llvm-project/clang/lib/Parse/ParseCXXInlineMethods.cpp
John McCall c146582e60 When parsing an out-of-line member function declaration, we must delay
access-control diagnostics which arise from the portion of the declarator
following the scope specifier, just in case access is granted by
friending the individual method.  This can also happen with in-line
member function declarations of class templates due to templated-scope
friend declarations.

We were really playing fast-and-loose before with this sort of thing,
and it turned out to work because *most* friend functions are in file
scope.  Making us delay regardless of context exposed several bugs with
how we were manipulating delay.  I ended up needing a concept of a
context that's independent of the declarations in which it appears,
and then I actually had to make some things save contexts correctly,
but delay should be much cleaner now.

I also encapsulated all the delayed-diagnostics machinery in a single
subobject of Sema;  this is a pattern we might want to consider rolling
out to other components of Sema.

llvm-svn: 125485
2011-02-14 07:13:47 +00:00

389 lines
15 KiB
C++

//===--- ParseCXXInlineMethods.cpp - C++ class inline methods parsing------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements parsing for C++ class inline methods.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Parse/Parser.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Scope.h"
using namespace clang;
/// ParseCXXInlineMethodDef - We parsed and verified that the specified
/// Declarator is a well formed C++ inline method definition. Now lex its body
/// and store its tokens for parsing after the C++ class is complete.
Decl *Parser::ParseCXXInlineMethodDef(AccessSpecifier AS, ParsingDeclarator &D,
const ParsedTemplateInfo &TemplateInfo,
const VirtSpecifiers& VS) {
assert(D.isFunctionDeclarator() && "This isn't a function declarator!");
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) &&
"Current token not a '{', ':' or 'try'!");
MultiTemplateParamsArg TemplateParams(Actions,
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->data() : 0,
TemplateInfo.TemplateParams ? TemplateInfo.TemplateParams->size() : 0);
Decl *FnD;
if (D.getDeclSpec().isFriendSpecified())
// FIXME: Friend templates
FnD = Actions.ActOnFriendFunctionDecl(getCurScope(), D, true,
move(TemplateParams));
else { // FIXME: pass template information through
if (VS.isOverrideSpecified())
Diag(VS.getOverrideLoc(), diag::ext_override_inline) << "override";
if (VS.isFinalSpecified())
Diag(VS.getFinalLoc(), diag::ext_override_inline) << "final";
if (VS.isNewSpecified())
Diag(VS.getNewLoc(), diag::ext_override_inline) << "new";
FnD = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS, D,
move(TemplateParams), 0,
VS, 0, /*IsDefinition*/true);
}
HandleMemberFunctionDefaultArgs(D, FnD);
D.complete(FnD);
// Consume the tokens and store them for later parsing.
LexedMethod* LM = new LexedMethod(this, FnD);
getCurrentClass().LateParsedDeclarations.push_back(LM);
LM->TemplateScope = getCurScope()->isTemplateParamScope();
CachedTokens &Toks = LM->Toks;
tok::TokenKind kind = Tok.getKind();
// We may have a constructor initializer or function-try-block here.
if (kind == tok::colon || kind == tok::kw_try) {
// Consume everything up to (and including) the left brace.
if (!ConsumeAndStoreUntil(tok::l_brace, Toks)) {
// We didn't find the left-brace we expected after the
// constructor initializer.
if (Tok.is(tok::semi)) {
// We found a semicolon; complain, consume the semicolon, and
// don't try to parse this method later.
Diag(Tok.getLocation(), diag::err_expected_lbrace);
ConsumeAnyToken();
delete getCurrentClass().LateParsedDeclarations.back();
getCurrentClass().LateParsedDeclarations.pop_back();
return FnD;
}
}
} else {
// Begin by storing the '{' token.
Toks.push_back(Tok);
ConsumeBrace();
}
// Consume everything up to (and including) the matching right brace.
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
// If we're in a function-try-block, we need to store all the catch blocks.
if (kind == tok::kw_try) {
while (Tok.is(tok::kw_catch)) {
ConsumeAndStoreUntil(tok::l_brace, Toks, /*StopAtSemi=*/false);
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
}
}
return FnD;
}
Parser::LateParsedDeclaration::~LateParsedDeclaration() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDeclarations() {}
void Parser::LateParsedDeclaration::ParseLexedMethodDefs() {}
Parser::LateParsedClass::LateParsedClass(Parser *P, ParsingClass *C)
: Self(P), Class(C) {}
Parser::LateParsedClass::~LateParsedClass() {
Self->DeallocateParsedClasses(Class);
}
void Parser::LateParsedClass::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclarations(*Class);
}
void Parser::LateParsedClass::ParseLexedMethodDefs() {
Self->ParseLexedMethodDefs(*Class);
}
void Parser::LateParsedMethodDeclaration::ParseLexedMethodDeclarations() {
Self->ParseLexedMethodDeclaration(*this);
}
void Parser::LexedMethod::ParseLexedMethodDefs() {
Self->ParseLexedMethodDef(*this);
}
/// ParseLexedMethodDeclarations - We finished parsing the member
/// specification of a top (non-nested) C++ class. Now go over the
/// stack of method declarations with some parts for which parsing was
/// delayed (such as default arguments) and parse them.
void Parser::ParseLexedMethodDeclarations(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
// The current scope is still active if we're the top-level class.
// Otherwise we'll need to push and enter a new scope.
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
if (HasClassScope)
Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate);
for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
Class.LateParsedDeclarations[i]->ParseLexedMethodDeclarations();
}
if (HasClassScope)
Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), Class.TagOrTemplate);
}
void Parser::ParseLexedMethodDeclaration(LateParsedMethodDeclaration &LM) {
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), LM.Method);
// Start the delayed C++ method declaration
Actions.ActOnStartDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
// Introduce the parameters into scope and parse their default
// arguments.
ParseScope PrototypeScope(this,
Scope::FunctionPrototypeScope|Scope::DeclScope);
for (unsigned I = 0, N = LM.DefaultArgs.size(); I != N; ++I) {
// Introduce the parameter into scope.
Actions.ActOnDelayedCXXMethodParameter(getCurScope(), LM.DefaultArgs[I].Param);
if (CachedTokens *Toks = LM.DefaultArgs[I].Toks) {
// Save the current token position.
SourceLocation origLoc = Tok.getLocation();
// Parse the default argument from its saved token stream.
Toks->push_back(Tok); // So that the current token doesn't get lost
PP.EnterTokenStream(&Toks->front(), Toks->size(), true, false);
// Consume the previously-pushed token.
ConsumeAnyToken();
// Consume the '='.
assert(Tok.is(tok::equal) && "Default argument not starting with '='");
SourceLocation EqualLoc = ConsumeToken();
// The argument isn't actually potentially evaluated unless it is
// used.
EnterExpressionEvaluationContext Eval(Actions,
Sema::PotentiallyEvaluatedIfUsed);
ExprResult DefArgResult(ParseAssignmentExpression());
if (DefArgResult.isInvalid())
Actions.ActOnParamDefaultArgumentError(LM.DefaultArgs[I].Param);
else {
if (Tok.is(tok::cxx_defaultarg_end))
ConsumeToken();
else
Diag(Tok.getLocation(), diag::err_default_arg_unparsed);
Actions.ActOnParamDefaultArgument(LM.DefaultArgs[I].Param, EqualLoc,
DefArgResult.take());
}
assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc,
Tok.getLocation()) &&
"ParseAssignmentExpression went over the default arg tokens!");
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the original token position.
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
delete Toks;
LM.DefaultArgs[I].Toks = 0;
}
}
PrototypeScope.Exit();
// Finish the delayed C++ method declaration.
Actions.ActOnFinishDelayedCXXMethodDeclaration(getCurScope(), LM.Method);
}
/// ParseLexedMethodDefs - We finished parsing the member specification of a top
/// (non-nested) C++ class. Now go over the stack of lexed methods that were
/// collected during its parsing and parse them all.
void Parser::ParseLexedMethodDefs(ParsingClass &Class) {
bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope;
ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, HasTemplateScope);
if (HasTemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate);
bool HasClassScope = !Class.TopLevelClass;
ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope,
HasClassScope);
for (size_t i = 0; i < Class.LateParsedDeclarations.size(); ++i) {
Class.LateParsedDeclarations[i]->ParseLexedMethodDefs();
}
}
void Parser::ParseLexedMethodDef(LexedMethod &LM) {
// If this is a member template, introduce the template parameter scope.
ParseScope TemplateScope(this, Scope::TemplateParamScope, LM.TemplateScope);
if (LM.TemplateScope)
Actions.ActOnReenterTemplateScope(getCurScope(), LM.D);
// Save the current token position.
SourceLocation origLoc = Tok.getLocation();
assert(!LM.Toks.empty() && "Empty body!");
// Append the current token at the end of the new token stream so that it
// doesn't get lost.
LM.Toks.push_back(Tok);
PP.EnterTokenStream(LM.Toks.data(), LM.Toks.size(), true, false);
// Consume the previously pushed token.
ConsumeAnyToken();
assert((Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try))
&& "Inline method not starting with '{', ':' or 'try'");
// Parse the method body. Function body parsing code is similar enough
// to be re-used for method bodies as well.
ParseScope FnScope(this, Scope::FnScope|Scope::DeclScope);
Actions.ActOnStartOfFunctionDef(getCurScope(), LM.D);
if (Tok.is(tok::kw_try)) {
ParseFunctionTryBlock(LM.D);
assert(!PP.getSourceManager().isBeforeInTranslationUnit(origLoc,
Tok.getLocation()) &&
"ParseFunctionTryBlock went over the cached tokens!");
// There could be leftover tokens (e.g. because of an error).
// Skip through until we reach the original token position.
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
return;
}
if (Tok.is(tok::colon)) {
ParseConstructorInitializer(LM.D);
// Error recovery.
if (!Tok.is(tok::l_brace)) {
Actions.ActOnFinishFunctionBody(LM.D, 0);
return;
}
} else
Actions.ActOnDefaultCtorInitializers(LM.D);
ParseFunctionStatementBody(LM.D);
if (Tok.getLocation() != origLoc) {
// Due to parsing error, we either went over the cached tokens or
// there are still cached tokens left. If it's the latter case skip the
// leftover tokens.
// Since this is an uncommon situation that should be avoided, use the
// expensive isBeforeInTranslationUnit call.
if (PP.getSourceManager().isBeforeInTranslationUnit(Tok.getLocation(),
origLoc))
while (Tok.getLocation() != origLoc && Tok.isNot(tok::eof))
ConsumeAnyToken();
}
}
/// ConsumeAndStoreUntil - Consume and store the token at the passed token
/// container until the token 'T' is reached (which gets
/// consumed/stored too, if ConsumeFinalToken).
/// If StopAtSemi is true, then we will stop early at a ';' character.
/// Returns true if token 'T1' or 'T2' was found.
/// NOTE: This is a specialized version of Parser::SkipUntil.
bool Parser::ConsumeAndStoreUntil(tok::TokenKind T1, tok::TokenKind T2,
CachedTokens &Toks,
bool StopAtSemi, bool ConsumeFinalToken) {
// We always want this function to consume at least one token if the first
// token isn't T and if not at EOF.
bool isFirstTokenConsumed = true;
while (1) {
// If we found one of the tokens, stop and return true.
if (Tok.is(T1) || Tok.is(T2)) {
if (ConsumeFinalToken) {
Toks.push_back(Tok);
ConsumeAnyToken();
}
return true;
}
switch (Tok.getKind()) {
case tok::eof:
// Ran out of tokens.
return false;
case tok::l_paren:
// Recursively consume properly-nested parens.
Toks.push_back(Tok);
ConsumeParen();
ConsumeAndStoreUntil(tok::r_paren, Toks, /*StopAtSemi=*/false);
break;
case tok::l_square:
// Recursively consume properly-nested square brackets.
Toks.push_back(Tok);
ConsumeBracket();
ConsumeAndStoreUntil(tok::r_square, Toks, /*StopAtSemi=*/false);
break;
case tok::l_brace:
// Recursively consume properly-nested braces.
Toks.push_back(Tok);
ConsumeBrace();
ConsumeAndStoreUntil(tok::r_brace, Toks, /*StopAtSemi=*/false);
break;
// Okay, we found a ']' or '}' or ')', which we think should be balanced.
// Since the user wasn't looking for this token (if they were, it would
// already be handled), this isn't balanced. If there is a LHS token at a
// higher level, we will assume that this matches the unbalanced token
// and return it. Otherwise, this is a spurious RHS token, which we skip.
case tok::r_paren:
if (ParenCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeParen();
break;
case tok::r_square:
if (BracketCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBracket();
break;
case tok::r_brace:
if (BraceCount && !isFirstTokenConsumed)
return false; // Matches something.
Toks.push_back(Tok);
ConsumeBrace();
break;
case tok::string_literal:
case tok::wide_string_literal:
Toks.push_back(Tok);
ConsumeStringToken();
break;
case tok::semi:
if (StopAtSemi)
return false;
// FALL THROUGH.
default:
// consume this token.
Toks.push_back(Tok);
ConsumeToken();
break;
}
isFirstTokenConsumed = false;
}
}