llvm-project/clang/lib/Analysis/FlowSensitive/DataflowEnvironment.cpp
Yitzhak Mandelbaum c0725865b1 [clang][dataflow] Generalize custom comparison to return tri-value result.
Currently, the API for a model's custom value comparison returns a
boolean. Therefore, models cannot distinguish between situations where the
values are recognized by the model and different and those where the values are
just not recognized.  This patch changes the return value to a tri-valued enum,
allowing models to express "don't know".

This patch is essentially a NFC -- no practical differences result from this
change in this patch. But, it prepares for future patches (particularly,
upcoming patches for widening) which will take advantage of the new flexibility.

Differential Revision: https://reviews.llvm.org/D137334
2022-11-03 23:31:20 +00:00

603 lines
20 KiB
C++

//===-- DataflowEnvironment.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an Environment class that is used by dataflow analyses
// that run over Control-Flow Graphs (CFGs) to keep track of the state of the
// program at given program points.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/FlowSensitive/DataflowLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <memory>
#include <utility>
namespace clang {
namespace dataflow {
// FIXME: convert these to parameters of the analysis or environment. Current
// settings have been experimentaly validated, but only for a particular
// analysis.
static constexpr int MaxCompositeValueDepth = 3;
static constexpr int MaxCompositeValueSize = 1000;
/// Returns a map consisting of key-value entries that are present in both maps.
template <typename K, typename V>
llvm::DenseMap<K, V> intersectDenseMaps(const llvm::DenseMap<K, V> &Map1,
const llvm::DenseMap<K, V> &Map2) {
llvm::DenseMap<K, V> Result;
for (auto &Entry : Map1) {
auto It = Map2.find(Entry.first);
if (It != Map2.end() && Entry.second == It->second)
Result.insert({Entry.first, Entry.second});
}
return Result;
}
/// Attempts to merge distinct values `Val1` and `Val2` in `Env1` and `Env2`,
/// respectively, of the same type `Type`. Merging generally produces a single
/// value that (soundly) approximates the two inputs, although the actual
/// meaning depends on `Model`.
static Value *mergeDistinctValues(QualType Type, Value *Val1,
const Environment &Env1, Value *Val2,
const Environment &Env2,
Environment &MergedEnv,
Environment::ValueModel &Model) {
// Join distinct boolean values preserving information about the constraints
// in the respective path conditions.
if (auto *Expr1 = dyn_cast<BoolValue>(Val1)) {
auto *Expr2 = cast<BoolValue>(Val2);
auto &MergedVal = MergedEnv.makeAtomicBoolValue();
MergedEnv.addToFlowCondition(MergedEnv.makeOr(
MergedEnv.makeAnd(Env1.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr1)),
MergedEnv.makeAnd(Env2.getFlowConditionToken(),
MergedEnv.makeIff(MergedVal, *Expr2))));
return &MergedVal;
}
// FIXME: Consider destroying `MergedValue` immediately if `ValueModel::merge`
// returns false to avoid storing unneeded values in `DACtx`.
if (Value *MergedVal = MergedEnv.createValue(Type))
if (Model.merge(Type, *Val1, Env1, *Val2, Env2, *MergedVal, MergedEnv))
return MergedVal;
return nullptr;
}
/// Initializes a global storage value.
static void initGlobalVar(const VarDecl &D, Environment &Env) {
if (!D.hasGlobalStorage() ||
Env.getStorageLocation(D, SkipPast::None) != nullptr)
return;
auto &Loc = Env.createStorageLocation(D);
Env.setStorageLocation(D, Loc);
if (auto *Val = Env.createValue(D.getType()))
Env.setValue(Loc, *Val);
}
/// Initializes a global storage value.
static void initGlobalVar(const Decl &D, Environment &Env) {
if (auto *V = dyn_cast<VarDecl>(&D))
initGlobalVar(*V, Env);
}
/// Initializes global storage values that are declared or referenced from
/// sub-statements of `S`.
// FIXME: Add support for resetting globals after function calls to enable
// the implementation of sound analyses.
static void initGlobalVars(const Stmt &S, Environment &Env) {
for (auto *Child : S.children()) {
if (Child != nullptr)
initGlobalVars(*Child, Env);
}
if (auto *DS = dyn_cast<DeclStmt>(&S)) {
if (DS->isSingleDecl()) {
initGlobalVar(*DS->getSingleDecl(), Env);
} else {
for (auto *D : DS->getDeclGroup())
initGlobalVar(*D, Env);
}
} else if (auto *E = dyn_cast<DeclRefExpr>(&S)) {
initGlobalVar(*E->getDecl(), Env);
} else if (auto *E = dyn_cast<MemberExpr>(&S)) {
initGlobalVar(*E->getMemberDecl(), Env);
}
}
Environment::Environment(DataflowAnalysisContext &DACtx)
: DACtx(&DACtx), FlowConditionToken(&DACtx.makeFlowConditionToken()) {}
Environment::Environment(const Environment &Other)
: DACtx(Other.DACtx), CallStack(Other.CallStack),
ReturnLoc(Other.ReturnLoc), ThisPointeeLoc(Other.ThisPointeeLoc),
DeclToLoc(Other.DeclToLoc), ExprToLoc(Other.ExprToLoc),
LocToVal(Other.LocToVal), MemberLocToStruct(Other.MemberLocToStruct),
FlowConditionToken(&DACtx->forkFlowCondition(*Other.FlowConditionToken)) {
}
Environment &Environment::operator=(const Environment &Other) {
Environment Copy(Other);
*this = std::move(Copy);
return *this;
}
Environment::Environment(DataflowAnalysisContext &DACtx,
const DeclContext &DeclCtx)
: Environment(DACtx) {
CallStack.push_back(&DeclCtx);
if (const auto *FuncDecl = dyn_cast<FunctionDecl>(&DeclCtx)) {
assert(FuncDecl->getBody() != nullptr);
initGlobalVars(*FuncDecl->getBody(), *this);
for (const auto *ParamDecl : FuncDecl->parameters()) {
assert(ParamDecl != nullptr);
auto &ParamLoc = createStorageLocation(*ParamDecl);
setStorageLocation(*ParamDecl, ParamLoc);
if (Value *ParamVal = createValue(ParamDecl->getType()))
setValue(ParamLoc, *ParamVal);
}
QualType ReturnType = FuncDecl->getReturnType();
ReturnLoc = &createStorageLocation(ReturnType);
}
if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(&DeclCtx)) {
auto *Parent = MethodDecl->getParent();
assert(Parent != nullptr);
if (Parent->isLambda())
MethodDecl = dyn_cast<CXXMethodDecl>(Parent->getDeclContext());
if (MethodDecl && !MethodDecl->isStatic()) {
QualType ThisPointeeType = MethodDecl->getThisObjectType();
// FIXME: Add support for union types.
if (!ThisPointeeType->isUnionType()) {
ThisPointeeLoc = &createStorageLocation(ThisPointeeType);
if (Value *ThisPointeeVal = createValue(ThisPointeeType))
setValue(*ThisPointeeLoc, *ThisPointeeVal);
}
}
}
}
bool Environment::canDescend(unsigned MaxDepth,
const DeclContext *Callee) const {
return CallStack.size() <= MaxDepth && !llvm::is_contained(CallStack, Callee);
}
Environment Environment::pushCall(const CallExpr *Call) const {
Environment Env(*this);
// FIXME: Support references here.
Env.ReturnLoc = getStorageLocation(*Call, SkipPast::Reference);
if (const auto *MethodCall = dyn_cast<CXXMemberCallExpr>(Call)) {
if (const Expr *Arg = MethodCall->getImplicitObjectArgument()) {
if (!isa<CXXThisExpr>(Arg))
Env.ThisPointeeLoc = getStorageLocation(*Arg, SkipPast::Reference);
// Otherwise (when the argument is `this`), retain the current
// environment's `ThisPointeeLoc`.
}
}
Env.pushCallInternal(Call->getDirectCallee(),
llvm::makeArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
Environment Environment::pushCall(const CXXConstructExpr *Call) const {
Environment Env(*this);
// FIXME: Support references here.
Env.ReturnLoc = getStorageLocation(*Call, SkipPast::Reference);
Env.ThisPointeeLoc = Env.ReturnLoc;
Env.pushCallInternal(Call->getConstructor(),
llvm::makeArrayRef(Call->getArgs(), Call->getNumArgs()));
return Env;
}
void Environment::pushCallInternal(const FunctionDecl *FuncDecl,
ArrayRef<const Expr *> Args) {
CallStack.push_back(FuncDecl);
// FIXME: In order to allow the callee to reference globals, we probably need
// to call `initGlobalVars` here in some way.
auto ParamIt = FuncDecl->param_begin();
// FIXME: Parameters don't always map to arguments 1:1; examples include
// overloaded operators implemented as member functions, and parameter packs.
for (unsigned ArgIndex = 0; ArgIndex < Args.size(); ++ParamIt, ++ArgIndex) {
assert(ParamIt != FuncDecl->param_end());
const Expr *Arg = Args[ArgIndex];
auto *ArgLoc = getStorageLocation(*Arg, SkipPast::Reference);
if (ArgLoc == nullptr)
continue;
const VarDecl *Param = *ParamIt;
auto &Loc = createStorageLocation(*Param);
setStorageLocation(*Param, Loc);
QualType ParamType = Param->getType();
if (ParamType->isReferenceType()) {
auto &Val = takeOwnership(std::make_unique<ReferenceValue>(*ArgLoc));
setValue(Loc, Val);
} else if (auto *ArgVal = getValue(*ArgLoc)) {
setValue(Loc, *ArgVal);
} else if (Value *Val = createValue(ParamType)) {
setValue(Loc, *Val);
}
}
}
void Environment::popCall(const Environment &CalleeEnv) {
// We ignore `DACtx` because it's already the same in both. We don't want the
// callee's `DeclCtx`, `ReturnLoc` or `ThisPointeeLoc`. We don't bring back
// `DeclToLoc` and `ExprToLoc` because we want to be able to later analyze the
// same callee in a different context, and `setStorageLocation` requires there
// to not already be a storage location assigned. Conceptually, these maps
// capture information from the local scope, so when popping that scope, we do
// not propagate the maps.
this->LocToVal = std::move(CalleeEnv.LocToVal);
this->MemberLocToStruct = std::move(CalleeEnv.MemberLocToStruct);
this->FlowConditionToken = std::move(CalleeEnv.FlowConditionToken);
}
bool Environment::equivalentTo(const Environment &Other,
Environment::ValueModel &Model) const {
assert(DACtx == Other.DACtx);
if (ReturnLoc != Other.ReturnLoc)
return false;
if (ThisPointeeLoc != Other.ThisPointeeLoc)
return false;
if (DeclToLoc != Other.DeclToLoc)
return false;
if (ExprToLoc != Other.ExprToLoc)
return false;
// Compare the contents for the intersection of their domains.
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (!areEquivalentValues(*Val, *It->second) &&
Model.compare(Loc->getType(), *Val, *this, *It->second, Other) !=
ComparisonResult::Same)
return false;
}
return true;
}
LatticeJoinEffect Environment::join(const Environment &Other,
Environment::ValueModel &Model) {
assert(DACtx == Other.DACtx);
assert(ReturnLoc == Other.ReturnLoc);
assert(ThisPointeeLoc == Other.ThisPointeeLoc);
assert(CallStack == Other.CallStack);
auto Effect = LatticeJoinEffect::Unchanged;
Environment JoinedEnv(*DACtx);
JoinedEnv.CallStack = CallStack;
JoinedEnv.ReturnLoc = ReturnLoc;
JoinedEnv.ThisPointeeLoc = ThisPointeeLoc;
JoinedEnv.DeclToLoc = intersectDenseMaps(DeclToLoc, Other.DeclToLoc);
if (DeclToLoc.size() != JoinedEnv.DeclToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.ExprToLoc = intersectDenseMaps(ExprToLoc, Other.ExprToLoc);
if (ExprToLoc.size() != JoinedEnv.ExprToLoc.size())
Effect = LatticeJoinEffect::Changed;
JoinedEnv.MemberLocToStruct =
intersectDenseMaps(MemberLocToStruct, Other.MemberLocToStruct);
if (MemberLocToStruct.size() != JoinedEnv.MemberLocToStruct.size())
Effect = LatticeJoinEffect::Changed;
// FIXME: set `Effect` as needed.
JoinedEnv.FlowConditionToken = &DACtx->joinFlowConditions(
*FlowConditionToken, *Other.FlowConditionToken);
for (auto &Entry : LocToVal) {
const StorageLocation *Loc = Entry.first;
assert(Loc != nullptr);
Value *Val = Entry.second;
assert(Val != nullptr);
auto It = Other.LocToVal.find(Loc);
if (It == Other.LocToVal.end())
continue;
assert(It->second != nullptr);
if (areEquivalentValues(*Val, *It->second)) {
JoinedEnv.LocToVal.insert({Loc, Val});
continue;
}
if (Value *MergedVal = mergeDistinctValues(
Loc->getType(), Val, *this, It->second, Other, JoinedEnv, Model))
JoinedEnv.LocToVal.insert({Loc, MergedVal});
}
if (LocToVal.size() != JoinedEnv.LocToVal.size())
Effect = LatticeJoinEffect::Changed;
*this = std::move(JoinedEnv);
return Effect;
}
StorageLocation &Environment::createStorageLocation(QualType Type) {
return DACtx->createStorageLocation(Type);
}
StorageLocation &Environment::createStorageLocation(const VarDecl &D) {
// Evaluated declarations are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated declarations are stored in the analysis context.
return DACtx->getStableStorageLocation(D);
}
StorageLocation &Environment::createStorageLocation(const Expr &E) {
// Evaluated expressions are always assigned the same storage locations to
// ensure that the environment stabilizes across loop iterations. Storage
// locations for evaluated expressions are stored in the analysis context.
return DACtx->getStableStorageLocation(E);
}
void Environment::setStorageLocation(const ValueDecl &D, StorageLocation &Loc) {
assert(DeclToLoc.find(&D) == DeclToLoc.end());
DeclToLoc[&D] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const ValueDecl &D,
SkipPast SP) const {
auto It = DeclToLoc.find(&D);
return It == DeclToLoc.end() ? nullptr : &skip(*It->second, SP);
}
void Environment::setStorageLocation(const Expr &E, StorageLocation &Loc) {
const Expr &CanonE = ignoreCFGOmittedNodes(E);
assert(ExprToLoc.find(&CanonE) == ExprToLoc.end());
ExprToLoc[&CanonE] = &Loc;
}
StorageLocation *Environment::getStorageLocation(const Expr &E,
SkipPast SP) const {
// FIXME: Add a test with parens.
auto It = ExprToLoc.find(&ignoreCFGOmittedNodes(E));
return It == ExprToLoc.end() ? nullptr : &skip(*It->second, SP);
}
StorageLocation *Environment::getThisPointeeStorageLocation() const {
return ThisPointeeLoc;
}
StorageLocation *Environment::getReturnStorageLocation() const {
return ReturnLoc;
}
PointerValue &Environment::getOrCreateNullPointerValue(QualType PointeeType) {
return DACtx->getOrCreateNullPointerValue(PointeeType);
}
void Environment::setValue(const StorageLocation &Loc, Value &Val) {
LocToVal[&Loc] = &Val;
if (auto *StructVal = dyn_cast<StructValue>(&Val)) {
auto &AggregateLoc = *cast<AggregateStorageLocation>(&Loc);
const QualType Type = AggregateLoc.getType();
assert(Type->isStructureOrClassType());
for (const FieldDecl *Field : getObjectFields(Type)) {
assert(Field != nullptr);
StorageLocation &FieldLoc = AggregateLoc.getChild(*Field);
MemberLocToStruct[&FieldLoc] = std::make_pair(StructVal, Field);
if (auto *FieldVal = StructVal->getChild(*Field))
setValue(FieldLoc, *FieldVal);
}
}
auto It = MemberLocToStruct.find(&Loc);
if (It != MemberLocToStruct.end()) {
// `Loc` is the location of a struct member so we need to also update the
// value of the member in the corresponding `StructValue`.
assert(It->second.first != nullptr);
StructValue &StructVal = *It->second.first;
assert(It->second.second != nullptr);
const ValueDecl &Member = *It->second.second;
StructVal.setChild(Member, Val);
}
}
Value *Environment::getValue(const StorageLocation &Loc) const {
auto It = LocToVal.find(&Loc);
return It == LocToVal.end() ? nullptr : It->second;
}
Value *Environment::getValue(const ValueDecl &D, SkipPast SP) const {
auto *Loc = getStorageLocation(D, SP);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::getValue(const Expr &E, SkipPast SP) const {
auto *Loc = getStorageLocation(E, SP);
if (Loc == nullptr)
return nullptr;
return getValue(*Loc);
}
Value *Environment::createValue(QualType Type) {
llvm::DenseSet<QualType> Visited;
int CreatedValuesCount = 0;
Value *Val = createValueUnlessSelfReferential(Type, Visited, /*Depth=*/0,
CreatedValuesCount);
if (CreatedValuesCount > MaxCompositeValueSize) {
llvm::errs() << "Attempting to initialize a huge value of type: " << Type
<< '\n';
}
return Val;
}
Value *Environment::createValueUnlessSelfReferential(
QualType Type, llvm::DenseSet<QualType> &Visited, int Depth,
int &CreatedValuesCount) {
assert(!Type.isNull());
// Allow unlimited fields at depth 1; only cap at deeper nesting levels.
if ((Depth > 1 && CreatedValuesCount > MaxCompositeValueSize) ||
Depth > MaxCompositeValueDepth)
return nullptr;
if (Type->isBooleanType()) {
CreatedValuesCount++;
return &makeAtomicBoolValue();
}
if (Type->isIntegerType()) {
CreatedValuesCount++;
return &takeOwnership(std::make_unique<IntegerValue>());
}
if (Type->isReferenceType()) {
CreatedValuesCount++;
QualType PointeeType = Type->castAs<ReferenceType>()->getPointeeType();
auto &PointeeLoc = createStorageLocation(PointeeType);
if (Visited.insert(PointeeType.getCanonicalType()).second) {
Value *PointeeVal = createValueUnlessSelfReferential(
PointeeType, Visited, Depth, CreatedValuesCount);
Visited.erase(PointeeType.getCanonicalType());
if (PointeeVal != nullptr)
setValue(PointeeLoc, *PointeeVal);
}
return &takeOwnership(std::make_unique<ReferenceValue>(PointeeLoc));
}
if (Type->isPointerType()) {
CreatedValuesCount++;
QualType PointeeType = Type->castAs<PointerType>()->getPointeeType();
auto &PointeeLoc = createStorageLocation(PointeeType);
if (Visited.insert(PointeeType.getCanonicalType()).second) {
Value *PointeeVal = createValueUnlessSelfReferential(
PointeeType, Visited, Depth, CreatedValuesCount);
Visited.erase(PointeeType.getCanonicalType());
if (PointeeVal != nullptr)
setValue(PointeeLoc, *PointeeVal);
}
return &takeOwnership(std::make_unique<PointerValue>(PointeeLoc));
}
if (Type->isStructureOrClassType()) {
CreatedValuesCount++;
// FIXME: Initialize only fields that are accessed in the context that is
// being analyzed.
llvm::DenseMap<const ValueDecl *, Value *> FieldValues;
for (const FieldDecl *Field : getObjectFields(Type)) {
assert(Field != nullptr);
QualType FieldType = Field->getType();
if (Visited.contains(FieldType.getCanonicalType()))
continue;
Visited.insert(FieldType.getCanonicalType());
if (auto *FieldValue = createValueUnlessSelfReferential(
FieldType, Visited, Depth + 1, CreatedValuesCount))
FieldValues.insert({Field, FieldValue});
Visited.erase(FieldType.getCanonicalType());
}
return &takeOwnership(
std::make_unique<StructValue>(std::move(FieldValues)));
}
return nullptr;
}
StorageLocation &Environment::skip(StorageLocation &Loc, SkipPast SP) const {
switch (SP) {
case SkipPast::None:
return Loc;
case SkipPast::Reference:
// References cannot be chained so we only need to skip past one level of
// indirection.
if (auto *Val = dyn_cast_or_null<ReferenceValue>(getValue(Loc)))
return Val->getReferentLoc();
return Loc;
case SkipPast::ReferenceThenPointer:
StorageLocation &LocPastRef = skip(Loc, SkipPast::Reference);
if (auto *Val = dyn_cast_or_null<PointerValue>(getValue(LocPastRef)))
return Val->getPointeeLoc();
return LocPastRef;
}
llvm_unreachable("bad SkipPast kind");
}
const StorageLocation &Environment::skip(const StorageLocation &Loc,
SkipPast SP) const {
return skip(*const_cast<StorageLocation *>(&Loc), SP);
}
void Environment::addToFlowCondition(BoolValue &Val) {
DACtx->addFlowConditionConstraint(*FlowConditionToken, Val);
}
bool Environment::flowConditionImplies(BoolValue &Val) const {
return DACtx->flowConditionImplies(*FlowConditionToken, Val);
}
void Environment::dump() const {
DACtx->dumpFlowCondition(*FlowConditionToken);
}
} // namespace dataflow
} // namespace clang