llvm-project/mlir/lib/Transforms/LoopFusion.cpp
Diego Caballero c1ba9c43ad [mlir][Affine] Refactor affine fusion code in pass to utilities
Refactoring/clean-up step needed to add support for producer-consumer fusion
with multi-store producer loops and, in general, to implement more general
loop fusion strategies in Affine. It introduces the following changes:
  - AffineLoopFusion pass now uses loop fusion utilities more broadly to compute
    fusion legality (canFuseLoops utility) and perform the fusion transformation
    (fuseLoops utility).
  - Loop fusion utilities have been extended to deal with AffineLoopFusion
    requirements and assumptions while preserving both loop fusion utilities and
    AffineLoopFusion current functionality within a unified implementation.
    'FusionStrategy' has been introduced for this purpose and, in the future, it
    will allow us to have a single loop fusion core implementation that will produce
    different fusion outputs depending on the strategy used.
  - Improve separation of concerns for legality and profitability analysis:
    'isFusionProfitable' no longer filters out illegal scenarios that 'canFuse'
    didn't detect, or the other way around. 'canFuse' now takes loop dependences
    into account to determine the fusion loop depth (producer-consumer fusion only).
  - As a result, maximal fusion now doesn't require any profitability analysis.
  - Slices are now computed only once and reused across the legality, profitability
    and fusion transformation steps (producer-consumer).
  - Refactor some utilities and remove redundant copies of them.

This patch is NFCI and should preserve the existing functionality of both the
AffineLoopFusion pass and the affine fusion utilities.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D90798
2020-11-18 13:50:32 -08:00

1921 lines
78 KiB
C++

//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/LoopFusionUtils.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iomanip>
#include <sstream>
#define DEBUG_TYPE "affine-loop-fusion"
using llvm::SetVector;
using namespace mlir;
namespace {
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
/// which fuses loop nests with single-writer/single-reader memref dependences
/// with the goal of improving locality.
// TODO: Support fusion of source loop nests which write to multiple
// memrefs, where each memref can have multiple users (if profitable).
// TODO: Extend this pass to check for fusion preventing dependences,
// and add support for more general loop fusion algorithms.
struct LoopFusion : public AffineLoopFusionBase<LoopFusion> {
LoopFusion() = default;
LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
bool maximalFusion) {
this->fastMemorySpace = fastMemorySpace;
this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
this->maximalFusion = maximalFusion;
}
void runOnFunction() override;
};
} // end anonymous namespace
std::unique_ptr<OperationPass<FuncOp>>
mlir::createLoopFusionPass(unsigned fastMemorySpace,
uint64_t localBufSizeThreshold, bool maximalFusion) {
return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
maximalFusion);
}
// TODO: Replace when this is modeled through side-effects/op traits
static bool isMemRefDereferencingOp(Operation &op) {
return isa<AffineReadOpInterface, AffineWriteOpInterface, AffineDmaStartOp,
AffineDmaWaitOp>(op);
}
namespace {
// LoopNestStateCollector walks loop nests and collects load and store
// operations, and whether or not an IfInst was encountered in the loop nest.
struct LoopNestStateCollector {
SmallVector<AffineForOp, 4> forOps;
SmallVector<Operation *, 4> loadOpInsts;
SmallVector<Operation *, 4> storeOpInsts;
bool hasNonForRegion = false;
void collect(Operation *opToWalk) {
opToWalk->walk([&](Operation *op) {
if (isa<AffineForOp>(op))
forOps.push_back(cast<AffineForOp>(op));
else if (op->getNumRegions() != 0)
hasNonForRegion = true;
else if (isa<AffineReadOpInterface>(op))
loadOpInsts.push_back(op);
else if (isa<AffineWriteOpInterface>(op))
storeOpInsts.push_back(op);
});
}
};
// MemRefDependenceGraph is a graph data structure where graph nodes are
// top-level operations in a FuncOp which contain load/store ops, and edges
// are memref dependences between the nodes.
// TODO: Add a more flexible dependence graph representation.
// TODO: Add a depth parameter to dependence graph construction.
struct MemRefDependenceGraph {
public:
// Node represents a node in the graph. A Node is either an entire loop nest
// rooted at the top level which contains loads/stores, or a top level
// load/store.
struct Node {
// The unique identifier of this node in the graph.
unsigned id;
// The top-level statement which is (or contains) a load/store.
Operation *op;
// List of load operations.
SmallVector<Operation *, 4> loads;
// List of store op insts.
SmallVector<Operation *, 4> stores;
Node(unsigned id, Operation *op) : id(id), op(op) {}
// Returns the load op count for 'memref'.
unsigned getLoadOpCount(Value memref) {
unsigned loadOpCount = 0;
for (auto *loadOpInst : loads) {
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
++loadOpCount;
}
return loadOpCount;
}
// Returns the store op count for 'memref'.
unsigned getStoreOpCount(Value memref) {
unsigned storeOpCount = 0;
for (auto *storeOpInst : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
++storeOpCount;
}
return storeOpCount;
}
// Returns all store ops in 'storeOps' which access 'memref'.
void getStoreOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *storeOps) {
for (auto *storeOpInst : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOpInst).getMemRef())
storeOps->push_back(storeOpInst);
}
}
// Returns all load ops in 'loadOps' which access 'memref'.
void getLoadOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *loadOps) {
for (auto *loadOpInst : loads) {
if (memref == cast<AffineReadOpInterface>(loadOpInst).getMemRef())
loadOps->push_back(loadOpInst);
}
}
// Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
// has at least one load and store operation.
void getLoadAndStoreMemrefSet(DenseSet<Value> *loadAndStoreMemrefSet) {
llvm::SmallDenseSet<Value, 2> loadMemrefs;
for (auto *loadOpInst : loads) {
loadMemrefs.insert(cast<AffineReadOpInterface>(loadOpInst).getMemRef());
}
for (auto *storeOpInst : stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
if (loadMemrefs.count(memref) > 0)
loadAndStoreMemrefSet->insert(memref);
}
}
};
// Edge represents a data dependence between nodes in the graph.
struct Edge {
// The id of the node at the other end of the edge.
// If this edge is stored in Edge = Node.inEdges[i], then
// 'Node.inEdges[i].id' is the identifier of the source node of the edge.
// If this edge is stored in Edge = Node.outEdges[i], then
// 'Node.outEdges[i].id' is the identifier of the dest node of the edge.
unsigned id;
// The SSA value on which this edge represents a dependence.
// If the value is a memref, then the dependence is between graph nodes
// which contain accesses to the same memref 'value'. If the value is a
// non-memref value, then the dependence is between a graph node which
// defines an SSA value and another graph node which uses the SSA value
// (e.g. a constant operation defining a value which is used inside a loop
// nest).
Value value;
};
// Map from node id to Node.
DenseMap<unsigned, Node> nodes;
// Map from node id to list of input edges.
DenseMap<unsigned, SmallVector<Edge, 2>> inEdges;
// Map from node id to list of output edges.
DenseMap<unsigned, SmallVector<Edge, 2>> outEdges;
// Map from memref to a count on the dependence edges associated with that
// memref.
DenseMap<Value, unsigned> memrefEdgeCount;
// The next unique identifier to use for newly created graph nodes.
unsigned nextNodeId = 0;
MemRefDependenceGraph() {}
// Initializes the dependence graph based on operations in 'f'.
// Returns true on success, false otherwise.
bool init(FuncOp f);
// Returns the graph node for 'id'.
Node *getNode(unsigned id) {
auto it = nodes.find(id);
assert(it != nodes.end());
return &it->second;
}
// Returns the graph node for 'forOp'.
Node *getForOpNode(AffineForOp forOp) {
for (auto &idAndNode : nodes)
if (idAndNode.second.op == forOp.getOperation())
return &idAndNode.second;
return nullptr;
}
// Adds a node with 'op' to the graph and returns its unique identifier.
unsigned addNode(Operation *op) {
Node node(nextNodeId++, op);
nodes.insert({node.id, node});
return node.id;
}
// Remove node 'id' (and its associated edges) from graph.
void removeNode(unsigned id) {
// Remove each edge in 'inEdges[id]'.
if (inEdges.count(id) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[id];
for (auto &inEdge : oldInEdges) {
removeEdge(inEdge.id, id, inEdge.value);
}
}
// Remove each edge in 'outEdges[id]'.
if (outEdges.count(id) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
for (auto &outEdge : oldOutEdges) {
removeEdge(id, outEdge.id, outEdge.value);
}
}
// Erase remaining node state.
inEdges.erase(id);
outEdges.erase(id);
nodes.erase(id);
}
// Returns true if node 'id' writes to any memref which escapes (or is an
// argument to) the function/block. Returns false otherwise.
bool writesToLiveInOrEscapingMemrefs(unsigned id) {
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
auto *op = memref.getDefiningOp();
// Return true if 'memref' is a block argument.
if (!op)
return true;
// Return true if any use of 'memref' escapes the function.
for (auto *user : memref.getUsers())
if (!isMemRefDereferencingOp(*user))
return true;
}
return false;
}
// Returns the unique AffineWriteOpInterface in `node` that meets all the
// following:
// *) store is the only one that writes to a function-local memref live out
// of `node`,
// *) store is not the source of a self-dependence on `node`.
// Otherwise, returns a null AffineWriteOpInterface.
AffineWriteOpInterface getUniqueOutgoingStore(Node *node) {
AffineWriteOpInterface uniqueStore;
// Return null if `node` doesn't have any outgoing edges.
auto outEdgeIt = outEdges.find(node->id);
if (outEdgeIt == outEdges.end())
return nullptr;
const auto &nodeOutEdges = outEdgeIt->second;
for (auto *op : node->stores) {
auto storeOp = cast<AffineWriteOpInterface>(op);
auto memref = storeOp.getMemRef();
// Skip this store if there are no dependences on its memref. This means
// that store either:
// *) writes to a memref that is only read within the same loop nest
// (self-dependence edges are not represented in graph at the moment),
// *) writes to a function live out memref (function parameter), or
// *) is dead.
if (llvm::all_of(nodeOutEdges, [=](const Edge &edge) {
return (edge.value != memref);
}))
continue;
if (uniqueStore)
// Found multiple stores to function-local live-out memrefs.
return nullptr;
// Found first store to function-local live-out memref.
uniqueStore = storeOp;
}
return uniqueStore;
}
// Returns true if node 'id' can be removed from the graph. Returns false
// otherwise. A node can be removed from the graph iff the following
// conditions are met:
// *) The node does not write to any memref which escapes (or is a
// function/block argument).
// *) The node has no successors in the dependence graph.
bool canRemoveNode(unsigned id) {
if (writesToLiveInOrEscapingMemrefs(id))
return false;
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
// Return false if there exist out edges from 'id' on 'memref'.
auto storeMemref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
if (getOutEdgeCount(id, storeMemref) > 0)
return false;
}
return true;
}
// Returns true iff there is an edge from node 'srcId' to node 'dstId' which
// is for 'value' if non-null, or for any value otherwise. Returns false
// otherwise.
bool hasEdge(unsigned srcId, unsigned dstId, Value value = nullptr) {
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
return false;
}
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
return edge.id == dstId && (!value || edge.value == value);
});
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
return edge.id == srcId && (!value || edge.value == value);
});
return hasOutEdge && hasInEdge;
}
// Adds an edge from node 'srcId' to node 'dstId' for 'value'.
void addEdge(unsigned srcId, unsigned dstId, Value value) {
if (!hasEdge(srcId, dstId, value)) {
outEdges[srcId].push_back({dstId, value});
inEdges[dstId].push_back({srcId, value});
if (value.getType().isa<MemRefType>())
memrefEdgeCount[value]++;
}
}
// Removes an edge from node 'srcId' to node 'dstId' for 'value'.
void removeEdge(unsigned srcId, unsigned dstId, Value value) {
assert(inEdges.count(dstId) > 0);
assert(outEdges.count(srcId) > 0);
if (value.getType().isa<MemRefType>()) {
assert(memrefEdgeCount.count(value) > 0);
memrefEdgeCount[value]--;
}
// Remove 'srcId' from 'inEdges[dstId]'.
for (auto it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
if ((*it).id == srcId && (*it).value == value) {
inEdges[dstId].erase(it);
break;
}
}
// Remove 'dstId' from 'outEdges[srcId]'.
for (auto it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
if ((*it).id == dstId && (*it).value == value) {
outEdges[srcId].erase(it);
break;
}
}
}
// Returns true if there is a path in the dependence graph from node 'srcId'
// to node 'dstId'. Returns false otherwise.
bool hasDependencePath(unsigned srcId, unsigned dstId) {
// Worklist state is: <node-id, next-output-edge-index-to-visit>
SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
worklist.push_back({srcId, 0});
// Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
while (!worklist.empty()) {
auto &idAndIndex = worklist.back();
// Return true if we have reached 'dstId'.
if (idAndIndex.first == dstId)
return true;
// Pop and continue if node has no out edges, or if all out edges have
// already been visited.
if (outEdges.count(idAndIndex.first) == 0 ||
idAndIndex.second == outEdges[idAndIndex.first].size()) {
worklist.pop_back();
continue;
}
// Get graph edge to traverse.
Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
// Increment next output edge index for 'idAndIndex'.
++idAndIndex.second;
// Add node at 'edge.id' to worklist.
worklist.push_back({edge.id, 0});
}
return false;
}
// Returns the input edge count for node 'id' and 'memref' from src nodes
// which access 'memref' with a store operation.
unsigned getIncomingMemRefAccesses(unsigned id, Value memref) {
unsigned inEdgeCount = 0;
if (inEdges.count(id) > 0)
for (auto &inEdge : inEdges[id])
if (inEdge.value == memref) {
Node *srcNode = getNode(inEdge.id);
// Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
if (srcNode->getStoreOpCount(memref) > 0)
++inEdgeCount;
}
return inEdgeCount;
}
// Returns the output edge count for node 'id' and 'memref' (if non-null),
// otherwise returns the total output edge count from node 'id'.
unsigned getOutEdgeCount(unsigned id, Value memref = nullptr) {
unsigned outEdgeCount = 0;
if (outEdges.count(id) > 0)
for (auto &outEdge : outEdges[id])
if (!memref || outEdge.value == memref)
++outEdgeCount;
return outEdgeCount;
}
// Computes and returns an insertion point operation, before which the
// the fused <srcId, dstId> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
Operation *getFusedLoopNestInsertionPoint(unsigned srcId, unsigned dstId) {
if (outEdges.count(srcId) == 0)
return getNode(dstId)->op;
// Build set of insts in range (srcId, dstId) which depend on 'srcId'.
SmallPtrSet<Operation *, 2> srcDepInsts;
for (auto &outEdge : outEdges[srcId])
if (outEdge.id != dstId)
srcDepInsts.insert(getNode(outEdge.id)->op);
// Build set of insts in range (srcId, dstId) on which 'dstId' depends.
SmallPtrSet<Operation *, 2> dstDepInsts;
for (auto &inEdge : inEdges[dstId])
if (inEdge.id != srcId)
dstDepInsts.insert(getNode(inEdge.id)->op);
Operation *srcNodeInst = getNode(srcId)->op;
Operation *dstNodeInst = getNode(dstId)->op;
// Computing insertion point:
// *) Walk all operation positions in Block operation list in the
// range (src, dst). For each operation 'op' visited in this search:
// *) Store in 'firstSrcDepPos' the first position where 'op' has a
// dependence edge from 'srcNode'.
// *) Store in 'lastDstDepPost' the last position where 'op' has a
// dependence edge to 'dstNode'.
// *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
// operation insertion point (or return null pointer if no such
// insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
SmallVector<Operation *, 2> depInsts;
Optional<unsigned> firstSrcDepPos;
Optional<unsigned> lastDstDepPos;
unsigned pos = 0;
for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
it != Block::iterator(dstNodeInst); ++it) {
Operation *op = &(*it);
if (srcDepInsts.count(op) > 0 && firstSrcDepPos == None)
firstSrcDepPos = pos;
if (dstDepInsts.count(op) > 0)
lastDstDepPos = pos;
depInsts.push_back(op);
++pos;
}
if (firstSrcDepPos.hasValue()) {
if (lastDstDepPos.hasValue()) {
if (firstSrcDepPos.getValue() <= lastDstDepPos.getValue()) {
// No valid insertion point exists which preserves dependences.
return nullptr;
}
}
// Return the insertion point at 'firstSrcDepPos'.
return depInsts[firstSrcDepPos.getValue()];
}
// No dependence targets in range (or only dst deps in range), return
// 'dstNodInst' insertion point.
return dstNodeInst;
}
// Updates edge mappings from node 'srcId' to node 'dstId' after 'oldMemRef'
// has been replaced in node at 'dstId' by a private memref depending
// on the value of 'createPrivateMemRef'.
void updateEdges(unsigned srcId, unsigned dstId, Value oldMemRef,
bool createPrivateMemRef) {
// For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
if (inEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
for (auto &inEdge : oldInEdges) {
// Add edge from 'inEdge.id' to 'dstId' if not for 'oldMemRef'.
if (inEdge.value != oldMemRef)
addEdge(inEdge.id, dstId, inEdge.value);
}
}
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
if (outEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
for (auto &outEdge : oldOutEdges) {
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
if (outEdge.id == dstId)
removeEdge(srcId, outEdge.id, outEdge.value);
}
}
// Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
// replaced by a private memref). These edges could come from nodes
// other than 'srcId' which were removed in the previous step.
if (inEdges.count(dstId) > 0 && createPrivateMemRef) {
SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
for (auto &inEdge : oldInEdges)
if (inEdge.value == oldMemRef)
removeEdge(inEdge.id, dstId, inEdge.value);
}
}
// Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
// of sibling node 'sidId' into node 'dstId'.
void updateEdges(unsigned sibId, unsigned dstId) {
// For each edge in 'inEdges[sibId]':
// *) Add new edge from source node 'inEdge.id' to 'dstNode'.
// *) Remove edge from source node 'inEdge.id' to 'sibNode'.
if (inEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
for (auto &inEdge : oldInEdges) {
addEdge(inEdge.id, dstId, inEdge.value);
removeEdge(inEdge.id, sibId, inEdge.value);
}
}
// For each edge in 'outEdges[sibId]' to node 'id'
// *) Add new edge from 'dstId' to 'outEdge.id'.
// *) Remove edge from 'sibId' to 'outEdge.id'.
if (outEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
for (auto &outEdge : oldOutEdges) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(sibId, outEdge.id, outEdge.value);
}
}
}
// Adds ops in 'loads' and 'stores' to node at 'id'.
void addToNode(unsigned id, const SmallVectorImpl<Operation *> &loads,
const SmallVectorImpl<Operation *> &stores) {
Node *node = getNode(id);
for (auto *loadOpInst : loads)
node->loads.push_back(loadOpInst);
for (auto *storeOpInst : stores)
node->stores.push_back(storeOpInst);
}
void clearNodeLoadAndStores(unsigned id) {
Node *node = getNode(id);
node->loads.clear();
node->stores.clear();
}
// Calls 'callback' for each input edge incident to node 'id' which carries a
// memref dependence.
void forEachMemRefInputEdge(unsigned id,
const std::function<void(Edge)> &callback) {
if (inEdges.count(id) > 0)
forEachMemRefEdge(inEdges[id], callback);
}
// Calls 'callback' for each output edge from node 'id' which carries a
// memref dependence.
void forEachMemRefOutputEdge(unsigned id,
const std::function<void(Edge)> &callback) {
if (outEdges.count(id) > 0)
forEachMemRefEdge(outEdges[id], callback);
}
// Calls 'callback' for each edge in 'edges' which carries a memref
// dependence.
void forEachMemRefEdge(ArrayRef<Edge> edges,
const std::function<void(Edge)> &callback) {
for (const auto &edge : edges) {
// Skip if 'edge' is not a memref dependence edge.
if (!edge.value.getType().isa<MemRefType>())
continue;
assert(nodes.count(edge.id) > 0);
// Skip if 'edge.id' is not a loop nest.
if (!isa<AffineForOp>(getNode(edge.id)->op))
continue;
// Visit current input edge 'edge'.
callback(edge);
}
}
void print(raw_ostream &os) const {
os << "\nMemRefDependenceGraph\n";
os << "\nNodes:\n";
for (const auto &idAndNode : nodes) {
os << "Node: " << idAndNode.first << "\n";
auto it = inEdges.find(idAndNode.first);
if (it != inEdges.end()) {
for (const auto &e : it->second)
os << " InEdge: " << e.id << " " << e.value << "\n";
}
it = outEdges.find(idAndNode.first);
if (it != outEdges.end()) {
for (const auto &e : it->second)
os << " OutEdge: " << e.id << " " << e.value << "\n";
}
}
}
void dump() const { print(llvm::errs()); }
};
} // end anonymous namespace
// Initializes the data dependence graph by walking operations in 'f'.
// Assigns each node in the graph a node id based on program order in 'f'.
// TODO: Add support for taking a Block arg to construct the
// dependence graph at a different depth.
bool MemRefDependenceGraph::init(FuncOp f) {
DenseMap<Value, SetVector<unsigned>> memrefAccesses;
// TODO: support multi-block functions.
if (!llvm::hasSingleElement(f))
return false;
DenseMap<Operation *, unsigned> forToNodeMap;
for (auto &op : f.front()) {
if (auto forOp = dyn_cast<AffineForOp>(op)) {
// Create graph node 'id' to represent top-level 'forOp' and record
// all loads and store accesses it contains.
LoopNestStateCollector collector;
collector.collect(&op);
// Return false if a non 'affine.for' region was found (not currently
// supported).
if (collector.hasNonForRegion)
return false;
Node node(nextNodeId++, &op);
for (auto *opInst : collector.loadOpInsts) {
node.loads.push_back(opInst);
auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
for (auto *opInst : collector.storeOpInsts) {
node.stores.push_back(opInst);
auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
forToNodeMap[&op] = node.id;
nodes.insert({node.id, node});
} else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
// Create graph node for top-level load op.
Node node(nextNodeId++, &op);
node.loads.push_back(&op);
auto memref = cast<AffineReadOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
// Create graph node for top-level store op.
Node node(nextNodeId++, &op);
node.stores.push_back(&op);
auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (op.getNumRegions() != 0) {
// Return false if another region is found (not currently supported).
return false;
} else if (op.getNumResults() > 0 && !op.use_empty()) {
// Create graph node for top-level producer of SSA values, which
// could be used by loop nest nodes.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
}
}
// Add dependence edges between nodes which produce SSA values and their
// users.
for (auto &idAndNode : nodes) {
const Node &node = idAndNode.second;
if (!node.loads.empty() || !node.stores.empty())
continue;
auto *opInst = node.op;
for (auto value : opInst->getResults()) {
for (auto *user : value.getUsers()) {
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*user, &loops);
if (loops.empty())
continue;
assert(forToNodeMap.count(loops[0].getOperation()) > 0);
unsigned userLoopNestId = forToNodeMap[loops[0].getOperation()];
addEdge(node.id, userLoopNestId, value);
}
}
}
// Walk memref access lists and add graph edges between dependent nodes.
for (auto &memrefAndList : memrefAccesses) {
unsigned n = memrefAndList.second.size();
for (unsigned i = 0; i < n; ++i) {
unsigned srcId = memrefAndList.second[i];
bool srcHasStore =
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
for (unsigned j = i + 1; j < n; ++j) {
unsigned dstId = memrefAndList.second[j];
bool dstHasStore =
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
if (srcHasStore || dstHasStore)
addEdge(srcId, dstId, memrefAndList.first);
}
}
}
return true;
}
// Removes load operations from 'srcLoads' which operate on 'memref', and
// adds them to 'dstLoads'.
static void moveLoadsAccessingMemrefTo(Value memref,
SmallVectorImpl<Operation *> *srcLoads,
SmallVectorImpl<Operation *> *dstLoads) {
dstLoads->clear();
SmallVector<Operation *, 4> srcLoadsToKeep;
for (auto *load : *srcLoads) {
if (cast<AffineReadOpInterface>(load).getMemRef() == memref)
dstLoads->push_back(load);
else
srcLoadsToKeep.push_back(load);
}
srcLoads->swap(srcLoadsToKeep);
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
// This can increase the loop depth at which we can fuse a slice, since we are
// pushing loop carried dependence to a greater depth in the loop nest.
static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
assert(isa<AffineForOp>(node->op));
AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
node->op = newRootForOp.getOperation();
}
// TODO: improve/complete this when we have target data.
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
return llvm::divideCeil(sizeInBits, 8);
}
// Creates and returns a private (single-user) memref for fused loop rooted
// at 'forOp', with (potentially reduced) memref size based on the
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
// TODO: consider refactoring the common code from generateDma and
// this one.
static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
unsigned dstLoopDepth,
Optional<unsigned> fastMemorySpace,
uint64_t localBufSizeThreshold) {
auto *forInst = forOp.getOperation();
// Create builder to insert alloc op just before 'forOp'.
OpBuilder b(forInst);
// Builder to create constants at the top level.
OpBuilder top(forInst->getParentOfType<FuncOp>().getBody());
// Create new memref type based on slice bounds.
auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
auto oldMemRefType = oldMemRef.getType().cast<MemRefType>();
unsigned rank = oldMemRefType.getRank();
// Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
MemRefRegion region(srcStoreOpInst->getLoc());
bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
(void)validRegion;
assert(validRegion && "unexpected memref region failure");
SmallVector<int64_t, 4> newShape;
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
// Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
// by 'srcStoreOpInst' at depth 'dstLoopDepth'.
Optional<int64_t> numElements =
region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
assert(numElements.hasValue() &&
"non-constant number of elts in local buffer");
const FlatAffineConstraints *cst = region.getConstraints();
// 'outerIVs' holds the values that this memory region is symbolic/parametric
// on; this would correspond to loop IVs surrounding the level at which the
// slice is being materialized.
SmallVector<Value, 8> outerIVs;
cst->getIdValues(rank, cst->getNumIds(), &outerIVs);
// Build 'rank' AffineExprs from MemRefRegion 'lbs'
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; ++d) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
offsets.push_back(offset);
}
// Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
// by 'srcStoreOpInst'.
uint64_t bufSize =
getMemRefEltSizeInBytes(oldMemRefType) * numElements.getValue();
unsigned newMemSpace;
if (bufSize <= localBufSizeThreshold && fastMemorySpace.hasValue()) {
newMemSpace = fastMemorySpace.getValue();
} else {
newMemSpace = oldMemRefType.getMemorySpace();
}
auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
{}, newMemSpace);
// Create new private memref for fused loop 'forOp'. 'newShape' is always
// a constant shape.
// TODO: Create/move alloc ops for private memrefs closer to their
// consumer loop nests to reduce their live range. Currently they are added
// at the beginning of the function, because loop nests can be reordered
// during the fusion pass.
Value newMemRef = top.create<AllocOp>(forOp.getLoc(), newMemRefType);
// Build an AffineMap to remap access functions based on lower bound offsets.
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
auto remapExpr =
simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
remapExprs.push_back(remapExpr);
}
auto indexRemap =
AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
// Replace all users of 'oldMemRef' with 'newMemRef'.
LogicalResult res =
replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
/*extraOperands=*/outerIVs,
/*symbolOperands=*/{},
/*domInstFilter=*/&*forOp.getBody()->begin());
assert(succeeded(res) &&
"replaceAllMemrefUsesWith should always succeed here");
(void)res;
return newMemRef;
}
/// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
/// 'dstId'), if there is any non-affine operation accessing 'memref', return
/// false. Otherwise, return true.
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
Value memref,
MemRefDependenceGraph *mdg) {
auto *srcNode = mdg->getNode(srcId);
auto *dstNode = mdg->getNode(dstId);
Value::user_range users = memref.getUsers();
// For each MemRefDependenceGraph's node that is between 'srcNode' and
// 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
// non-affine operation in the node accesses the 'memref'.
for (auto &idAndNode : mdg->nodes) {
Operation *op = idAndNode.second.op;
// Take care of operations between 'srcNode' and 'dstNode'.
if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
// Walk inside the operation to find any use of the memref.
// Interrupt the walk if found.
auto walkResult = op->walk([&](Operation *user) {
// Skip affine ops.
if (isMemRefDereferencingOp(*user))
return WalkResult::advance();
// Find a non-affine op that uses the memref.
if (llvm::is_contained(users, user))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return true;
}
}
return false;
}
/// Check whether a memref value in node 'srcId' has a non-affine that
/// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
/// 'dstNode').
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
MemRefDependenceGraph *mdg) {
// Collect memref values in node 'srcId'.
auto *srcNode = mdg->getNode(srcId);
llvm::SmallDenseSet<Value, 2> memRefValues;
srcNode->op->walk([&](Operation *op) {
// Skip affine ops.
if (isa<AffineForOp>(op))
return WalkResult::advance();
for (Value v : op->getOperands())
// Collect memref values only.
if (v.getType().isa<MemRefType>())
memRefValues.insert(v);
return WalkResult::advance();
});
// Looking for users between node 'srcId' and node 'dstId'.
for (Value memref : memRefValues)
if (hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg))
return true;
return false;
}
// Checks if node 'srcId' can be safely fused into node 'dstId'. Node 'srcId'
// may write to multiple memrefs but it is required that only one of them,
// 'srcLiveOutStoreOp', has output edges.
// Returns true if 'dstNode's read/write region to 'memref' is a super set of
// 'srcNode's write region to 'memref' and 'srcId' has only one output edge.
// TODO: Generalize this to handle more live in/out cases.
static bool
canFuseSrcWhichWritesToLiveOut(unsigned srcId, unsigned dstId,
AffineWriteOpInterface srcLiveOutStoreOp,
MemRefDependenceGraph *mdg) {
assert(srcLiveOutStoreOp && "Expected a valid store op");
auto *dstNode = mdg->getNode(dstId);
Value memref = srcLiveOutStoreOp.getMemRef();
// Return false if 'srcNode' has more than one output edge on 'memref'.
if (mdg->getOutEdgeCount(srcId, memref) > 1)
return false;
// Compute MemRefRegion 'srcWriteRegion' for 'srcStoreOp' on 'memref'.
MemRefRegion srcWriteRegion(srcLiveOutStoreOp.getLoc());
if (failed(srcWriteRegion.compute(srcLiveOutStoreOp, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for source operation\n.");
return false;
}
SmallVector<int64_t, 4> srcShape;
// Query 'srcWriteRegion' for 'srcShape' and 'srcNumElements'.
// by 'srcStoreOp' at depth 'dstLoopDepth'.
Optional<int64_t> srcNumElements =
srcWriteRegion.getConstantBoundingSizeAndShape(&srcShape);
if (!srcNumElements.hasValue())
return false;
// Compute MemRefRegion 'dstRegion' for 'dstStore/LoadOpInst' on 'memref'.
// TODO: Compute 'unionboundingbox' of all write regions (one for
// each store op in 'dstStoreOps').
SmallVector<Operation *, 2> dstStoreOps;
dstNode->getStoreOpsForMemref(memref, &dstStoreOps);
SmallVector<Operation *, 2> dstLoadOps;
dstNode->getLoadOpsForMemref(memref, &dstLoadOps);
auto *dstOpInst = dstStoreOps.empty() ? dstLoadOps[0] : dstStoreOps[0];
MemRefRegion dstRegion(dstOpInst->getLoc());
if (failed(dstRegion.compute(dstOpInst, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for dest operation\n.");
return false;
}
SmallVector<int64_t, 4> dstShape;
// Query 'dstRegion' for 'dstShape' and 'dstNumElements'.
// by 'dstOpInst' at depth 'dstLoopDepth'.
Optional<int64_t> dstNumElements =
dstRegion.getConstantBoundingSizeAndShape(&dstShape);
if (!dstNumElements.hasValue())
return false;
// Return false if write region is not a superset of 'srcNodes' write
// region to 'memref'.
// TODO: Check the shape and lower bounds here too.
if (srcNumElements != dstNumElements)
return false;
// Return false if 'memref' is used by a non-affine operation that is
// between node 'srcId' and node 'dstId'.
if (hasNonAffineUsersOnThePath(srcId, dstId, mdg))
return false;
return true;
}
// Checks the profitability of fusing a backwards slice of the loop nest
// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
// the memref being produced and consumed, which is an input to the cost model.
// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
// 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
// fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
// same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
// unique store op in the src node, which will be used to check that the write
// region is the same after input-reuse fusion. Computation slices are provided
// in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
// fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
// profitable to fuse the candidate loop nests. Returns false otherwise.
// `dstLoopDepth` is set to the most profitable depth at which to materialize
// the source loop nest slice.
// The profitability model executes the following steps:
// *) Computes the backward computation slice at 'srcOpInst'. This
// computation slice of the loop nest surrounding 'srcOpInst' is
// represented by modified src loop bounds in 'sliceState', which are
// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
// loop nest is the total number of dynamic operation instances in the loop
// nest).
// *) Computes the cost of fusing a slice of the src loop nest into the dst
// loop nest at various values of dst loop depth, attempting to fuse
// the largest computation slice at the maximal dst loop depth (closest to
// the load) to minimize reuse distance and potentially enable subsequent
// load/store forwarding.
// NOTE: If the dst loop nest includes multiple loads in 'dstLoadOpInsts' for
// the same memref as is written by 'srcOpInst', then the union of slice
// loop bounds is used to compute the slice and associated slice cost.
// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
// nest, at which the src computation slice is inserted/fused.
// NOTE: We attempt to maximize the dst loop depth, but there are cases
// where a particular setting for 'dstLoopNest' might fuse an unsliced
// loop (within the src computation slice) at a depth which results in
// excessive recomputation (see unit tests for examples).
// *) Compares the total cost of the unfused loop nests to the min cost fused
// loop nest computed in the previous step, and returns true if the latter
// is lower.
static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
ArrayRef<Operation *> dstLoadOpInsts,
ArrayRef<ComputationSliceState> depthSliceUnions,
unsigned maxLegalFusionDepth,
unsigned *dstLoopDepth,
double computeToleranceThreshold) {
LLVM_DEBUG({
llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
llvm::dbgs() << ' ' << *srcOpInst << " and destination op(s)\n";
for (auto dstOpInst : dstLoadOpInsts) {
llvm::dbgs() << " " << *dstOpInst << "\n";
};
});
if (maxLegalFusionDepth == 0) {
LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth == 0 .\n");
return false;
}
// Compute cost of sliced and unsliced src loop nest.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*srcOpInst, &srcLoopIVs);
// Walk src loop nest and collect stats.
LoopNestStats srcLoopNestStats;
if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
return false;
// Compute cost of dst loop nest.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
LoopNestStats dstLoopNestStats;
if (!getLoopNestStats(dstLoopIVs[0], &dstLoopNestStats))
return false;
// Search for min cost value for 'dstLoopDepth'. At each value of
// 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
// bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
// of these bounds). Next the union slice bounds are used to calculate
// the cost of the slice and the cost of the slice inserted into the dst
// loop nest at 'dstLoopDepth'.
uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
double maxStorageReduction = 0.0;
Optional<uint64_t> sliceMemEstimate = None;
// The best loop depth at which to materialize the slice.
Optional<unsigned> bestDstLoopDepth = None;
// Compute op instance count for the src loop nest without iteration slicing.
uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
// Compute src loop nest write region size.
MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for source operation\n.");
return false;
}
Optional<int64_t> maybeSrcWriteRegionSizeBytes =
srcWriteRegion.getRegionSize();
if (!maybeSrcWriteRegionSizeBytes.hasValue())
return false;
int64_t srcWriteRegionSizeBytes = maybeSrcWriteRegionSizeBytes.getValue();
// Compute op instance count for the src loop nest.
uint64_t dstLoopNestCost = getComputeCost(dstLoopIVs[0], dstLoopNestStats);
// Evaluate all depth choices for materializing the slice in the destination
// loop nest.
for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
// Skip slice union if it wasn't computed for this depth.
if (depthSliceUnions[i - 1].isEmpty())
continue;
int64_t fusedLoopNestComputeCost;
if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstLoopIVs[0],
dstLoopNestStats, depthSliceUnions[i - 1],
&fusedLoopNestComputeCost)) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost.\n.");
continue;
}
double additionalComputeFraction =
fusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1;
// Determine what the slice write MemRefRegion would be, if the src loop
// nest slice 'depthSliceUnions[i - 1]' were to be inserted into the dst
// loop nest at loop depth 'i'.
MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
&depthSliceUnions[i - 1]))) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to compute slice write region at loopDepth: " << i
<< "\n");
continue;
}
Optional<int64_t> maybeSliceWriteRegionSizeBytes =
sliceWriteRegion.getRegionSize();
if (!maybeSliceWriteRegionSizeBytes.hasValue() ||
maybeSliceWriteRegionSizeBytes.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to get slice write region size at loopDepth: " << i
<< "\n");
continue;
}
int64_t sliceWriteRegionSizeBytes =
maybeSliceWriteRegionSizeBytes.getValue();
// If we are fusing for reuse, check that write regions remain the same.
// TODO: Write region check should check sizes and offsets in
// each dimension, so that we are sure they are covering the same memref
// region. Also, move this out to a isMemRefRegionSuperSet helper function.
if (srcOpInst != srcStoreOpInst &&
sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
continue;
double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
static_cast<double>(sliceWriteRegionSizeBytes);
LLVM_DEBUG({
std::stringstream msg;
msg << " evaluating fusion profitability at depth : " << i << "\n"
<< std::fixed << std::setprecision(2)
<< " additional compute fraction: "
<< 100.0 * additionalComputeFraction << "%\n"
<< " storage reduction factor: " << storageReduction << "x\n"
<< " fused nest cost: " << fusedLoopNestComputeCost << "\n"
<< " src write region size: " << srcWriteRegionSizeBytes << "\n"
<< " slice write region size: " << sliceWriteRegionSizeBytes
<< "\n";
llvm::dbgs() << msg.str();
});
// TODO: This is a placeholder cost model.
// Among all choices that add an acceptable amount of redundant computation
// (as per computeToleranceThreshold), we will simply pick the one that
// reduces the intermediary size the most.
if ((storageReduction > maxStorageReduction) &&
(additionalComputeFraction < computeToleranceThreshold)) {
maxStorageReduction = storageReduction;
bestDstLoopDepth = i;
minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
sliceMemEstimate = sliceWriteRegionSizeBytes;
}
}
// A simple cost model: fuse if it reduces the memory footprint.
if (!bestDstLoopDepth.hasValue()) {
LLVM_DEBUG(
llvm::dbgs()
<< "All fusion choices involve more than the threshold amount of "
"redundant computation; NOT fusing.\n");
return false;
}
if (!bestDstLoopDepth.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
return false;
}
// Set dstLoopDepth based on best values from search.
*dstLoopDepth = bestDstLoopDepth.getValue();
LLVM_DEBUG(
llvm::dbgs() << " LoopFusion fusion stats:"
<< "\n best loop depth: " << bestDstLoopDepth
<< "\n src loop nest compute cost: " << srcLoopNestCost
<< "\n dst loop nest compute cost: " << dstLoopNestCost
<< "\n fused loop nest compute cost: "
<< minFusedLoopNestComputeCost << "\n");
auto dstMemSize = getMemoryFootprintBytes(dstLoopIVs[0]);
auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
Optional<double> storageReduction = None;
if (!dstMemSize.hasValue() || !srcMemSize.hasValue()) {
LLVM_DEBUG(llvm::dbgs()
<< " fusion memory benefit cannot be evaluated; NOT fusing.\n");
return false;
}
auto srcMemSizeVal = srcMemSize.getValue();
auto dstMemSizeVal = dstMemSize.getValue();
assert(sliceMemEstimate.hasValue() && "expected value");
auto fusedMem = dstMemSizeVal + sliceMemEstimate.getValue();
LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
<< " dst mem: " << dstMemSizeVal << "\n"
<< " fused mem: " << fusedMem << "\n"
<< " slice mem: " << sliceMemEstimate << "\n");
if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
return false;
}
storageReduction =
100.0 *
(1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
double additionalComputeFraction =
100.0 * (minFusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1);
(void)additionalComputeFraction;
LLVM_DEBUG({
std::stringstream msg;
msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
<< std::setprecision(2) << additionalComputeFraction
<< "% redundant computation and a ";
msg << (storageReduction.hasValue()
? std::to_string(storageReduction.getValue())
: "<unknown>");
msg << "% storage reduction.\n";
llvm::dbgs() << msg.str();
});
return true;
}
namespace {
// GreedyFusion greedily fuses loop nests which have a producer/consumer or
// input-reuse relationship on a memref, with the goal of improving locality.
//
// The steps of the producer-consumer fusion algorithm are as follows:
//
// *) A worklist is initialized with node ids from the dependence graph.
// *) For each node id in the worklist:
// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
// candidate destination AffineForOp into which fusion will be attempted.
// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
// *) For each LoadOp in 'dstLoadOps' do:
// *) Look up dependent loop nests which have a single store op to the same
// memref.
// *) Check if dependences would be violated by the fusion.
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// *) Add the newly fused load/store operations to the state,
// and also add newly fused load ops to 'dstLoopOps' to be considered
// as fusion dst load ops in another iteration.
// *) Remove old src loop nest and its associated state.
//
// The steps of the input-reuse fusion algorithm are as follows:
//
// *) Initialize 'worklist' with node ids from the dependence graph.
// *) For each 'dstNode' in the worklist:
// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
// loads from the same memref, but which has no dependence paths to/from.
// *) Get a computation slice of 'sibLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// This function also checks that the memref write region of 'sibLoopNest',
// is preserved in the fused loop nest.
// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
//
// Given a graph where top-level operations are vertices in the set 'V' and
// edges in the set 'E' are dependences between vertices, this algorithm
// takes O(V) time for initialization, and has runtime O(V + E).
//
// This greedy algorithm is not 'maximal' due to the current restriction of
// fusing along single producer consumer edges, but there is a TODO: to fix
// this.
//
// TODO: Experiment with other fusion policies.
struct GreedyFusion {
public:
// The data dependence graph to traverse during fusion.
MemRefDependenceGraph *mdg;
// Worklist of graph nodes visited during the fusion pass.
SmallVector<unsigned, 8> worklist;
// Set of graph nodes which are present on the worklist.
llvm::SmallDenseSet<unsigned, 16> worklistSet;
// Parameter for local buffer size threshold.
unsigned localBufSizeThreshold;
// Parameter for fast memory space.
Optional<unsigned> fastMemorySpace;
// If true, ignore any additional (redundant) computation tolerance threshold
// that would have prevented fusion.
bool maximalFusion;
// The amount of additional computation that is tolerated while fusing
// pair-wise as a fraction of the total computation.
double computeToleranceThreshold;
using Node = MemRefDependenceGraph::Node;
GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
Optional<unsigned> fastMemorySpace, bool maximalFusion,
double computeToleranceThreshold)
: mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
computeToleranceThreshold(computeToleranceThreshold) {}
// Initializes 'worklist' with nodes from 'mdg'
void init() {
// TODO: Add a priority queue for prioritizing nodes by different
// metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
worklist.clear();
worklistSet.clear();
for (auto &idAndNode : mdg->nodes) {
const Node &node = idAndNode.second;
worklist.push_back(node.id);
worklistSet.insert(node.id);
}
}
// Run the GreedyFusion pass.
// *) First pass through the nodes fuses single-use producer nodes into their
// unique consumer.
// *) Second pass fuses sibling nodes which share no dependence edges.
// *) Third pass fuses any remaining producer nodes into their users.
void run() {
// TODO: Run this repeatedly until a fixed-point is reached.
fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
fuseSiblingNodes();
fuseProducerConsumerNodes(
/*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
eraseUnusedMemRefAllocations();
}
void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
worklistSet.erase(dstId);
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
continue;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
continue;
// Sink sequential loops in 'dstNode' (and thus raise parallel loops)
// while preserving relative order. This can increase the maximum loop
// depth at which we can fuse a slice of a producer loop nest into a
// consumer loop nest.
sinkSequentialLoops(dstNode);
SmallVector<Operation *, 4> loads = dstNode->loads;
SmallVector<Operation *, 4> dstLoadOpInsts;
DenseSet<Value> visitedMemrefs;
while (!loads.empty()) {
// Get memref of load on top of the stack.
auto memref = cast<AffineReadOpInterface>(loads.back()).getMemRef();
if (visitedMemrefs.count(memref) > 0)
continue;
visitedMemrefs.insert(memref);
// Move all loads in 'loads' accessing 'memref' to 'dstLoadOpInsts'.
moveLoadsAccessingMemrefTo(memref, &loads, &dstLoadOpInsts);
// Skip if no input edges along which to fuse.
if (mdg->inEdges.count(dstId) == 0)
continue;
// Iterate through in-edges for 'dstId' and src node id for any
// edges on 'memref'.
SmallVector<unsigned, 2> srcNodeIds;
for (auto &srcEdge : mdg->inEdges[dstId]) {
// Skip 'srcEdge' if not for 'memref'.
if (srcEdge.value != memref)
continue;
srcNodeIds.push_back(srcEdge.id);
}
for (unsigned srcId : srcNodeIds) {
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(srcId) == 0)
continue;
// Get 'srcNode' from which to attempt fusion into 'dstNode'.
auto *srcNode = mdg->getNode(srcId);
// Skip if 'srcNode' is not a loop nest.
if (!isa<AffineForOp>(srcNode->op))
continue;
// Skip if 'srcNode' has more than one live-out store to a
// function-local memref.
// TODO: Support more generic multi-output src loop nests
// fusion.
auto srcStoreOp = mdg->getUniqueOutgoingStore(srcNode);
if (!srcStoreOp) {
// Get the src store op at the deepest loop depth.
// We will use 'LoopFusionUtils::canFuseLoops' to check fusion
// feasibility for loops with multiple stores.
unsigned maxLoopDepth = 0;
for (auto *op : srcNode->stores) {
auto storeOp = cast<AffineWriteOpInterface>(op);
if (storeOp.getMemRef() != memref) {
srcStoreOp = nullptr;
break;
}
unsigned loopDepth = getNestingDepth(storeOp);
if (loopDepth > maxLoopDepth) {
maxLoopDepth = loopDepth;
srcStoreOp = storeOp;
}
}
if (!srcStoreOp)
continue;
}
// Unique outgoing store found must write to 'memref' since 'memref'
// is the one that established the producer-consumer relationship
// between 'srcNode' and 'dstNode'.
assert(srcStoreOp.getMemRef() == memref &&
"Found store to unexpected memref");
// Skip if 'srcNode' writes to any live in or escaping memrefs,
// and cannot be fused.
bool writesToLiveInOrOut =
mdg->writesToLiveInOrEscapingMemrefs(srcNode->id);
if (writesToLiveInOrOut &&
!canFuseSrcWhichWritesToLiveOut(srcId, dstId, srcStoreOp, mdg))
continue;
// Don't create a private memref if 'writesToLiveInOrOut'.
bool createPrivateMemref = !writesToLiveInOrOut;
// Don't create a private memref if 'srcNode' has in edges on
// 'memref', or if 'dstNode' has out edges on 'memref'.
if (mdg->getIncomingMemRefAccesses(srcNode->id, memref) > 0 ||
mdg->getOutEdgeCount(dstNode->id, memref) > 0) {
createPrivateMemref = false;
}
// Skip if 'srcNode' out edge count on 'memref' > 'maxSrcUserCount'.
if (mdg->getOutEdgeCount(srcNode->id, memref) > maxSrcUserCount)
continue;
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
Operation *insertPointInst =
mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
if (insertPointInst == nullptr)
continue;
auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
// Compute the innermost common loop depth for dstNode loads/stores.
SmallVector<Operation *, 2> dstMemrefOps;
for (Operation *op : dstNode->loads)
if (cast<AffineReadOpInterface>(op).getMemRef() == memref)
dstMemrefOps.push_back(op);
for (Operation *op : dstNode->stores)
if (cast<AffineWriteOpInterface>(op).getMemRef() == memref)
dstMemrefOps.push_back(op);
unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
// Check the feasibility of fusing src loop nest into dst loop nest
// at loop depths in range [1, dstLoopDepthTest].
unsigned maxLegalFusionDepth = 0;
SmallVector<ComputationSliceState, 8> depthSliceUnions;
depthSliceUnions.resize(dstLoopDepthTest);
FusionStrategy strategy(FusionStrategy::ProducerConsumer, memref);
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
FusionResult result = mlir::canFuseLoops(
srcAffineForOp, dstAffineForOp,
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
if (result.value == FusionResult::Success)
maxLegalFusionDepth = i;
}
// Skip if fusion is not feasible at any loop depths.
if (maxLegalFusionDepth == 0)
continue;
// Check if fusion would be profitable. We skip profitability analysis
// for maximal fusion since we already know the maximal legal depth to
// fuse.
unsigned bestDstLoopDepth = maxLegalFusionDepth;
if (!maximalFusion &&
!isFusionProfitable(srcStoreOp, srcStoreOp, dstLoadOpInsts,
depthSliceUnions, maxLegalFusionDepth,
&bestDstLoopDepth, computeToleranceThreshold))
continue;
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
"Missing slice union for depth");
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
fuseLoops(srcAffineForOp, dstAffineForOp,
depthSliceUnions[bestDstLoopDepth - 1]);
LLVM_DEBUG(llvm::dbgs()
<< "Fused src loop " << srcId << " into dst loop " << dstId
<< " at depth " << bestDstLoopDepth << ":\n"
<< dstAffineForOp << "\n");
// Move 'dstAffineForOp' before 'insertPointInst' if needed.
if (insertPointInst != dstAffineForOp.getOperation())
dstAffineForOp.getOperation()->moveBefore(insertPointInst);
// Update edges between 'srcNode' and 'dstNode'.
mdg->updateEdges(srcNode->id, dstNode->id, memref,
createPrivateMemref);
// Collect slice loop stats.
LoopNestStateCollector dstForCollector;
dstForCollector.collect(dstAffineForOp);
if (createPrivateMemref) {
// Create private memref for 'memref' in 'dstAffineForOp'.
SmallVector<Operation *, 4> storesForMemref;
for (auto *storeOpInst : dstForCollector.storeOpInsts) {
if (cast<AffineWriteOpInterface>(storeOpInst).getMemRef() ==
memref)
storesForMemref.push_back(storeOpInst);
}
// TODO: Use union of memref write regions to compute
// private memref footprint.
auto newMemRef = createPrivateMemRef(
dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
fastMemorySpace, localBufSizeThreshold);
visitedMemrefs.insert(newMemRef);
// Create new node in dependence graph for 'newMemRef' alloc op.
unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp());
// Add edge from 'newMemRef' node to dstNode.
mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
}
// Collect dst loop stats after memref privatization transformation.
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstAffineForOp.getOperation());
// Add new load ops to current Node load op list 'loads' to continue
// fusing based on new operands.
for (auto *loadOpInst : dstLoopCollector.loadOpInsts) {
// NOTE: Change 'loads' to a hash set in case efficiency is an
// issue. We still use a vector since it's expected to be small.
if (!llvm::is_contained(loads, loadOpInst))
loads.push_back(loadOpInst);
}
// Clear visited memrefs after fusion so that previously visited src
// nodes are considered for fusion again in the context of the new
// fused node.
// TODO: This shouldn't be necessary if we visited candidates in the
// dependence graph in post-order or once we fully support multi-store
// producers. Currently, in a multi-store producer scenario such as
// A->B, A->C, B->C, we fail to fuse A+B due to the multiple outgoing
// edges. However, after fusing B+C, A has a single outgoing edge and
// can be fused if we revisit it in the context of the new fused B+C
// node.
visitedMemrefs.clear();
// Clear and add back loads and stores.
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
// Remove old src loop nest if it no longer has outgoing dependence
// edges, and if it does not write to a memref which escapes the
// function. If 'writesToLiveInOrOut' is true, then 'srcNode' has been
// fused into 'dstNode' and write region of 'dstNode' covers the write
// region of 'srcNode', and 'srcNode' has no other users so it is safe
// to remove.
if (writesToLiveInOrOut || mdg->canRemoveNode(srcNode->id)) {
mdg->removeNode(srcNode->id);
srcNode->op->erase();
} else {
// Add remaining users of 'oldMemRef' back on the worklist (if not
// already there), as its replacement with a local/private memref
// has reduced dependences on 'oldMemRef' which may have created new
// fusion opportunities.
if (mdg->outEdges.count(srcNode->id) > 0) {
SmallVector<MemRefDependenceGraph::Edge, 2> oldOutEdges =
mdg->outEdges[srcNode->id];
for (auto &outEdge : oldOutEdges) {
if (outEdge.value == memref &&
worklistSet.count(outEdge.id) == 0) {
worklist.push_back(outEdge.id);
worklistSet.insert(outEdge.id);
}
}
}
}
}
}
}
}
// Visits each node in the graph, and for each node, attempts to fuse it with
// its sibling nodes (nodes which share a parent, but no dependence edges).
void fuseSiblingNodes() {
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
worklistSet.erase(dstId);
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
continue;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
continue;
// Attempt to fuse 'dstNode' with its sibling nodes in the graph.
fuseWithSiblingNodes(dstNode);
}
}
// Attempt to fuse 'dstNode' with sibling nodes in the graph.
void fuseWithSiblingNodes(Node *dstNode) {
DenseSet<unsigned> visitedSibNodeIds;
std::pair<unsigned, Value> idAndMemref;
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
unsigned sibId = idAndMemref.first;
Value memref = idAndMemref.second;
// TODO: Check that 'sibStoreOpInst' post-dominates all other
// stores to the same memref in 'sibNode' loop nest.
auto *sibNode = mdg->getNode(sibId);
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
assert(sibNode->op->getBlock() == dstNode->op->getBlock());
Operation *insertPointInst =
sibNode->op->isBeforeInBlock(dstNode->op)
? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
: mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
if (insertPointInst == nullptr)
continue;
// Check if fusion would be profitable and at what depth.
// Get unique 'sibNode' load op to 'memref'.
SmallVector<Operation *, 2> sibLoadOpInsts;
sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
// Currently findSiblingNodeToFuse searches for siblings with one load.
assert(sibLoadOpInsts.size() == 1);
Operation *sibLoadOpInst = sibLoadOpInsts[0];
assert(!sibNode->stores.empty());
// TODO: Choose the store which postdominates all other stores.
auto *sibStoreOpInst = sibNode->stores.back();
// Gather 'dstNode' load ops to 'memref'.
SmallVector<Operation *, 2> dstLoadOpInsts;
dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*dstLoadOpInsts[0], &dstLoopIVs);
unsigned dstLoopDepthTest = dstLoopIVs.size();
auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
// Compute loop depth and slice union for fusion.
SmallVector<ComputationSliceState, 8> depthSliceUnions;
depthSliceUnions.resize(dstLoopDepthTest);
unsigned maxLegalFusionDepth = 0;
FusionStrategy strategy(FusionStrategy::Sibling, memref);
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
FusionResult result = mlir::canFuseLoops(
sibAffineForOp, dstAffineForOp,
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
if (result.value == FusionResult::Success)
maxLegalFusionDepth = i;
}
// Skip if fusion is not feasible at any loop depths.
if (maxLegalFusionDepth == 0)
continue;
unsigned bestDstLoopDepth = dstLoopDepthTest;
if (!maximalFusion) {
// Check if fusion would be profitable.
if (!isFusionProfitable(sibLoadOpInst, sibStoreOpInst, dstLoadOpInsts,
depthSliceUnions, maxLegalFusionDepth,
&bestDstLoopDepth, computeToleranceThreshold))
continue;
}
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
"Fusion depth has no computed slice union");
// Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
mlir::fuseLoops(sibAffineForOp, dstAffineForOp,
depthSliceUnions[bestDstLoopDepth - 1]);
auto dstForInst = cast<AffineForOp>(dstNode->op);
// Update operation position of fused loop nest (if needed).
if (insertPointInst != dstForInst.getOperation()) {
dstForInst.getOperation()->moveBefore(insertPointInst);
}
// Update data dependence graph state post fusion.
updateStateAfterSiblingFusion(sibNode, dstNode);
}
}
// Searches function argument uses and the graph from 'dstNode' looking for a
// fusion candidate sibling node which shares no dependences with 'dstNode'
// but which loads from the same memref. Returns true and sets
// 'idAndMemrefToFuse' on success. Returns false otherwise.
bool findSiblingNodeToFuse(Node *dstNode,
DenseSet<unsigned> *visitedSibNodeIds,
std::pair<unsigned, Value> *idAndMemrefToFuse) {
// Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
// on 'memref'.
auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
// Skip if 'outEdge' is not a read-after-write dependence.
// TODO: Remove restrict to single load op restriction.
if (sibNode->getLoadOpCount(memref) != 1)
return false;
// Skip if there exists a path of dependent edges between
// 'sibNode' and 'dstNode'.
if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
mdg->hasDependencePath(dstNode->id, sibNode->id))
return false;
// Skip sib node if it loads to (and stores from) the same memref on
// which it also has an input dependence edge.
DenseSet<Value> loadAndStoreMemrefSet;
sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
}))
return false;
// Check that all stores are to the same memref.
DenseSet<Value> storeMemrefs;
for (auto *storeOpInst : sibNode->stores) {
storeMemrefs.insert(
cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
}
if (storeMemrefs.size() != 1)
return false;
// Skip if a memref value in one node is used by a non-affine memref
// access that lies between 'dstNode' and 'sibNode'.
if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
return false;
return true;
};
// Search for siblings which load the same memref function argument.
auto fn = dstNode->op->getParentOfType<FuncOp>();
for (unsigned i = 0, e = fn.getNumArguments(); i != e; ++i) {
for (auto *user : fn.getArgument(i).getUsers()) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(user)) {
// Gather loops surrounding 'use'.
SmallVector<AffineForOp, 4> loops;
getLoopIVs(*user, &loops);
// Skip 'use' if it is not within a loop nest.
if (loops.empty())
continue;
Node *sibNode = mdg->getForOpNode(loops[0]);
assert(sibNode != nullptr);
// Skip 'use' if it not a sibling to 'dstNode'.
if (sibNode->id == dstNode->id)
continue;
// Skip 'use' if it has been visited.
if (visitedSibNodeIds->count(sibNode->id) > 0)
continue;
// Skip 'use' if it does not load from the same memref as 'dstNode'.
auto memref = loadOp.getMemRef();
if (dstNode->getLoadOpCount(memref) == 0)
continue;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, memref)) {
visitedSibNodeIds->insert(sibNode->id);
idAndMemrefToFuse->first = sibNode->id;
idAndMemrefToFuse->second = memref;
return true;
}
}
}
}
// Search for siblings by following edges through an intermediate src node.
// Collect candidate 'dstNode' input edges in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
mdg->forEachMemRefInputEdge(
dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
// Add 'inEdge' if it is a read-after-write dependence.
if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
inEdges.push_back(inEdge);
});
// Search for sibling nodes to fuse by visiting output edges from each input
// edge in 'inEdges'.
for (auto &inEdge : inEdges) {
// Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
mdg->forEachMemRefOutputEdge(
inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
unsigned sibNodeId = outEdge.id;
if (visitedSibNodeIds->count(sibNodeId) > 0)
return;
// Skip output edge if not a sibling using the same memref.
if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
return;
auto *sibNode = mdg->getNode(sibNodeId);
if (!isa<AffineForOp>(sibNode->op))
return;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, outEdge.value)) {
// Add candidate 'outEdge' to sibling node.
outEdges.push_back(outEdge);
}
});
// Add first candidate if any were returned.
if (!outEdges.empty()) {
visitedSibNodeIds->insert(outEdges[0].id);
idAndMemrefToFuse->first = outEdges[0].id;
idAndMemrefToFuse->second = outEdges[0].value;
return true;
}
}
return false;
}
/// Update data dependence graph state to reflect sibling fusion of 'sibNode'
/// into 'dstNode'.
void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
// Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
mdg->updateEdges(sibNode->id, dstNode->id);
// Collect dst loop stats after memref privatization transformation.
auto dstForInst = cast<AffineForOp>(dstNode->op);
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstForInst.getOperation());
// Clear and add back loads and stores
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
// Remove old sibling loop nest if it no longer has outgoing dependence
// edges, and it does not write to a memref which escapes the
// function.
if (mdg->getOutEdgeCount(sibNode->id) == 0) {
mdg->removeNode(sibNode->id);
sibNode->op->erase();
}
}
// Clean up any allocs with no users.
void eraseUnusedMemRefAllocations() {
for (auto &pair : mdg->memrefEdgeCount) {
if (pair.second > 0)
continue;
auto memref = pair.first;
// Skip if there exist other uses (return operation or function calls).
if (!memref.use_empty())
continue;
// Use list expected to match the dep graph info.
auto *op = memref.getDefiningOp();
if (isa_and_nonnull<AllocOp>(op))
op->erase();
}
}
};
} // end anonymous namespace
void LoopFusion::runOnFunction() {
MemRefDependenceGraph g;
if (!g.init(getFunction()))
return;
Optional<unsigned> fastMemorySpaceOpt;
if (fastMemorySpace.hasValue())
fastMemorySpaceOpt = fastMemorySpace;
unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
maximalFusion, computeToleranceThreshold);
fusion.run();
}