Format = Contribution->getFormat();
int OffsetDumpWidth = 2 * dwarf::getDwarfOffsetByteSize(Format);
uint16_t Version = Contribution->getVersion();
uint64_t ContributionHeader = Contribution->Base;
// In DWARF v5 there is a contribution header that immediately precedes
// the string offsets base (the location we have previously retrieved from
// the CU DIE's DW_AT_str_offsets attribute). The header is located either
// 8 or 16 bytes before the base, depending on the contribution's format.
if (Version >= 5)
ContributionHeader -= Format == DWARF32 ? 8 : 16;
// Detect overlapping contributions.
if (Offset > ContributionHeader) {
DumpOpts.RecoverableErrorHandler(createStringError(
errc::invalid_argument,
"overlapping contributions to string offsets table in section .%s.",
SectionName.data()));
}
// Report a gap in the table.
if (Offset < ContributionHeader) {
OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset);
OS << (ContributionHeader - Offset) << "\n";
}
OS << format("0x%8.8" PRIx64 ": ", ContributionHeader);
// In DWARF v5 the contribution size in the descriptor does not equal
// the originally encoded length (it does not contain the length of the
// version field and the padding, a total of 4 bytes). Add them back in
// for reporting.
OS << "Contribution size = " << (Contribution->Size + (Version < 5 ? 0 : 4))
<< ", Format = " << dwarf::FormatString(Format)
<< ", Version = " << Version << "\n";
Offset = Contribution->Base;
unsigned EntrySize = Contribution->getDwarfOffsetByteSize();
while (Offset - Contribution->Base < Contribution->Size) {
OS << format("0x%8.8" PRIx64 ": ", Offset);
uint64_t StringOffset =
StrOffsetExt.getRelocatedValue(EntrySize, &Offset);
OS << format("%0*" PRIx64 " ", OffsetDumpWidth, StringOffset);
const char *S = StrData.getCStr(&StringOffset);
if (S)
OS << format("\"%s\"", S);
OS << "\n";
}
}
// Report a gap at the end of the table.
if (Offset < SectionSize) {
OS << format("0x%8.8" PRIx64 ": Gap, length = ", Offset);
OS << (SectionSize - Offset) << "\n";
}
}
// Dump the .debug_addr section.
static void dumpAddrSection(raw_ostream &OS, DWARFDataExtractor &AddrData,
DIDumpOptions DumpOpts, uint16_t Version,
uint8_t AddrSize) {
uint64_t Offset = 0;
while (AddrData.isValidOffset(Offset)) {
DWARFDebugAddrTable AddrTable;
uint64_t TableOffset = Offset;
if (Error Err = AddrTable.extract(AddrData, &Offset, Version, AddrSize,
DumpOpts.WarningHandler)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (auto TableLength = AddrTable.getFullLength()) {
Offset = TableOffset + *TableLength;
continue;
}
break;
}
AddrTable.dump(OS, DumpOpts);
}
}
// Dump the .debug_rnglists or .debug_rnglists.dwo section (DWARF v5).
static void dumpRnglistsSection(
raw_ostream &OS, DWARFDataExtractor &rnglistData,
llvm::function_ref<std::optional<object::SectionedAddress>(uint32_t)>
LookupPooledAddress,
DIDumpOptions DumpOpts) {
uint64_t Offset = 0;
while (rnglistData.isValidOffset(Offset)) {
llvm::DWARFDebugRnglistTable Rnglists;
uint64_t TableOffset = Offset;
if (Error Err = Rnglists.extract(rnglistData, &Offset)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
uint64_t Length = Rnglists.length();
// Keep going after an error, if we can, assuming that the length field
// could be read. If it couldn't, stop reading the section.
if (Length == 0)
break;
Offset = TableOffset + Length;
} else {
Rnglists.dump(rnglistData, OS, LookupPooledAddress, DumpOpts);
}
}
}
static void dumpLoclistsSection(raw_ostream &OS, DIDumpOptions DumpOpts,
DWARFDataExtractor Data, const DWARFObject &Obj,
std::optional<uint64_t> DumpOffset) {
uint64_t Offset = 0;
while (Data.isValidOffset(Offset)) {
DWARFListTableHeader Header(".debug_loclists", "locations");
if (Error E = Header.extract(Data, &Offset)) {
DumpOpts.RecoverableErrorHandler(std::move(E));
return;
}
Header.dump(Data, OS, DumpOpts);
uint64_t EndOffset = Header.length() + Header.getHeaderOffset();
Data.setAddressSize(Header.getAddrSize());
DWARFDebugLoclists Loc(Data, Header.getVersion());
if (DumpOffset) {
if (DumpOffset >= Offset && DumpOffset < EndOffset) {
Offset = *DumpOffset;
Loc.dumpLocationList(&Offset, OS, /*BaseAddr=*/std::nullopt, Obj,
nullptr, DumpOpts, /*Indent=*/0);
OS << "\n";
return;
}
} else {
Loc.dumpRange(Offset, EndOffset - Offset, OS, Obj, DumpOpts);
}
Offset = EndOffset;
}
}
static void dumpPubTableSection(raw_ostream &OS, DIDumpOptions DumpOpts,
DWARFDataExtractor Data, bool GnuStyle) {
DWARFDebugPubTable Table;
Table.extract(Data, GnuStyle, DumpOpts.RecoverableErrorHandler);
Table.dump(OS);
}
void DWARFContext::dump(
raw_ostream &OS, DIDumpOptions DumpOpts,
std::array<std::optional<uint64_t>, DIDT_ID_Count> DumpOffsets) {
uint64_t DumpType = DumpOpts.DumpType;
StringRef Extension = sys::path::extension(DObj->getFileName());
bool IsDWO = (Extension == ".dwo") || (Extension == ".dwp");
// Print UUID header.
const auto *ObjFile = DObj->getFile();
if (DumpType & DIDT_UUID)
dumpUUID(OS, *ObjFile);
// Print a header for each explicitly-requested section.
// Otherwise just print one for non-empty sections.
// Only print empty .dwo section headers when dumping a .dwo file.
bool Explicit = DumpType != DIDT_All && !IsDWO;
bool ExplicitDWO = Explicit && IsDWO;
auto shouldDump = [&](bool Explicit, const char *Name, unsigned ID,
StringRef Section) -> std::optional<uint64_t> * {
unsigned Mask = 1U << ID;
bool Should = (DumpType & Mask) && (Explicit || !Section.empty());
if (!Should)
return nullptr;
OS << "\n" << Name << " contents:\n";
return &DumpOffsets[ID];
};
// Dump individual sections.
if (shouldDump(Explicit, ".debug_abbrev", DIDT_ID_DebugAbbrev,
DObj->getAbbrevSection()))
getDebugAbbrev()->dump(OS);
if (shouldDump(ExplicitDWO, ".debug_abbrev.dwo", DIDT_ID_DebugAbbrev,
DObj->getAbbrevDWOSection()))
getDebugAbbrevDWO()->dump(OS);
auto dumpDebugInfo = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugInfo])
for (const auto &U : Units) {
U->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
DWARFDie CUDie = U->getUnitDIE(false);
DWARFDie CUNonSkeletonDie = U->getNonSkeletonUnitDIE(false);
if (CUNonSkeletonDie && CUDie != CUNonSkeletonDie) {
CUNonSkeletonDie.getDwarfUnit()
->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
}
}
else
for (const auto &U : Units)
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugInfo)) {
if (Explicit || getNumCompileUnits())
dumpDebugInfo(".debug_info", info_section_units());
if (ExplicitDWO || getNumDWOCompileUnits())
dumpDebugInfo(".debug_info.dwo", dwo_info_section_units());
}
auto dumpDebugType = [&](const char *Name, unit_iterator_range Units) {
OS << '\n' << Name << " contents:\n";
for (const auto &U : Units)
if (auto DumpOffset = DumpOffsets[DIDT_ID_DebugTypes])
U->getDIEForOffset(*DumpOffset)
.dump(OS, 0, DumpOpts.noImplicitRecursion());
else
U->dump(OS, DumpOpts);
};
if ((DumpType & DIDT_DebugTypes)) {
if (Explicit || getNumTypeUnits())
dumpDebugType(".debug_types", types_section_units());
if (ExplicitDWO || getNumDWOTypeUnits())
dumpDebugType(".debug_types.dwo", dwo_types_section_units());
}
DIDumpOptions LLDumpOpts = DumpOpts;
if (LLDumpOpts.Verbose)
LLDumpOpts.DisplayRawContents = true;
if (const auto *Off = shouldDump(Explicit, ".debug_loc", DIDT_ID_DebugLoc,
DObj->getLocSection().Data)) {
getDebugLoc()->dump(OS, *DObj, LLDumpOpts, *Off);
}
if (const auto *Off =
shouldDump(Explicit, ".debug_loclists", DIDT_ID_DebugLoclists,
DObj->getLoclistsSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLoclistsSection(), isLittleEndian(),
0);
dumpLoclistsSection(OS, LLDumpOpts, Data, *DObj, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_loclists.dwo", DIDT_ID_DebugLoclists,
DObj->getLoclistsDWOSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLoclistsDWOSection(),
isLittleEndian(), 0);
dumpLoclistsSection(OS, LLDumpOpts, Data, *DObj, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_loc.dwo", DIDT_ID_DebugLoc,
DObj->getLocDWOSection().Data)) {
DWARFDataExtractor Data(*DObj, DObj->getLocDWOSection(), isLittleEndian(),
4);
DWARFDebugLoclists Loc(Data, /*Version=*/4);
if (*Off) {
uint64_t Offset = **Off;
Loc.dumpLocationList(&Offset, OS,
/*BaseAddr=*/std::nullopt, *DObj, nullptr,
LLDumpOpts,
/*Indent=*/0);
OS << "\n";
} else {
Loc.dumpRange(0, Data.getData().size(), OS, *DObj, LLDumpOpts);
}
}
if (const std::optional<uint64_t> *Off =
shouldDump(Explicit, ".debug_frame", DIDT_ID_DebugFrame,
DObj->getFrameSection().Data)) {
if (Expected<const DWARFDebugFrame *> DF = getDebugFrame())
(*DF)->dump(OS, DumpOpts, *Off);
else
RecoverableErrorHandler(DF.takeError());
}
if (const std::optional<uint64_t> *Off =
shouldDump(Explicit, ".eh_frame", DIDT_ID_DebugFrame,
DObj->getEHFrameSection().Data)) {
if (Expected<const DWARFDebugFrame *> DF = getEHFrame())
(*DF)->dump(OS, DumpOpts, *Off);
else
RecoverableErrorHandler(DF.takeError());
}
if (shouldDump(Explicit, ".debug_macro", DIDT_ID_DebugMacro,
DObj->getMacroSection().Data)) {
if (auto Macro = getDebugMacro())
Macro->dump(OS);
}
if (shouldDump(Explicit, ".debug_macro.dwo", DIDT_ID_DebugMacro,
DObj->getMacroDWOSection())) {
if (auto MacroDWO = getDebugMacroDWO())
MacroDWO->dump(OS);
}
if (shouldDump(Explicit, ".debug_macinfo", DIDT_ID_DebugMacro,
DObj->getMacinfoSection())) {
if (auto Macinfo = getDebugMacinfo())
Macinfo->dump(OS);
}
if (shouldDump(Explicit, ".debug_macinfo.dwo", DIDT_ID_DebugMacro,
DObj->getMacinfoDWOSection())) {
if (auto MacinfoDWO = getDebugMacinfoDWO())
MacinfoDWO->dump(OS);
}
if (shouldDump(Explicit, ".debug_aranges", DIDT_ID_DebugAranges,
DObj->getArangesSection())) {
uint64_t offset = 0;
DWARFDataExtractor arangesData(DObj->getArangesSection(), isLittleEndian(),
0);
DWARFDebugArangeSet set;
while (arangesData.isValidOffset(offset)) {
if (Error E =
set.extract(arangesData, &offset, DumpOpts.WarningHandler)) {
RecoverableErrorHandler(std::move(E));
break;
}
set.dump(OS);
}
}
auto DumpLineSection = [&](DWARFDebugLine::SectionParser Parser,
DIDumpOptions DumpOpts,
std::optional<uint64_t> DumpOffset) {
while (!Parser.done()) {
if (DumpOffset && Parser.getOffset() != *DumpOffset) {
Parser.skip(DumpOpts.WarningHandler, DumpOpts.WarningHandler);
continue;
}
OS << "debug_line[" << format("0x%8.8" PRIx64, Parser.getOffset())
<< "]\n";
Parser.parseNext(DumpOpts.WarningHandler, DumpOpts.WarningHandler, &OS,
DumpOpts.Verbose);
}
};
auto DumpStrSection = [&](StringRef Section) {
DataExtractor StrData(Section, isLittleEndian(), 0);
uint64_t Offset = 0;
uint64_t StrOffset = 0;
while (StrData.isValidOffset(Offset)) {
Error Err = Error::success();
const char *CStr = StrData.getCStr(&Offset, &Err);
if (Err) {
DumpOpts.WarningHandler(std::move(Err));
return;
}
OS << format("0x%8.8" PRIx64 ": \"", StrOffset);
OS.write_escaped(CStr);
OS << "\"\n";
StrOffset = Offset;
}
};
if (const auto *Off = shouldDump(Explicit, ".debug_line", DIDT_ID_DebugLine,
DObj->getLineSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineSection(), isLittleEndian(),
0);
DWARFDebugLine::SectionParser Parser(LineData, *this, normal_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (const auto *Off =
shouldDump(ExplicitDWO, ".debug_line.dwo", DIDT_ID_DebugLine,
DObj->getLineDWOSection().Data)) {
DWARFDataExtractor LineData(*DObj, DObj->getLineDWOSection(),
isLittleEndian(), 0);
DWARFDebugLine::SectionParser Parser(LineData, *this, dwo_units());
DumpLineSection(Parser, DumpOpts, *Off);
}
if (shouldDump(Explicit, ".debug_cu_index", DIDT_ID_DebugCUIndex,
DObj->getCUIndexSection())) {
getCUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_tu_index", DIDT_ID_DebugTUIndex,
DObj->getTUIndexSection())) {
getTUIndex().dump(OS);
}
if (shouldDump(Explicit, ".debug_str", DIDT_ID_DebugStr,
DObj->getStrSection()))
DumpStrSection(DObj->getStrSection());
if (shouldDump(ExplicitDWO, ".debug_str.dwo", DIDT_ID_DebugStr,
DObj->getStrDWOSection()))
DumpStrSection(DObj->getStrDWOSection());
if (shouldDump(Explicit, ".debug_line_str", DIDT_ID_DebugLineStr,
DObj->getLineStrSection()))
DumpStrSection(DObj->getLineStrSection());
if (shouldDump(Explicit, ".debug_addr", DIDT_ID_DebugAddr,
DObj->getAddrSection().Data)) {
DWARFDataExtractor AddrData(*DObj, DObj->getAddrSection(),
isLittleEndian(), 0);
dumpAddrSection(OS, AddrData, DumpOpts, getMaxVersion(), getCUAddrSize());
}
if (shouldDump(Explicit, ".debug_ranges", DIDT_ID_DebugRanges,
DObj->getRangesSection().Data)) {
uint8_t savedAddressByteSize = getCUAddrSize();
DWARFDataExtractor rangesData(*DObj, DObj->getRangesSection(),
isLittleEndian(), savedAddressByteSize);
uint64_t offset = 0;
DWARFDebugRangeList rangeList;
while (rangesData.isValidOffset(offset)) {
if (Error E = rangeList.extract(rangesData, &offset)) {
DumpOpts.RecoverableErrorHandler(std::move(E));
break;
}
rangeList.dump(OS);
}
}
auto LookupPooledAddress =
[&](uint32_t Index) -> std::optional<SectionedAddress> {
const auto &CUs = compile_units();
auto I = CUs.begin();
if (I == CUs.end())
return std::nullopt;
return (*I)->getAddrOffsetSectionItem(Index);
};
if (shouldDump(Explicit, ".debug_rnglists", DIDT_ID_DebugRnglists,
DObj->getRnglistsSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(ExplicitDWO, ".debug_rnglists.dwo", DIDT_ID_DebugRnglists,
DObj->getRnglistsDWOSection().Data)) {
DWARFDataExtractor RnglistData(*DObj, DObj->getRnglistsDWOSection(),
isLittleEndian(), 0);
dumpRnglistsSection(OS, RnglistData, LookupPooledAddress, DumpOpts);
}
if (shouldDump(Explicit, ".debug_pubnames", DIDT_ID_DebugPubnames,
DObj->getPubnamesSection().Data)) {
DWARFDataExtractor PubTableData(*DObj, DObj->getPubnamesSection(),
isLittleEndian(), 0);
dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/false);
}
if (shouldDump(Explicit, ".debug_pubtypes", DIDT_ID_DebugPubtypes,
DObj->getPubtypesSection().Data)) {
DWARFDataExtractor PubTableData(*DObj, DObj->getPubtypesSection(),
isLittleEndian(), 0);
dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/false);
}
if (shouldDump(Explicit, ".debug_gnu_pubnames", DIDT_ID_DebugGnuPubnames,
DObj->getGnuPubnamesSection().Data)) {
DWARFDataExtractor PubTableData(*DObj, DObj->getGnuPubnamesSection(),
isLittleEndian(), 0);
dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/true);
}
if (shouldDump(Explicit, ".debug_gnu_pubtypes", DIDT_ID_DebugGnuPubtypes,
DObj->getGnuPubtypesSection().Data)) {
DWARFDataExtractor PubTableData(*DObj, DObj->getGnuPubtypesSection(),
isLittleEndian(), 0);
dumpPubTableSection(OS, DumpOpts, PubTableData, /*GnuStyle=*/true);
}
if (shouldDump(Explicit, ".debug_str_offsets", DIDT_ID_DebugStrOffsets,
DObj->getStrOffsetsSection().Data))
dumpStringOffsetsSection(
OS, DumpOpts, "debug_str_offsets", *DObj, DObj->getStrOffsetsSection(),
DObj->getStrSection(), normal_units(), isLittleEndian());
if (shouldDump(ExplicitDWO, ".debug_str_offsets.dwo", DIDT_ID_DebugStrOffsets,
DObj->getStrOffsetsDWOSection().Data))
dumpStringOffsetsSection(OS, DumpOpts, "debug_str_offsets.dwo", *DObj,
DObj->getStrOffsetsDWOSection(),
DObj->getStrDWOSection(), dwo_units(),
isLittleEndian());
if (shouldDump(Explicit, ".gdb_index", DIDT_ID_GdbIndex,
DObj->getGdbIndexSection())) {
getGdbIndex().dump(OS);
}
if (shouldDump(Explicit, ".apple_names", DIDT_ID_AppleNames,
DObj->getAppleNamesSection().Data))
getAppleNames().dump(OS);
if (shouldDump(Explicit, ".apple_types", DIDT_ID_AppleTypes,
DObj->getAppleTypesSection().Data))
getAppleTypes().dump(OS);
if (shouldDump(Explicit, ".apple_namespaces", DIDT_ID_AppleNamespaces,
DObj->getAppleNamespacesSection().Data))
getAppleNamespaces().dump(OS);
if (shouldDump(Explicit, ".apple_objc", DIDT_ID_AppleObjC,
DObj->getAppleObjCSection().Data))
getAppleObjC().dump(OS);
if (shouldDump(Explicit, ".debug_names", DIDT_ID_DebugNames,
DObj->getNamesSection().Data))
getDebugNames().dump(OS);
}
DWARFTypeUnit *DWARFContext::getTypeUnitForHash(uint16_t Version, uint64_t Hash,
bool IsDWO) {
DWARFUnitVector &DWOUnits = State->getDWOUnits();
if (const auto &TUI = getTUIndex()) {
if (const auto *R = TUI.getFromHash(Hash))
return dyn_cast_or_null<DWARFTypeUnit>(
DWOUnits.getUnitForIndexEntry(*R));
return nullptr;
}
return State->getTypeUnitMap(IsDWO).lookup(Hash);
}
DWARFCompileUnit *DWARFContext::getDWOCompileUnitForHash(uint64_t Hash) {
DWARFUnitVector &DWOUnits = State->getDWOUnits(LazyParse);
if (const auto &CUI = getCUIndex()) {
if (const auto *R = CUI.getFromHash(Hash))
return dyn_cast_or_null<DWARFCompileUnit>(
DWOUnits.getUnitForIndexEntry(*R));
return nullptr;
}
// If there's no index, just search through the CUs in the DWO - there's
// probably only one unless this is something like LTO - though an in-process
// built/cached lookup table could be used in that case to improve repeated
// lookups of different CUs in the DWO.
for (const auto &DWOCU : dwo_compile_units()) {
// Might not have parsed DWO ID yet.
if (!DWOCU->getDWOId()) {
if (std::optional<uint64_t> DWOId =
toUnsigned(DWOCU->getUnitDIE().find(DW_AT_GNU_dwo_id)))
DWOCU->setDWOId(*DWOId);
else
// No DWO ID?
continue;
}
if (DWOCU->getDWOId() == Hash)
return dyn_cast<DWARFCompileUnit>(DWOCU.get());
}
return nullptr;
}
DWARFDie DWARFContext::getDIEForOffset(uint64_t Offset) {
if (auto *CU = State->getNormalUnits().getUnitForOffset(Offset))
return CU->getDIEForOffset(Offset);
return DWARFDie();
}
bool DWARFContext::verify(raw_ostream &OS, DIDumpOptions DumpOpts) {
bool Success = true;
DWARFVerifier verifier(OS, *this, DumpOpts);
Success &= verifier.handleDebugAbbrev();
if (DumpOpts.DumpType & DIDT_DebugCUIndex)
Success &= verifier.handleDebugCUIndex();
if (DumpOpts.DumpType & DIDT_DebugTUIndex)
Success &= verifier.handleDebugTUIndex();
if (DumpOpts.DumpType & DIDT_DebugInfo)
Success &= verifier.handleDebugInfo();
if (DumpOpts.DumpType & DIDT_DebugLine)
Success &= verifier.handleDebugLine();
if (DumpOpts.DumpType & DIDT_DebugStrOffsets)
Success &= verifier.handleDebugStrOffsets();
Success &= verifier.handleAccelTables();
verifier.summarize();
return Success;
}
const DWARFUnitIndex &DWARFContext::getCUIndex() {
return State->getCUIndex();
}
const DWARFUnitIndex &DWARFContext::getTUIndex() {
return State->getTUIndex();
}
DWARFGdbIndex &DWARFContext::getGdbIndex() {
return State->getGdbIndex();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrev() {
return State->getDebugAbbrev();
}
const DWARFDebugAbbrev *DWARFContext::getDebugAbbrevDWO() {
return State->getDebugAbbrevDWO();
}
const DWARFDebugLoc *DWARFContext::getDebugLoc() {
return State->getDebugLoc();
}
const DWARFDebugAranges *DWARFContext::getDebugAranges() {
return State->getDebugAranges();
}
Expected<const DWARFDebugFrame *> DWARFContext::getDebugFrame() {
return State->getDebugFrame();
}
Expected<const DWARFDebugFrame *> DWARFContext::getEHFrame() {
return State->getEHFrame();
}
const DWARFDebugMacro *DWARFContext::getDebugMacro() {
return State->getDebugMacro();
}
const DWARFDebugMacro *DWARFContext::getDebugMacroDWO() {
return State->getDebugMacroDWO();
}
const DWARFDebugMacro *DWARFContext::getDebugMacinfo() {
return State->getDebugMacinfo();
}
const DWARFDebugMacro *DWARFContext::getDebugMacinfoDWO() {
return State->getDebugMacinfoDWO();
}
const DWARFDebugNames &DWARFContext::getDebugNames() {
return State->getDebugNames();
}
const AppleAcceleratorTable &DWARFContext::getAppleNames() {
return State->getAppleNames();
}
const AppleAcceleratorTable &DWARFContext::getAppleTypes() {
return State->getAppleTypes();
}
const AppleAcceleratorTable &DWARFContext::getAppleNamespaces() {
return State->getAppleNamespaces();
}
const AppleAcceleratorTable &DWARFContext::getAppleObjC() {
return State->getAppleObjC();
}
const DWARFDebugLine::LineTable *
DWARFContext::getLineTableForUnit(DWARFUnit *U) {
Expected<const DWARFDebugLine::LineTable *> ExpectedLineTable =
getLineTableForUnit(U, WarningHandler);
if (!ExpectedLineTable) {
WarningHandler(ExpectedLineTable.takeError());
return nullptr;
}
return *ExpectedLineTable;
}
Expected<const DWARFDebugLine::LineTable *> DWARFContext::getLineTableForUnit(
DWARFUnit *U, function_ref<void(Error)> RecoverableErrorHandler) {
return State->getLineTableForUnit(U, RecoverableErrorHandler);
}
void DWARFContext::clearLineTableForUnit(DWARFUnit *U) {
return State->clearLineTableForUnit(U);
}
DWARFUnitVector &DWARFContext::getDWOUnits(bool Lazy) {
return State->getDWOUnits(Lazy);
}
DWARFCompileUnit *DWARFContext::getCompileUnitForOffset(uint64_t Offset) {
return dyn_cast_or_null<DWARFCompileUnit>(
State->getNormalUnits().getUnitForOffset(Offset));
}
DWARFCompileUnit *DWARFContext::getCompileUnitForCodeAddress(uint64_t Address) {
uint64_t CUOffset = getDebugAranges()->findAddress(Address);
return getCompileUnitForOffset(CUOffset);
}
DWARFCompileUnit *DWARFContext::getCompileUnitForDataAddress(uint64_t Address) {
uint64_t CUOffset = getDebugAranges()->findAddress(Address);
if (DWARFCompileUnit *OffsetCU = getCompileUnitForOffset(CUOffset))
return OffsetCU;
// Global variables are often missed by the above search, for one of two
// reasons:
// 1. .debug_aranges may not include global variables. On clang, it seems we
// put the globals in the aranges, but this isn't true for gcc.
// 2. Even if the global variable is in a .debug_arange, global variables
// may not be captured in the [start, end) addresses described by the
// parent compile unit.
//
// So, we walk the CU's and their child DI's manually, looking for the
// specific global variable.
for (std::unique_ptr<DWARFUnit> &CU : compile_units()) {
if (CU->getVariableForAddress(Address)) {
return static_cast<DWARFCompileUnit *>(CU.get());
}
}
return nullptr;
}
DWARFContext::DIEsForAddress DWARFContext::getDIEsForAddress(uint64_t Address,
bool CheckDWO) {
DIEsForAddress Result;
DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address);
if (!CU)
return Result;
if (CheckDWO) {
// We were asked to check the DWO file and this debug information is more
// complete that any information in the skeleton compile unit, so search the
// DWO first to see if we have a match.
DWARFDie CUDie = CU->getUnitDIE(false);
DWARFDie CUDwoDie = CU->getNonSkeletonUnitDIE(false);
if (CheckDWO && CUDwoDie && CUDie != CUDwoDie) {
// We have a DWO file, lets search it.
DWARFCompileUnit *CUDwo =
dyn_cast_or_null<DWARFCompileUnit>(CUDwoDie.getDwarfUnit());
if (CUDwo) {
Result.FunctionDIE = CUDwo->getSubroutineForAddress(Address);
if (Result.FunctionDIE)
Result.CompileUnit = CUDwo;
}
}
}
// Search the normal DWARF if we didn't find a match in the DWO file or if
// we didn't check the DWO file above.
if (!Result) {
Result.CompileUnit = CU;
Result.FunctionDIE = CU->getSubroutineForAddress(Address);
}
std::vector<DWARFDie> Worklist;
Worklist.push_back(Result.FunctionDIE);
while (!Worklist.empty()) {
DWARFDie DIE = Worklist.back();
Worklist.pop_back();
if (!DIE.isValid())
continue;
if (DIE.getTag() == DW_TAG_lexical_block &&
DIE.addressRangeContainsAddress(Address)) {
Result.BlockDIE = DIE;
break;
}
append_range(Worklist, DIE);
}
return Result;
}
/// TODO: change input parameter from "uint64_t Address"
/// into "SectionedAddress Address"
static bool getFunctionNameAndStartLineForAddress(
DWARFCompileUnit *CU, uint64_t Address, FunctionNameKind Kind,
DILineInfoSpecifier::FileLineInfoKind FileNameKind,
std::string &FunctionName, std::string &StartFile, uint32_t &StartLine,
std::optional<uint64_t> &StartAddress) {
// The address may correspond to instruction in some inlined function,
// so we have to build the chain of inlined functions and take the
// name of the topmost function in it.
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address, InlinedChain);
if (InlinedChain.empty())
return false;
const DWARFDie &DIE = InlinedChain[0];
bool FoundResult = false;
const char *Name = nullptr;
if (Kind != FunctionNameKind::None && (Name = DIE.getSubroutineName(Kind))) {
FunctionName = Name;
FoundResult = true;
}
std::string DeclFile = DIE.getDeclFile(FileNameKind);
if (!DeclFile.empty()) {
StartFile = DeclFile;
FoundResult = true;
}
if (auto DeclLineResult = DIE.getDeclLine()) {
StartLine = DeclLineResult;
FoundResult = true;
}
if (auto LowPcAddr = toSectionedAddress(DIE.find(DW_AT_low_pc)))
StartAddress = LowPcAddr->Address;
return FoundResult;
}
static std::optional<int64_t>
getExpressionFrameOffset(ArrayRef<uint8_t> Expr,
std::optional<unsigned> FrameBaseReg) {
if (!Expr.empty() &&
(Expr[0] == DW_OP_fbreg ||
(FrameBaseReg && Expr[0] == DW_OP_breg0 + *FrameBaseReg))) {
unsigned Count;
int64_t Offset = decodeSLEB128(Expr.data() + 1, &Count, Expr.end());
// A single DW_OP_fbreg or DW_OP_breg.
if (Expr.size() == Count + 1)
return Offset;
// Same + DW_OP_deref (Fortran arrays look like this).
if (Expr.size() == Count + 2 && Expr[Count + 1] == DW_OP_deref)
return Offset;
// Fallthrough. Do not accept ex. (DW_OP_breg W29, DW_OP_stack_value)
}
return std::nullopt;
}
void DWARFContext::addLocalsForDie(DWARFCompileUnit *CU, DWARFDie Subprogram,
DWARFDie Die, std::vector<DILocal> &Result) {
if (Die.getTag() == DW_TAG_variable ||
Die.getTag() == DW_TAG_formal_parameter) {
DILocal Local;
if (const char *Name = Subprogram.getSubroutineName(DINameKind::ShortName))
Local.FunctionName = Name;
std::optional<unsigned> FrameBaseReg;
if (auto FrameBase = Subprogram.find(DW_AT_frame_base))
if (std::optional<ArrayRef<uint8_t>> Expr = FrameBase->getAsBlock())
if (!Expr->empty() && (*Expr)[0] >= DW_OP_reg0 &&
(*Expr)[0] <= DW_OP_reg31) {
FrameBaseReg = (*Expr)[0] - DW_OP_reg0;
}
if (Expected<std::vector<DWARFLocationExpression>> Loc =
Die.getLocations(DW_AT_location)) {
for (const auto &Entry : *Loc) {
if (std::optional<int64_t> FrameOffset =
getExpressionFrameOffset(Entry.Expr, FrameBaseReg)) {
Local.FrameOffset = *FrameOffset;
break;
}
}
} else {
// FIXME: missing DW_AT_location is OK here, but other errors should be
// reported to the user.
consumeError(Loc.takeError());
}
if (auto TagOffsetAttr = Die.find(DW_AT_LLVM_tag_offset))
Local.TagOffset = TagOffsetAttr->getAsUnsignedConstant();
if (auto Origin =
Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin))
Die = Origin;
if (auto NameAttr = Die.find(DW_AT_name))
if (std::optional<const char *> Name = dwarf::toString(*NameAttr))
Local.Name = *Name;
if (auto Type = Die.getAttributeValueAsReferencedDie(DW_AT_type))
Local.Size = Type.getTypeSize(getCUAddrSize());
if (auto DeclFileAttr = Die.find(DW_AT_decl_file)) {
if (const auto *LT = CU->getContext().getLineTableForUnit(CU))
LT->getFileNameByIndex(
*DeclFileAttr->getAsUnsignedConstant(), CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath,
Local.DeclFile);
}
if (auto DeclLineAttr = Die.find(DW_AT_decl_line))
Local.DeclLine = *DeclLineAttr->getAsUnsignedConstant();
Result.push_back(Local);
return;
}
if (Die.getTag() == DW_TAG_inlined_subroutine)
if (auto Origin =
Die.getAttributeValueAsReferencedDie(DW_AT_abstract_origin))
Subprogram = Origin;
for (auto Child : Die)
addLocalsForDie(CU, Subprogram, Child, Result);
}
std::vector<DILocal>
DWARFContext::getLocalsForAddress(object::SectionedAddress Address) {
std::vector<DILocal> Result;
DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address);
if (!CU)
return Result;
DWARFDie Subprogram = CU->getSubroutineForAddress(Address.Address);
if (Subprogram.isValid())
addLocalsForDie(CU, Subprogram, Subprogram, Result);
return Result;
}
DILineInfo DWARFContext::getLineInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address);
if (!CU)
return Result;
getFunctionNameAndStartLineForAddress(
CU, Address.Address, Spec.FNKind, Spec.FLIKind, Result.FunctionName,
Result.StartFileName, Result.StartLine, Result.StartAddress);
if (Spec.FLIKind != FileLineInfoKind::None) {
if (const DWARFLineTable *LineTable = getLineTableForUnit(CU)) {
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Result);
}
}
return Result;
}
DILineInfo
DWARFContext::getLineInfoForDataAddress(object::SectionedAddress Address) {
DILineInfo Result;
DWARFCompileUnit *CU = getCompileUnitForDataAddress(Address.Address);
if (!CU)
return Result;
if (DWARFDie Die = CU->getVariableForAddress(Address.Address)) {
Result.FileName = Die.getDeclFile(FileLineInfoKind::AbsoluteFilePath);
Result.Line = Die.getDeclLine();
}
return Result;
}
DILineInfoTable DWARFContext::getLineInfoForAddressRange(
object::SectionedAddress Address, uint64_t Size, DILineInfoSpecifier Spec) {
DILineInfoTable Lines;
DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address);
if (!CU)
return Lines;
uint32_t StartLine = 0;
std::string StartFileName;
std::string FunctionName(DILineInfo::BadString);
std::optional<uint64_t> StartAddress;
getFunctionNameAndStartLineForAddress(CU, Address.Address, Spec.FNKind,
Spec.FLIKind, FunctionName,
StartFileName, StartLine, StartAddress);
// If the Specifier says we don't need FileLineInfo, just
// return the top-most function at the starting address.
if (Spec.FLIKind == FileLineInfoKind::None) {
DILineInfo Result;
Result.FunctionName = FunctionName;
Result.StartFileName = StartFileName;
Result.StartLine = StartLine;
Result.StartAddress = StartAddress;
Lines.push_back(std::make_pair(Address.Address, Result));
return Lines;
}
const DWARFLineTable *LineTable = getLineTableForUnit(CU);
// Get the index of row we're looking for in the line table.
std::vector<uint32_t> RowVector;
if (!LineTable->lookupAddressRange({Address.Address, Address.SectionIndex},
Size, RowVector)) {
return Lines;
}
for (uint32_t RowIndex : RowVector) {
// Take file number and line/column from the row.
const DWARFDebugLine::Row &Row = LineTable->Rows[RowIndex];
DILineInfo Result;
LineTable->getFileNameByIndex(Row.File, CU->getCompilationDir(),
Spec.FLIKind, Result.FileName);
Result.FunctionName = FunctionName;
Result.Line = Row.Line;
Result.Column = Row.Column;
Result.StartFileName = StartFileName;
Result.StartLine = StartLine;
Result.StartAddress = StartAddress;
Lines.push_back(std::make_pair(Row.Address.Address, Result));
}
return Lines;
}
DIInliningInfo
DWARFContext::getInliningInfoForAddress(object::SectionedAddress Address,
DILineInfoSpecifier Spec) {
DIInliningInfo InliningInfo;
DWARFCompileUnit *CU = getCompileUnitForCodeAddress(Address.Address);
if (!CU)
return InliningInfo;
const DWARFLineTable *LineTable = nullptr;
SmallVector<DWARFDie, 4> InlinedChain;
CU->getInlinedChainForAddress(Address.Address, InlinedChain);
if (InlinedChain.size() == 0) {
// If there is no DIE for address (e.g. it is in unavailable .dwo file),
// try to at least get file/line info from symbol table.
if (Spec.FLIKind != FileLineInfoKind::None) {
DILineInfo Frame;
LineTable = getLineTableForUnit(CU);
if (LineTable && LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex},
CU->getCompilationDir(), Spec.FLIKind, Frame))
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
uint32_t CallFile = 0, CallLine = 0, CallColumn = 0, CallDiscriminator = 0;
for (uint32_t i = 0, n = InlinedChain.size(); i != n; i++) {
DWARFDie &FunctionDIE = InlinedChain[i];
DILineInfo Frame;
// Get function name if necessary.
if (const char *Name = FunctionDIE.getSubroutineName(Spec.FNKind))
Frame.FunctionName = Name;
if (auto DeclLineResult = FunctionDIE.getDeclLine())
Frame.StartLine = DeclLineResult;
Frame.StartFileName = FunctionDIE.getDeclFile(Spec.FLIKind);
if (auto LowPcAddr = toSectionedAddress(FunctionDIE.find(DW_AT_low_pc)))
Frame.StartAddress = LowPcAddr->Address;
if (Spec.FLIKind != FileLineInfoKind::None) {
if (i == 0) {
// For the topmost frame, initialize the line table of this
// compile unit and fetch file/line info from it.
LineTable = getLineTableForUnit(CU);
// For the topmost routine, get file/line info from line table.
if (LineTable)
LineTable->getFileLineInfoForAddress(
{Address.Address, Address.SectionIndex}, CU->getCompilationDir(),
Spec.FLIKind, Frame);
} else {
// Otherwise, use call file, call line and call column from
// previous DIE in inlined chain.
if (LineTable)
LineTable->getFileNameByIndex(CallFile, CU->getCompilationDir(),
Spec.FLIKind, Frame.FileName);
Frame.Line = CallLine;
Frame.Column = CallColumn;
Frame.Discriminator = CallDiscriminator;
}
// Get call file/line/column of a current DIE.
if (i + 1 < n) {
FunctionDIE.getCallerFrame(CallFile, CallLine, CallColumn,
CallDiscriminator);
}
}
InliningInfo.addFrame(Frame);
}
return InliningInfo;
}
std::shared_ptr<DWARFContext>
DWARFContext::getDWOContext(StringRef AbsolutePath) {
return State->getDWOContext(AbsolutePath);
}
static Error createError(const Twine &Reason, llvm::Error E) {
return make_error<StringError>(Reason + toString(std::move(E)),
inconvertibleErrorCode());
}
/// SymInfo contains information about symbol: it's address
/// and section index which is -1LL for absolute symbols.
struct SymInfo {
uint64_t Address;
uint64_t SectionIndex;
};
/// Returns the address of symbol relocation used against and a section index.
/// Used for futher relocations computation. Symbol's section load address is
static Expected<SymInfo> getSymbolInfo(const object::ObjectFile &Obj,
const RelocationRef &Reloc,
const LoadedObjectInfo *L,
std::map<SymbolRef, SymInfo> &Cache) {
SymInfo Ret = {0, (uint64_t)-1LL};
object::section_iterator RSec = Obj.section_end();
object::symbol_iterator Sym = Reloc.getSymbol();
std::map<SymbolRef, SymInfo>::iterator CacheIt = Cache.end();
// First calculate the address of the symbol or section as it appears
// in the object file
if (Sym != Obj.symbol_end()) {
bool New;
std::tie(CacheIt, New) = Cache.insert({*Sym, {0, 0}});
if (!New)
return CacheIt->second;
Expected<uint64_t> SymAddrOrErr = Sym->getAddress();
if (!SymAddrOrErr)
return createError("failed to compute symbol address: ",
SymAddrOrErr.takeError());
// Also remember what section this symbol is in for later
auto SectOrErr = Sym->getSection();
if (!SectOrErr)
return createError("failed to get symbol section: ",
SectOrErr.takeError());
RSec = *SectOrErr;
Ret.Address = *SymAddrOrErr;
} else if (auto *MObj = dyn_cast<MachOObjectFile>(&Obj)) {
RSec = MObj->getRelocationSection(Reloc.getRawDataRefImpl());
Ret.Address = RSec->getAddress();
}
if (RSec != Obj.section_end())
Ret.SectionIndex = RSec->getIndex();
// If we are given load addresses for the sections, we need to adjust:
// SymAddr = (Address of Symbol Or Section in File) -
// (Address of Section in File) +
// (Load Address of Section)
// RSec is now either the section being targeted or the section
// containing the symbol being targeted. In either case,
// we need to perform the same computation.
if (L && RSec != Obj.section_end())
if (uint64_t SectionLoadAddress = L->getSectionLoadAddress(*RSec))
Ret.Address += SectionLoadAddress - RSec->getAddress();
if (CacheIt != Cache.end())
CacheIt->second = Ret;
return Ret;
}
static bool isRelocScattered(const object::ObjectFile &Obj,
const RelocationRef &Reloc) {
const MachOObjectFile *MachObj = dyn_cast<MachOObjectFile>(&Obj);
if (!MachObj)
return false;
// MachO also has relocations that point to sections and
// scattered relocations.
auto RelocInfo = MachObj->getRelocation(Reloc.getRawDataRefImpl());
return MachObj->isRelocationScattered(RelocInfo);
}
namespace {
struct DWARFSectionMap final : public DWARFSection {
RelocAddrMap Relocs;
};
class DWARFObjInMemory final : public DWARFObject {
bool IsLittleEndian;
uint8_t AddressSize;
StringRef FileName;
const object::ObjectFile *Obj = nullptr;
std::vector<SectionName> SectionNames;
using InfoSectionMap = MapVector<object::SectionRef, DWARFSectionMap,
std::map<object::SectionRef, unsigned>>;
InfoSectionMap InfoSections;
InfoSectionMap TypesSections;
InfoSectionMap InfoDWOSections;
InfoSectionMap TypesDWOSections;
DWARFSectionMap LocSection;
DWARFSectionMap LoclistsSection;
DWARFSectionMap LoclistsDWOSection;
DWARFSectionMap LineSection;
DWARFSectionMap RangesSection;
DWARFSectionMap RnglistsSection;
DWARFSectionMap StrOffsetsSection;
DWARFSectionMap LineDWOSection;
DWARFSectionMap FrameSection;
DWARFSectionMap EHFrameSection;
DWARFSectionMap LocDWOSection;
DWARFSectionMap StrOffsetsDWOSection;
DWARFSectionMap RangesDWOSection;
DWARFSectionMap RnglistsDWOSection;
DWARFSectionMap AddrSection;
DWARFSectionMap AppleNamesSection;
DWARFSectionMap AppleTypesSection;
DWARFSectionMap AppleNamespacesSection;
DWARFSectionMap AppleObjCSection;
DWARFSectionMap NamesSection;
DWARFSectionMap PubnamesSection;
DWARFSectionMap PubtypesSection;
DWARFSectionMap GnuPubnamesSection;
DWARFSectionMap GnuPubtypesSection;
DWARFSectionMap MacroSection;
DWARFSectionMap *mapNameToDWARFSection(StringRef Name) {
return StringSwitch<DWARFSectionMap *>(Name)
.Case("debug_loc", &LocSection)
.Case("debug_loclists", &LoclistsSection)
.Case("debug_loclists.dwo", &LoclistsDWOSection)
.Case("debug_line", &LineSection)
.Case("debug_frame", &FrameSection)
.Case("eh_frame", &EHFrameSection)
.Case("debug_str_offsets", &StrOffsetsSection)
.Case("debug_ranges", &RangesSection)
.Case("debug_rnglists", &RnglistsSection)
.Case("debug_loc.dwo", &LocDWOSection)
.Case("debug_line.dwo", &LineDWOSection)
.Case("debug_names", &NamesSection)
.Case("debug_rnglists.dwo", &RnglistsDWOSection)
.Case("debug_str_offsets.dwo", &StrOffsetsDWOSection)
.Case("debug_addr", &AddrSection)
.Case("apple_names", &AppleNamesSection)
.Case("debug_pubnames", &PubnamesSection)
.Case("debug_pubtypes", &PubtypesSection)
.Case("debug_gnu_pubnames", &GnuPubnamesSection)
.Case("debug_gnu_pubtypes", &GnuPubtypesSection)
.Case("apple_types", &AppleTypesSection)
.Case("apple_namespaces", &AppleNamespacesSection)
.Case("apple_namespac", &AppleNamespacesSection)
.Case("apple_objc", &AppleObjCSection)
.Case("debug_macro", &MacroSection)
.Default(nullptr);
}
StringRef AbbrevSection;
StringRef ArangesSection;
StringRef StrSection;
StringRef MacinfoSection;
StringRef MacinfoDWOSection;
StringRef MacroDWOSection;
StringRef AbbrevDWOSection;
StringRef StrDWOSection;
StringRef CUIndexSection;
StringRef GdbIndexSection;
StringRef TUIndexSection;
StringRef LineStrSection;
// A deque holding section data whose iterators are not invalidated when
// new decompressed sections are inserted at the end.
std::deque<SmallString<0>> UncompressedSections;
StringRef *mapSectionToMember(StringRef Name) {
if (DWARFSection *Sec = mapNameToDWARFSection(Name))
return &Sec->Data;
return StringSwitch<StringRef *>(Name)
.Case("debug_abbrev", &AbbrevSection)
.Case("debug_aranges", &ArangesSection)
.Case("debug_str", &StrSection)
.Case("debug_macinfo", &MacinfoSection)
.Case("debug_macinfo.dwo", &MacinfoDWOSection)
.Case("debug_macro.dwo", &MacroDWOSection)
.Case("debug_abbrev.dwo", &AbbrevDWOSection)
.Case("debug_str.dwo", &StrDWOSection)
.Case("debug_cu_index", &CUIndexSection)
.Case("debug_tu_index", &TUIndexSection)
.Case("gdb_index", &GdbIndexSection)
.Case("debug_line_str", &LineStrSection)
// Any more debug info sections go here.
.Default(nullptr);
}
/// If Sec is compressed section, decompresses and updates its contents
/// provided by Data. Otherwise leaves it unchanged.
Error maybeDecompress(const object::SectionRef &Sec, StringRef Name,
StringRef &Data) {
if (!Sec.isCompressed())
return Error::success();
Expected<Decompressor> Decompressor =
Decompressor::create(Name, Data, IsLittleEndian, AddressSize == 8);
if (!Decompressor)
return Decompressor.takeError();
SmallString<0> Out;
if (auto Err = Decompressor->resizeAndDecompress(Out))
return Err;
UncompressedSections.push_back(std::move(Out));
Data = UncompressedSections.back();
return Error::success();
}
public:
DWARFObjInMemory(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool IsLittleEndian)
: IsLittleEndian(IsLittleEndian) {
for (const auto &SecIt : Sections) {
if (StringRef *SectionData = mapSectionToMember(SecIt.first()))
*SectionData = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info")
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
InfoSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_info.dwo")
InfoDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types")
TypesSections[SectionRef()].Data = SecIt.second->getBuffer();
else if (SecIt.first() == "debug_types.dwo")
TypesDWOSections[SectionRef()].Data = SecIt.second->getBuffer();
}
}
DWARFObjInMemory(const object::ObjectFile &Obj, const LoadedObjectInfo *L,
function_ref<void(Error)> HandleError,
function_ref<void(Error)> HandleWarning,
DWARFContext::ProcessDebugRelocations RelocAction)
: IsLittleEndian(Obj.isLittleEndian()),
AddressSize(Obj.getBytesInAddress()), FileName(Obj.getFileName()),
Obj(&Obj) {
StringMap<unsigned> SectionAmountMap;
for (const SectionRef &Section : Obj.sections()) {
StringRef Name;
if (auto NameOrErr = Section.getName())
Name = *NameOrErr;
else
consumeError(NameOrErr.takeError());
++SectionAmountMap[Name];
SectionNames.push_back({ Name, true });
// Skip BSS and Virtual sections, they aren't interesting.
if (Section.isBSS() || Section.isVirtual())
continue;
// Skip sections stripped by dsymutil.
if (Section.isStripped())
continue;
StringRef Data;
Expected<section_iterator> SecOrErr = Section.getRelocatedSection();
if (!SecOrErr) {
HandleError(createError("failed to get relocated section: ",
SecOrErr.takeError()));
continue;
}
// Try to obtain an already relocated version of this section.
// Else use the unrelocated section from the object file. We'll have to
// apply relocations ourselves later.
section_iterator RelocatedSection =
Obj.isRelocatableObject() ? *SecOrErr : Obj.section_end();
if (!L || !L->getLoadedSectionContents(*RelocatedSection, Data)) {
Expected<StringRef> E = Section.getContents();
if (E)
Data = *E;
else
// maybeDecompress below will error.
consumeError(E.takeError());
}
if (auto Err = maybeDecompress(Section, Name, Data)) {
HandleError(createError("failed to decompress '" + Name + "', ",
std::move(Err)));
continue;
}
// Map platform specific debug section names to DWARF standard section
// names.
Name = Name.substr(Name.find_first_not_of("._"));
Name = Obj.mapDebugSectionName(Name);
if (StringRef *SectionData = mapSectionToMember(Name)) {
*SectionData = Data;
if (Name == "debug_ranges") {
// FIXME: Use the other dwo range section when we emit it.
RangesDWOSection.Data = Data;
} else if (Name == "debug_frame" || Name == "eh_frame") {
if (DWARFSection *S = mapNameToDWARFSection(Name))
S->Address = Section.getAddress();
}
} else if (InfoSectionMap *Sections =
StringSwitch<InfoSectionMap *>(Name)
.Case("debug_info", &InfoSections)
.Case("debug_info.dwo", &InfoDWOSections)
.Case("debug_types", &TypesSections)
.Case("debug_types.dwo", &TypesDWOSections)
.Default(nullptr)) {
// Find debug_info and debug_types data by section rather than name as
// there are multiple, comdat grouped, of these sections.
DWARFSectionMap &S = (*Sections)[Section];
S.Data = Data;
}
if (RelocatedSection == Obj.section_end() ||
(RelocAction == DWARFContext::ProcessDebugRelocations::Ignore))
continue;
StringRef RelSecName;
if (auto NameOrErr = RelocatedSection->getName())
RelSecName = *NameOrErr;
else
consumeError(NameOrErr.takeError());
// If the section we're relocating was relocated already by the JIT,
// then we used the relocated version above, so we do not need to process
// relocations for it now.
StringRef RelSecData;
if (L && L->getLoadedSectionContents(*RelocatedSection, RelSecData))
continue;
// In Mach-o files, the relocations do not need to be applied if
// there is no load offset to apply. The value read at the
// relocation point already factors in the section address
// (actually applying the relocations will produce wrong results
// as the section address will be added twice).
if (!L && isa<MachOObjectFile>(&Obj))
continue;
if (!Section.relocations().empty() && Name.ends_with(".dwo") &&
RelSecName.starts_with(".debug")) {
HandleWarning(createError("unexpected relocations for dwo section '" +
RelSecName + "'"));
}
// TODO: Add support for relocations in other sections as needed.
// Record relocations for the debug_info and debug_line sections.
RelSecName = RelSecName.substr(RelSecName.find_first_not_of("._"));
DWARFSectionMap *Sec = mapNameToDWARFSection(RelSecName);
RelocAddrMap *Map = Sec ? &Sec->Relocs : nullptr;
if (!Map) {
// Find debug_info and debug_types relocs by section rather than name
// as there are multiple, comdat grouped, of these sections.
if (RelSecName == "debug_info")
Map = &static_cast<DWARFSectionMap &>(InfoSections[*RelocatedSection])
.Relocs;
else if (RelSecName == "debug_types")
Map =
&static_cast<DWARFSectionMap &>(TypesSections[*RelocatedSection])
.Relocs;
else
continue;
}
if (Section.relocation_begin() == Section.relocation_end())
continue;
// Symbol to [address, section index] cache mapping.
std::map<SymbolRef, SymInfo> AddrCache;
SupportsRelocation Supports;
RelocationResolver Resolver;
std::tie(Supports, Resolver) = getRelocationResolver(Obj);
for (const RelocationRef &Reloc : Section.relocations()) {
// FIXME: it's not clear how to correctly handle scattered
// relocations.
if (isRelocScattered(Obj, Reloc))
continue;
Expected<SymInfo> SymInfoOrErr =
getSymbolInfo(Obj, Reloc, L, AddrCache);
if (!SymInfoOrErr) {
HandleError(SymInfoOrErr.takeError());
continue;
}
// Check if Resolver can handle this relocation type early so as not to
// handle invalid cases in DWARFDataExtractor.
//
// TODO Don't store Resolver in every RelocAddrEntry.
if (Supports && Supports(Reloc.getType())) {
auto I = Map->try_emplace(
Reloc.getOffset(),
RelocAddrEntry{
SymInfoOrErr->SectionIndex, Reloc, SymInfoOrErr->Address,
std::optional<object::RelocationRef>(), 0, Resolver});
// If we didn't successfully insert that's because we already had a
// relocation for that offset. Store it as a second relocation in the
// same RelocAddrEntry instead.
if (!I.second) {
RelocAddrEntry &entry = I.first->getSecond();
if (entry.Reloc2) {
HandleError(createError(
"At most two relocations per offset are supported"));
}
entry.Reloc2 = Reloc;
entry.SymbolValue2 = SymInfoOrErr->Address;
}
} else {
SmallString<32> Type;
Reloc.getTypeName(Type);
// FIXME: Support more relocations & change this to an error
HandleWarning(
createError("failed to compute relocation: " + Type + ", ",
errorCodeToError(object_error::parse_failed)));
}
}
}
for (SectionName &S : SectionNames)
if (SectionAmountMap[S.Name] > 1)
S.IsNameUnique = false;
}
std::optional<RelocAddrEntry> find(const DWARFSection &S,
uint64_t Pos) const override {
auto &Sec = static_cast<const DWARFSectionMap &>(S);
RelocAddrMap::const_iterator AI = Sec.Relocs.find(Pos);
if (AI == Sec.Relocs.end())
return std::nullopt;
return AI->second;
}
const object::ObjectFile *getFile() const override { return Obj; }
ArrayRef<SectionName> getSectionNames() const override {
return SectionNames;
}
bool isLittleEndian() const override { return IsLittleEndian; }
StringRef getAbbrevDWOSection() const override { return AbbrevDWOSection; }
const DWARFSection &getLineDWOSection() const override {
return LineDWOSection;
}
const DWARFSection &getLocDWOSection() const override {
return LocDWOSection;
}
StringRef getStrDWOSection() const override { return StrDWOSection; }
const DWARFSection &getStrOffsetsDWOSection() const override {
return StrOffsetsDWOSection;
}
const DWARFSection &getRangesDWOSection() const override {
return RangesDWOSection;
}
const DWARFSection &getRnglistsDWOSection() const override {
return RnglistsDWOSection;
}
const DWARFSection &getLoclistsDWOSection() const override {
return LoclistsDWOSection;
}
const DWARFSection &getAddrSection() const override { return AddrSection; }
StringRef getCUIndexSection() const override { return CUIndexSection; }
StringRef getGdbIndexSection() const override { return GdbIndexSection; }
StringRef getTUIndexSection() const override { return TUIndexSection; }
// DWARF v5
const DWARFSection &getStrOffsetsSection() const override {
return StrOffsetsSection;
}
StringRef getLineStrSection() const override { return LineStrSection; }
// Sections for DWARF5 split dwarf proposal.
void forEachInfoDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoDWOSections)
F(P.second);
}
void forEachTypesDWOSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesDWOSections)
F(P.second);
}
StringRef getAbbrevSection() const override { return AbbrevSection; }
const DWARFSection &getLocSection() const override { return LocSection; }
const DWARFSection &getLoclistsSection() const override { return LoclistsSection; }
StringRef getArangesSection() const override { return ArangesSection; }
const DWARFSection &getFrameSection() const override {
return FrameSection;
}
const DWARFSection &getEHFrameSection() const override {
return EHFrameSection;
}
const DWARFSection &getLineSection() const override { return LineSection; }
StringRef getStrSection() const override { return StrSection; }
const DWARFSection &getRangesSection() const override { return RangesSection; }
const DWARFSection &getRnglistsSection() const override {
return RnglistsSection;
}
const DWARFSection &getMacroSection() const override { return MacroSection; }
StringRef getMacroDWOSection() const override { return MacroDWOSection; }
StringRef getMacinfoSection() const override { return MacinfoSection; }
StringRef getMacinfoDWOSection() const override { return MacinfoDWOSection; }
const DWARFSection &getPubnamesSection() const override { return PubnamesSection; }
const DWARFSection &getPubtypesSection() const override { return PubtypesSection; }
const DWARFSection &getGnuPubnamesSection() const override {
return GnuPubnamesSection;
}
const DWARFSection &getGnuPubtypesSection() const override {
return GnuPubtypesSection;
}
const DWARFSection &getAppleNamesSection() const override {
return AppleNamesSection;
}
const DWARFSection &getAppleTypesSection() const override {
return AppleTypesSection;
}
const DWARFSection &getAppleNamespacesSection() const override {
return AppleNamespacesSection;
}
const DWARFSection &getAppleObjCSection() const override {
return AppleObjCSection;
}
const DWARFSection &getNamesSection() const override {
return NamesSection;
}
StringRef getFileName() const override { return FileName; }
uint8_t getAddressSize() const override { return AddressSize; }
void forEachInfoSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : InfoSections)
F(P.second);
}
void forEachTypesSections(
function_ref<void(const DWARFSection &)> F) const override {
for (auto &P : TypesSections)
F(P.second);
}
};
} // namespace
std::unique_ptr<DWARFContext>
DWARFContext::create(const object::ObjectFile &Obj,
ProcessDebugRelocations RelocAction,
const LoadedObjectInfo *L, std::string DWPName,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler,
bool ThreadSafe) {
auto DObj = std::make_unique<DWARFObjInMemory>(
Obj, L, RecoverableErrorHandler, WarningHandler, RelocAction);
return std::make_unique<DWARFContext>(std::move(DObj),
std::move(DWPName),
RecoverableErrorHandler,
WarningHandler,
ThreadSafe);
}
std::unique_ptr<DWARFContext>
DWARFContext::create(const StringMap<std::unique_ptr<MemoryBuffer>> &Sections,
uint8_t AddrSize, bool isLittleEndian,
std::function<void(Error)> RecoverableErrorHandler,
std::function<void(Error)> WarningHandler,
bool ThreadSafe) {
auto DObj =
std::make_unique<DWARFObjInMemory>(Sections, AddrSize, isLittleEndian);
return std::make_unique<DWARFContext>(
std::move(DObj), "", RecoverableErrorHandler, WarningHandler, ThreadSafe);
}
uint8_t DWARFContext::getCUAddrSize() {
// In theory, different compile units may have different address byte
// sizes, but for simplicity we just use the address byte size of the
// first compile unit. In practice the address size field is repeated across
// various DWARF headers (at least in version 5) to make it easier to dump
// them independently, not to enable varying the address size.
auto CUs = compile_units();
return CUs.empty() ? 0 : (*CUs.begin())->getAddressByteSize();
}