llvm-project/mlir/lib/Dialect/SparseTensor/IR/SparseTensorDialect.cpp
Tres Popp c1fa60b4cd [mlir] Update method cast calls to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Context:

* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.

See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.

One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
                 -export-fixes /tmp/cast/casts.yaml mlir/*\
                 -header-filter=mlir/ -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```

Differential Revision: https://reviews.llvm.org/D150348
2023-05-12 11:21:30 +02:00

1197 lines
46 KiB
C++

//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// Additional convenience methods.
//===----------------------------------------------------------------------===//
/// Gets the dimension-rank of the type of some `T`. (In particular
/// this is only used for `Value` and `TypedValue<RankedTensorType>`.)
template <typename T>
static inline Dimension getDimRank(T t) {
return getRankedTensorType(t).getRank();
}
//===----------------------------------------------------------------------===//
// TensorDialect Attribute Methods.
//===----------------------------------------------------------------------===//
static bool acceptBitWidth(unsigned bitWidth) {
switch (bitWidth) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const {
printer << "(";
printer << (getStaticOffset() ? std::to_string(*getStaticOffset()) : "?");
printer << ", ";
printer << (getStaticSize() ? std::to_string(*getStaticSize()) : "?");
printer << ", ";
printer << (getStaticStride() ? std::to_string(*getStaticStride()) : "?");
printer << ")";
}
static ParseResult parseOptionalStaticSlice(int64_t &result,
AsmParser &parser) {
auto parseResult = parser.parseOptionalInteger(result);
if (parseResult.has_value()) {
if (parseResult.value().succeeded() && result < 0) {
parser.emitError(
parser.getCurrentLocation(),
"expect positive value or ? for slice offset/size/stride");
return failure();
}
return parseResult.value();
}
// Else, and '?' which represented dynamic slice
result = SparseTensorDimSliceAttr::kDynamic;
return parser.parseQuestion();
}
Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
int64_t offset = -1, size = -1, stride = -1;
if (failed(parser.parseLParen()) ||
failed(parseOptionalStaticSlice(offset, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(size, parser)) ||
failed(parser.parseComma()) ||
failed(parseOptionalStaticSlice(stride, parser)) ||
failed(parser.parseRParen()))
return {};
return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(),
offset, size, stride);
}
LogicalResult
SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError,
int64_t offset, int64_t size, int64_t stride) {
if ((offset == SparseTensorDimSliceAttr::kDynamic || offset >= 0) &&
(size == SparseTensorDimSliceAttr::kDynamic || size > 0) &&
(stride == SparseTensorDimSliceAttr::kDynamic || stride > 0)) {
return success();
}
return emitError()
<< "expect positive value or ? for slice offset/size/stride";
}
Type mlir::sparse_tensor::detail::getIntegerOrIndexType(MLIRContext *ctx,
unsigned bitwidth) {
if (bitwidth)
return IntegerType::get(ctx, bitwidth);
return IndexType::get(ctx);
}
Type SparseTensorEncodingAttr::getPosType() const {
return detail::getIntegerOrIndexType(getContext(), getPosWidth());
}
Type SparseTensorEncodingAttr::getCrdType() const {
return detail::getIntegerOrIndexType(getContext(), getCrdWidth());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutOrdering() const {
return SparseTensorEncodingAttr::get(getContext(), getDimLevelType(),
AffineMap(), AffineMap(), getPosWidth(),
getCrdWidth());
}
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const {
return SparseTensorEncodingAttr::get(getContext(), getDimLevelType(),
getDimOrdering(), getHigherOrdering(), 0,
0);
}
bool SparseTensorEncodingAttr::isAllDense() const {
return !getImpl() || llvm::all_of(getDimLevelType(), isDenseDLT);
}
bool SparseTensorEncodingAttr::isAllOrdered() const {
return !getImpl() || llvm::all_of(getDimLevelType(), isOrderedDLT);
}
bool SparseTensorEncodingAttr::hasIdDimOrdering() const {
return !getImpl() || !getDimOrdering() || getDimOrdering().isIdentity();
}
Level SparseTensorEncodingAttr::getLvlRank() const {
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
return getDimLevelType().size();
}
DimLevelType SparseTensorEncodingAttr::getLvlType(Level l) const {
if (!getImpl())
return DimLevelType::Dense;
assert(l < getLvlRank() && "Level is out of bounds");
return getDimLevelType()[l];
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const {
return getDimSlices()[dim].getStaticOffset();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceSize(Dimension dim) const {
return getDimSlices()[dim].getStaticSize();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const {
return getDimSlices()[dim].getStaticStride();
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceOffset(toOrigDim(*this, lvl));
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceSize(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceSize(toOrigDim(*this, lvl));
}
std::optional<uint64_t>
SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const {
// FIXME: `toOrigDim` is deprecated.
return getStaticDimSliceStride(toOrigDim(*this, lvl));
}
const static DimLevelType validDLTs[] = {DimLevelType::Dense,
DimLevelType::Compressed,
DimLevelType::CompressedNu,
DimLevelType::CompressedNo,
DimLevelType::CompressedNuNo,
DimLevelType::Singleton,
DimLevelType::SingletonNu,
DimLevelType::SingletonNo,
DimLevelType::SingletonNuNo,
DimLevelType::CompressedWithHi,
DimLevelType::CompressedWithHiNu,
DimLevelType::CompressedWithHiNo,
DimLevelType::CompressedWithHiNuNo};
static std::optional<DimLevelType> parseDLT(StringRef str) {
for (DimLevelType dlt : validDLTs)
if (str == toMLIRString(dlt))
return dlt;
return std::nullopt;
}
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
#define RETURN_ON_FAIL(stmt) \
if (failed(stmt)) { \
return {}; \
}
#define ERROR_IF(COND, MSG) \
if (COND) { \
parser.emitError(parser.getNameLoc(), MSG); \
return {}; \
}
RETURN_ON_FAIL(parser.parseLess())
RETURN_ON_FAIL(parser.parseLBrace())
// Process the data from the parsed dictionary value into struct-like data.
SmallVector<DimLevelType> lvlTypes;
SmallVector<SparseTensorDimSliceAttr> slices;
AffineMap dimOrd = {};
AffineMap higherOrd = {};
unsigned posWidth = 0;
unsigned crdWidth = 0;
StringRef attrName;
// Exactly 6 keys.
SmallVector<StringRef, 6> keys = {"dimLevelType", "dimOrdering",
"higherOrdering", "posWidth",
"crdWidth", "slice"};
while (succeeded(parser.parseOptionalKeyword(&attrName))) {
if (!llvm::is_contained(keys, attrName)) {
parser.emitError(parser.getNameLoc(), "unexpected key: ") << attrName;
return {};
}
// Consume the `=` after keys
RETURN_ON_FAIL(parser.parseEqual())
// FIXME: using `operator==` below duplicates the string comparison
// cost of the `is_contained` check above. Should instead use some
// "find" function that returns the index into `keys` so that we can
// dispatch on that instead.
if (attrName == "dimLevelType") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr));
auto arrayAttr = llvm::dyn_cast<ArrayAttr>(attr);
ERROR_IF(!arrayAttr, "expected an array for dimension level types")
for (auto i : arrayAttr) {
auto strAttr = llvm::dyn_cast<StringAttr>(i);
ERROR_IF(!strAttr, "expected a string value in dimension level types")
auto strVal = strAttr.getValue();
if (auto optDLT = parseDLT(strVal)) {
lvlTypes.push_back(optDLT.value());
} else {
parser.emitError(parser.getNameLoc(),
"unexpected dimension level type: ")
<< strVal;
return {};
}
}
} else if (attrName == "dimOrdering") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto affineAttr = llvm::dyn_cast<AffineMapAttr>(attr);
ERROR_IF(!affineAttr, "expected an affine map for dimension ordering")
dimOrd = affineAttr.getValue();
} else if (attrName == "higherOrdering") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto affineAttr = llvm::dyn_cast<AffineMapAttr>(attr);
ERROR_IF(!affineAttr, "expected an affine map for higher ordering")
higherOrd = affineAttr.getValue();
} else if (attrName == "posWidth") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
ERROR_IF(!intAttr, "expected an integral position bitwidth")
posWidth = intAttr.getInt();
} else if (attrName == "crdWidth") {
Attribute attr;
RETURN_ON_FAIL(parser.parseAttribute(attr))
auto intAttr = llvm::dyn_cast<IntegerAttr>(attr);
ERROR_IF(!intAttr, "expected an integral index bitwidth")
crdWidth = intAttr.getInt();
} else if (attrName == "slice") {
RETURN_ON_FAIL(parser.parseLSquare())
// Dispatches to DimSliceAttr to skip mnemonic
bool finished = false;
while (auto attr = SparseTensorDimSliceAttr::parse(parser, nullptr)) {
auto sliceAttr = llvm::cast<SparseTensorDimSliceAttr>(attr);
slices.push_back(sliceAttr);
if (parser.parseOptionalComma().failed()) {
finished = true;
break;
}
}
// Wrong when parsing slices
if (!finished)
return {};
RETURN_ON_FAIL(parser.parseRSquare())
}
// Only the last item can omit the comma
if (parser.parseOptionalComma().failed())
break;
}
RETURN_ON_FAIL(parser.parseRBrace())
RETURN_ON_FAIL(parser.parseGreater())
#undef ERROR_IF
#undef RETURN_ON_FAIL
// Construct struct-like storage for attribute.
return parser.getChecked<SparseTensorEncodingAttr>(
parser.getContext(), lvlTypes, dimOrd, higherOrd, posWidth, crdWidth,
slices);
}
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
// Print the struct-like storage in dictionary fashion.
printer << "<{ dimLevelType = [ ";
llvm::interleaveComma(getDimLevelType(), printer, [&](DimLevelType dlt) {
printer << "\"" << toMLIRString(dlt) << "\"";
});
printer << " ]";
// Print remaining members only for non-default values.
if (!hasIdDimOrdering())
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
if (getHigherOrdering())
printer << ", higherOrdering = affine_map<" << getHigherOrdering() << ">";
if (getPosWidth())
printer << ", posWidth = " << getPosWidth();
if (getCrdWidth())
printer << ", crdWidth = " << getCrdWidth();
if (!getDimSlices().empty()) {
printer << ", slice = [ ";
llvm::interleaveComma(getDimSlices(), printer,
[&](SparseTensorDimSliceAttr attr) {
// Calls SparseTensorDimSliceAttr::print directly to
// skip mnemonic.
attr.print(printer);
});
printer << " ]";
}
printer << " }>";
}
LogicalResult SparseTensorEncodingAttr::verify(
function_ref<InFlightDiagnostic()> emitError,
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
AffineMap higherOrdering, unsigned posWidth, unsigned crdWidth,
ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
if (!acceptBitWidth(posWidth))
return emitError() << "unexpected position bitwidth: " << posWidth;
if (!acceptBitWidth(crdWidth))
return emitError() << "unexpected coordinate bitwidth: " << crdWidth;
// Before we can check that the level-rank is consistent/coherent
// across all fields, we need to define it. The source-of-truth for
// the `getLvlRank` method is the length of the level-types array,
// since it must always be provided and have full rank; therefore we
// use that same source-of-truth here.
const Level lvlRank = dimLevelType.size();
if (lvlRank == 0)
return emitError() << "expected a non-empty array for level types";
if (dimOrdering) {
if (!dimOrdering.isPermutation())
return emitError()
<< "expected a permutation affine map for dimension ordering";
if (dimOrdering.getNumResults() != lvlRank)
return emitError() << "unexpected mismatch in ordering and dimension "
"level types size";
}
if (higherOrdering) {
if (higherOrdering.getNumDims() >= higherOrdering.getNumResults())
return emitError() << "unexpected higher ordering mapping from "
<< higherOrdering.getNumDims() << " to "
<< higherOrdering.getNumResults();
if (higherOrdering.getNumResults() != lvlRank)
return emitError() << "unexpected mismatch in higher ordering and "
"dimension level types size";
}
if (!dimSlices.empty() && dimSlices.size() != lvlRank) {
return emitError() << "unexpected mismatch in dimension slices and "
"dimension level type size";
}
return success();
}
#define RETURN_FAILURE_IF_FAILED(X) \
if (failed(X)) { \
return failure(); \
}
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
ArrayRef<DynSize> dimShape, Type elementType,
function_ref<InFlightDiagnostic()> emitError) const {
// Check structural integrity. In particular, this ensures that the
// level-rank is coherent across all the fields.
RETURN_FAILURE_IF_FAILED(verify(emitError, getDimLevelType(),
getDimOrdering(), getHigherOrdering(),
getPosWidth(), getCrdWidth(), getDimSlices()))
// Check integrity with tensor type specifics. In particular, we
// need only check that the dimension-rank of the tensor agrees with
// the dimension-rank of the encoding.
const Dimension dimRank = dimShape.size();
if (dimRank == 0)
return emitError() << "expected non-scalar sparse tensor";
if (const auto higherOrdering = getHigherOrdering()) {
if (higherOrdering.getNumDims() != dimRank)
return emitError() << "expected an affine map with " << dimRank
<< " dimensions for higher ordering";
// TODO: verification of higher ordering contents
} else if (dimRank != getLvlRank()) {
return emitError() << "expected an array of size " << dimRank
<< " for dimension level types";
}
return success();
}
//===----------------------------------------------------------------------===//
// Convenience Methods.
//===----------------------------------------------------------------------===//
SparseTensorEncodingAttr
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
if (auto ttp = llvm::dyn_cast<RankedTensorType>(type))
return llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(ttp.getEncoding());
if (auto mdtp = llvm::dyn_cast<StorageSpecifierType>(type))
return mdtp.getEncoding();
return nullptr;
}
bool mlir::sparse_tensor::isCOOType(SparseTensorEncodingAttr enc,
Level startLvl, bool isUnique) {
if (!enc ||
!(enc.isCompressedLvl(startLvl) || enc.isCompressedWithHiLvl(startLvl)))
return false;
const Level lvlRank = enc.getLvlRank();
for (Level l = startLvl + 1; l < lvlRank; ++l)
if (!enc.isSingletonLvl(l))
return false;
// If isUnique is true, then make sure that the last level is unique,
// that is, lvlRank == 1 (unique the only compressed) and lvlRank > 1
// (unique on the last singleton).
return !isUnique || enc.isUniqueLvl(lvlRank - 1);
}
bool mlir::sparse_tensor::isUniqueCOOType(Type tp) {
return isCOOType(getSparseTensorEncoding(tp), 0, /*isUnique=*/true);
}
Level mlir::sparse_tensor::getCOOStart(SparseTensorEncodingAttr enc) {
// We only consider COO region with at least two levels for the purpose
// of AOS storage optimization.
const Level lvlRank = enc.getLvlRank();
if (lvlRank > 1)
for (Level l = 0; l < lvlRank - 1; l++)
if (isCOOType(enc, l, /*isUnique=*/false))
return l;
return lvlRank;
}
// Helpers to setup a COO type.
RankedTensorType sparse_tensor::getCOOFromTypeWithOrdering(RankedTensorType rtt,
AffineMap lvlPerm,
bool ordered) {
const SparseTensorType src(rtt);
// The dim-rank of the source `RankedTensorType` is used as the lvl-rank
// of the result `RankedTensorType`. This follows from the fact that the
// result's encoding has the default higher-ordering (hence the result's
// lvl-rank equals its dim-rank). We don't need to assert that `lvlRank`
// agrees with the size of `lvlPerm` because that will be verified by
// `STEA::get`.
const Level lvlRank = src.getDimRank();
SmallVector<DimLevelType> lvlTypes;
// An unordered and non-unique compressed level at beginning.
// If this is also the last level, then it is unique.
lvlTypes.push_back(
*getDimLevelType(LevelFormat::Compressed, ordered, lvlRank == 1));
if (lvlRank > 1) {
// TODO: it is actually ordered at the level for ordered input.
// Followed by unordered non-unique n-2 singleton levels.
std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
*getDimLevelType(LevelFormat::Singleton, ordered, false));
// Ends by a unique singleton level unless the lvlRank is 1.
lvlTypes.push_back(*getDimLevelType(LevelFormat::Singleton, ordered, true));
}
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
// largest one among them) in the original operation instead of using the
// default value.
unsigned posWidth = src.getPosWidth();
unsigned crdWidth = src.getCrdWidth();
auto enc = SparseTensorEncodingAttr::get(src.getContext(), lvlTypes, lvlPerm,
AffineMap(), posWidth, crdWidth);
return RankedTensorType::get(src.getDimShape(), src.getElementType(), enc);
}
RankedTensorType sparse_tensor::getCOOFromType(RankedTensorType src,
bool ordered) {
return getCOOFromTypeWithOrdering(
src, AffineMap::getMultiDimIdentityMap(src.getRank(), src.getContext()),
ordered);
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Dimension mlir::sparse_tensor::toOrigDim(SparseTensorEncodingAttr enc,
Level l) {
if (enc) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
return order.getDimPosition(l);
}
}
return l;
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Level mlir::sparse_tensor::toStoredDim(SparseTensorEncodingAttr enc,
Dimension d) {
if (enc) {
auto order = enc.getDimOrdering();
if (order) {
assert(order.isPermutation());
auto maybePos =
order.getResultPosition(getAffineDimExpr(d, enc.getContext()));
assert(maybePos.has_value());
return *maybePos;
}
}
return d;
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Dimension mlir::sparse_tensor::toOrigDim(RankedTensorType type, Level l) {
const auto enc = getSparseTensorEncoding(type);
assert(l < enc.getLvlRank());
return toOrigDim(enc, l);
}
// TODO: Remove this definition once all use-sites have been fixed to
// properly handle non-permutations.
Level mlir::sparse_tensor::toStoredDim(RankedTensorType type, Dimension d) {
assert(d < static_cast<Dimension>(type.getRank()));
return toStoredDim(getSparseTensorEncoding(type), d);
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Types.
//===----------------------------------------------------------------------===//
/// We normalized sparse tensor encoding attribute by always using
/// ordered/unique DLT such that "compressed-nu-no" and "compressed-nu" (as well
/// as other variants) lead to the same storage specifier type, and stripping
/// irrelevant fields that do not alter the sparse tensor memory layout.
static SparseTensorEncodingAttr
getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) {
SmallVector<DimLevelType> dlts;
for (auto dlt : enc.getDimLevelType())
dlts.push_back(*getDimLevelType(*getLevelFormat(dlt), true, true));
return SparseTensorEncodingAttr::get(
enc.getContext(), dlts,
AffineMap(), // dimOrdering (irrelavant to storage speicifer)
AffineMap(), // highLvlOrdering (irrelavant to storage specifer)
// Always use `index` for memSize and lvlSize instead of reusing
// `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA
// value for different bitwidth, it also avoids casting between index and
// integer (returned by DimOp)
0, 0, enc.getDimSlices());
}
StorageSpecifierType
StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding));
}
//===----------------------------------------------------------------------===//
// SparseTensorDialect Operations.
//===----------------------------------------------------------------------===//
static LogicalResult lvlIsInBounds(Level lvl, Value tensor) {
return success(lvl < getSparseTensorType(tensor).getLvlRank());
}
static LogicalResult isMatchingWidth(Value mem, unsigned width) {
const Type etp = getMemRefType(mem).getElementType();
return success(width == 0 ? etp.isIndex() : etp.isInteger(width));
}
static LogicalResult verifySparsifierGetterSetter(
StorageSpecifierKind mdKind, std::optional<Level> lvl,
TypedValue<StorageSpecifierType> md, Operation *op) {
if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
return op->emitError(
"redundant level argument for querying value memory size");
}
const auto enc = md.getType().getEncoding();
const Level lvlRank = enc.getLvlRank();
if (mdKind == StorageSpecifierKind::DimOffset ||
mdKind == StorageSpecifierKind::DimStride)
if (!enc.isSlice())
return op->emitError("requested slice data on non-slice tensor");
if (mdKind != StorageSpecifierKind::ValMemSize) {
if (!lvl)
return op->emitError("missing level argument");
const Level l = lvl.value();
if (l >= lvlRank)
return op->emitError("requested level is out of bounds");
if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
return op->emitError(
"requested position memory size on a singleton level");
}
return success();
}
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
SparseTensorType tensorTp,
RankedTensorType valuesTp,
RankedTensorType coordinatesTp,
IntegerAttr batchedLvls) {
unsigned nBatched = batchedLvls ? batchedLvls.getValue().getZExtValue() : 0;
if (requiresStaticShape && !tensorTp.hasStaticDimShape())
return op->emitError("the sparse-tensor must have static shape");
if (!tensorTp.hasEncoding())
return op->emitError("the sparse-tensor must have an encoding attribute");
if (!tensorTp.isIdentity())
return op->emitError("the sparse-tensor must have the identity mapping");
if (!isCOOType(tensorTp.getEncoding(), nBatched, true))
return op->emitError("the sparse-tensor must have a COO type");
if (coordinatesTp.getRank() != 2 + nBatched)
return op->emitError("coordinates must have rank 2 + batched_lvls");
if (requiresStaticShape && !coordinatesTp.hasStaticShape())
return op->emitError("coordinates must have static shape");
if (coordinatesTp.getElementType() != tensorTp.getCrdType())
return op->emitError("input/output coordinate-types don't match");
if (valuesTp.getRank() != 1 + nBatched)
return op->emitError("values must have rank 1 + batched_lvls");
if (requiresStaticShape && !valuesTp.hasStaticShape())
return op->emitError("values must have static shape");
if (valuesTp.getElementType() != tensorTp.getElementType())
return op->emitError("input/output element-types don't match");
for (unsigned i = 0; i < nBatched; i++) {
const auto valBatch = valuesTp.getShape()[i];
const auto crdBatch = coordinatesTp.getShape()[i];
if (ShapedType::isDynamic(valBatch) || ShapedType::isDynamic(crdBatch) ||
crdBatch != valBatch) {
return op->emitError(
"values/coordinates batched level sizes don't match statically");
}
}
const auto valuesNSE = valuesTp.getShape()[nBatched];
const auto coordsNSE = coordinatesTp.getShape()[nBatched];
if (!ShapedType::isDynamic(valuesNSE) && !ShapedType::isDynamic(coordsNSE) &&
valuesNSE != coordsNSE)
return op->emitError("values/coordinates number-of-elements don't match");
// NOTE: We use `getLvlRank` because the `coordinatesTp` is for
// level-coordinates (cf., the op documentation).
const DynSize coordsRank = coordinatesTp.getShape()[1 + nBatched];
const Level tensorRank = tensorTp.getLvlRank();
// FIXME: replace the `operator!=` with our backported `safelyNE`.
if (!ShapedType::isDynamic(coordsRank) &&
coordsRank != static_cast<DynSize>(tensorRank) - nBatched)
return op->emitError("input/output level-ranks don't match");
return success();
}
LogicalResult PackOp::verify() {
const auto valuesTp = getRankedTensorType(getValues());
const auto coordinatesTp = getRankedTensorType(getCoordinates());
const auto resTp = getSparseTensorType(getResult());
return verifyPackUnPack(*this, true, resTp, valuesTp, coordinatesTp,
getBatchedLvlsAttr());
}
unsigned PackOp::getNumBatchedLvls() {
return getBatchedLvls().has_value() ? getBatchedLvls()->getZExtValue() : 0;
}
LogicalResult UnpackOp::verify() {
const auto valuesTp = getRankedTensorType(getValues());
const auto coordinatesTp = getRankedTensorType(getCoordinates());
const auto srcTp = getSparseTensorType(getTensor());
return verifyPackUnPack(*this, false, srcTp, valuesTp, coordinatesTp,
getBatchedLvlsAttr());
}
unsigned UnpackOp::getNumBatchedLvls() {
return getBatchedLvls().has_value() ? getBatchedLvls()->getZExtValue() : 0;
}
LogicalResult ConvertOp::verify() {
if (auto tp1 = llvm::dyn_cast<RankedTensorType>(getSource().getType())) {
if (auto tp2 = llvm::dyn_cast<RankedTensorType>(getDest().getType())) {
if (tp1.getRank() != tp2.getRank())
return emitError("unexpected conversion mismatch in rank");
auto dstEnc =
llvm::dyn_cast_or_null<SparseTensorEncodingAttr>(tp2.getEncoding());
if (dstEnc && dstEnc.isSlice())
return emitError("cannot convert to a sparse tensor slice");
auto shape1 = tp1.getShape();
auto shape2 = tp2.getShape();
// Accept size matches between the source and the destination type
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
return emitError("unexpected conversion mismatch in dimension ") << d;
return success();
}
}
return emitError("unexpected type in convert");
}
OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
Type dstType = getType();
// Fold trivial dense-to-dense convert and leave trivial sparse-to-sparse
// convert for codegen to remove. This is because we use trivial
// sparse-to-sparse convert to tell bufferization that the sparse codegen
// will expand the tensor buffer into sparse tensor storage.
if (!getSparseTensorEncoding(dstType) && dstType == getSource().getType())
return getSource();
return {};
}
LogicalResult ToPositionsOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), e.getPosWidth())))
return emitError("unexpected type for positions");
return success();
}
LogicalResult ToCoordinatesOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (failed(lvlIsInBounds(getLevel(), getTensor())))
return emitError("requested level is out of bounds");
if (failed(isMatchingWidth(getResult(), e.getCrdWidth())))
return emitError("unexpected type for coordinates");
return success();
}
LogicalResult ToCoordinatesBufferOp::verify() {
auto e = getSparseTensorEncoding(getTensor().getType());
if (getCOOStart(e) >= e.getLvlRank())
return emitError("expected sparse tensor with a COO region");
return success();
}
LogicalResult ToValuesOp::verify() {
auto ttp = getRankedTensorType(getTensor());
auto mtp = getMemRefType(getResult());
if (ttp.getElementType() != mtp.getElementType())
return emitError("unexpected mismatch in element types");
return success();
}
LogicalResult ToSliceOffsetOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult ToSliceStrideOp::verify() {
auto rank = getRankedTensorType(getSlice()).getRank();
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
return emitError("requested dimension out of bound");
return success();
}
LogicalResult GetStorageSpecifierOp::verify() {
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
return success();
}
template <typename SpecifierOp>
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) {
return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
}
OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
const StorageSpecifierKind kind = getSpecifierKind();
const auto lvl = getLevel();
for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op))
if (kind == op.getSpecifierKind() && lvl == op.getLevel())
return op.getValue();
return {};
}
LogicalResult SetStorageSpecifierOp::verify() {
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
return success();
}
//===----------------------------------------------------------------------===//
// TensorDialect Linalg.Generic Operations.
//===----------------------------------------------------------------------===//
template <class T>
static LogicalResult verifyNumBlockArgs(T *op, Region &region,
const char *regionName,
TypeRange inputTypes, Type outputType) {
unsigned numArgs = region.getNumArguments();
unsigned expectedNum = inputTypes.size();
if (numArgs != expectedNum)
return op->emitError() << regionName << " region must have exactly "
<< expectedNum << " arguments";
for (unsigned i = 0; i < numArgs; i++) {
Type typ = region.getArgument(i).getType();
if (typ != inputTypes[i])
return op->emitError() << regionName << " region argument " << (i + 1)
<< " type mismatch";
}
Operation *term = region.front().getTerminator();
YieldOp yield = dyn_cast<YieldOp>(term);
if (!yield)
return op->emitError() << regionName
<< " region must end with sparse_tensor.yield";
if (!yield.getResult() || yield.getResult().getType() != outputType)
return op->emitError() << regionName << " region yield type mismatch";
return success();
}
LogicalResult BinaryOp::verify() {
NamedAttrList attrs = (*this)->getAttrs();
Type leftType = getX().getType();
Type rightType = getY().getType();
Type outputType = getOutput().getType();
Region &overlap = getOverlapRegion();
Region &left = getLeftRegion();
Region &right = getRightRegion();
// Check correct number of block arguments and return type for each
// non-empty region.
if (!overlap.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType))
}
if (!left.empty()) {
RETURN_FAILURE_IF_FAILED(
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType))
} else if (getLeftIdentity()) {
if (leftType != outputType)
return emitError("left=identity requires first argument to have the same "
"type as the output");
}
if (!right.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, right, "right", TypeRange{rightType}, outputType))
} else if (getRightIdentity()) {
if (rightType != outputType)
return emitError("right=identity requires second argument to have the "
"same type as the output");
}
return success();
}
LogicalResult UnaryOp::verify() {
Type inputType = getX().getType();
Type outputType = getOutput().getType();
// Check correct number of block arguments and return type for each
// non-empty region.
Region &present = getPresentRegion();
if (!present.empty()) {
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, present, "present", TypeRange{inputType}, outputType))
}
Region &absent = getAbsentRegion();
if (!absent.empty()) {
RETURN_FAILURE_IF_FAILED(
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType))
}
return success();
}
LogicalResult ConcatenateOp::verify() {
const auto dstTp = getSparseTensorType(*this);
const Dimension concatDim = getDimension();
const Dimension dimRank = dstTp.getDimRank();
if (getInputs().size() <= 1)
return emitError("Need at least two tensors to concatenate.");
if (concatDim >= dimRank)
return emitError(llvm::formatv(
"Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
concatDim, dimRank));
for (const auto &it : llvm::enumerate(getInputs())) {
const auto i = it.index();
const auto srcTp = getSparseTensorType(it.value());
if (srcTp.hasDynamicDimShape())
return emitError(llvm::formatv("Input tensor ${0} has dynamic shape", i));
const Dimension srcDimRank = srcTp.getDimRank();
if (srcDimRank != dimRank)
return emitError(
llvm::formatv("Input tensor ${0} has a different rank (rank={1}) "
"from the output tensor (rank={2}).",
i, srcDimRank, dimRank));
}
for (Dimension d = 0; d < dimRank; d++) {
const DynSize dstSh = dstTp.getDimShape()[d];
if (d == concatDim) {
if (!ShapedType::isDynamic(dstSh)) {
// If we reach here, then all inputs have static shapes. So we
// can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)`
// to avoid redundant assertions in the loop.
StaticSize sumSz = 0;
for (const auto src : getInputs())
sumSz += getSparseTensorType(src).getDimShape()[d];
// If all dimension are statically known, the sum of all the input
// dimensions should be equal to the output dimension.
if (sumSz != dstSh)
return emitError(
"The concatenation dimension of the output tensor should be the "
"sum of all the concatenation dimensions of the input tensors.");
}
} else {
DynSize prev = dstSh;
for (const auto src : getInputs()) {
const auto sh = getSparseTensorType(src).getDimShape()[d];
if (!ShapedType::isDynamic(prev) && sh != prev)
return emitError("All dimensions (expect for the concatenating one) "
"should be equal.");
prev = sh;
}
}
}
return success();
}
LogicalResult InsertOp::verify() {
const auto stt = getSparseTensorType(getTensor());
if (stt.getLvlRank() != static_cast<Level>(getLvlCoords().size()))
return emitOpError("incorrect number of coordinates");
return success();
}
void PushBackOp::build(OpBuilder &builder, OperationState &result,
Value curSize, Value inBuffer, Value value) {
build(builder, result, curSize, inBuffer, value, Value());
}
LogicalResult PushBackOp::verify() {
if (Value n = getN()) {
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
if (nValue && nValue.value() < 1)
return emitOpError("n must be not less than 1");
}
return success();
}
LogicalResult CompressOp::verify() {
const auto stt = getSparseTensorType(getTensor());
if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size()))
return emitOpError("incorrect number of coordinates");
return success();
}
void ForeachOp::build(
OpBuilder &builder, OperationState &result, Value tensor,
ValueRange initArgs, AffineMapAttr order,
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
bodyBuilder) {
build(builder, result, initArgs.getTypes(), tensor, initArgs, order);
// Builds foreach body.
if (!bodyBuilder)
return;
const auto stt = getSparseTensorType(tensor);
const Dimension dimRank = stt.getDimRank();
// Starts with `dimRank`-many coordinates.
SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType());
// Followed by one value.
blockArgTypes.push_back(stt.getElementType());
// Followed by the reduction variables.
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc());
OpBuilder::InsertionGuard guard(builder);
auto &region = *result.regions.front();
Block *bodyBlock =
builder.createBlock(&region, region.end(), blockArgTypes, blockArgLocs);
bodyBuilder(builder, result.location,
bodyBlock->getArguments().slice(0, dimRank),
bodyBlock->getArguments()[dimRank],
bodyBlock->getArguments().drop_front(dimRank + 1));
}
LogicalResult ForeachOp::verify() {
const auto t = getSparseTensorType(getTensor());
const Dimension dimRank = t.getDimRank();
const auto args = getBody()->getArguments();
if (getOrder().has_value() &&
(t.getEncoding() || !getOrder()->isPermutation()))
return emitError("Only support permuted order on non encoded dense tensor");
if (static_cast<size_t>(dimRank) + 1 + getInitArgs().size() != args.size())
return emitError("Unmatched number of arguments in the block");
if (getNumResults() != getInitArgs().size())
return emitError("Mismatch in number of init arguments and results");
if (getResultTypes() != getInitArgs().getTypes())
return emitError("Mismatch in types of init arguments and results");
// Cannot mark this const, because the getters aren't.
auto yield = cast<YieldOp>(getBody()->getTerminator());
if (yield.getNumOperands() != getNumResults() ||
yield.getOperands().getTypes() != getResultTypes())
return emitError("Mismatch in types of yield values and results");
const auto iTp = IndexType::get(getContext());
for (Dimension d = 0; d < dimRank; d++)
if (args[d].getType() != iTp)
emitError(
llvm::formatv("Expecting Index type for argument at index {0}", d));
const auto elemTp = t.getElementType();
const auto valueTp = args[dimRank].getType();
if (elemTp != valueTp)
emitError(llvm::formatv("Unmatched element type between input tensor and "
"block argument, expected:{0}, got: {1}",
elemTp, valueTp));
return success();
}
LogicalResult ReduceOp::verify() {
Type inputType = getX().getType();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
this, formula, "reduce", TypeRange{inputType, inputType}, inputType))
return success();
}
LogicalResult SelectOp::verify() {
Builder b(getContext());
Type inputType = getX().getType();
Type boolType = b.getI1Type();
// Check correct number of block arguments and return type.
Region &formula = getRegion();
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(this, formula, "select",
TypeRange{inputType}, boolType))
return success();
}
LogicalResult SortOp::verify() {
if (getXs().empty())
return emitError("need at least one xs buffer.");
auto n = getN().getDefiningOp<arith::ConstantIndexOp>();
Type xtp = getMemRefType(getXs().front()).getElementType();
auto checkTypes = [&](ValueRange operands,
bool checkEleType = true) -> LogicalResult {
for (Value opnd : operands) {
auto mtp = getMemRefType(opnd);
const DynSize sh = mtp.getShape()[0];
// We can't check the size of dynamic dimension at compile-time, but all
// xs and ys should have a dimension not less than n at runtime.
if (n && !ShapedType::isDynamic(sh) && sh < n.value())
return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
": {0} < {1}",
sh, n.value()));
if (checkEleType && xtp != mtp.getElementType())
return emitError("mismatch xs element types");
}
return success();
};
RETURN_FAILURE_IF_FAILED(checkTypes(getXs()))
return n ? checkTypes(getYs(), false) : success();
}
LogicalResult SortCooOp::verify() {
auto cn = getN().getDefiningOp<arith::ConstantIndexOp>();
// We can't check the size of the buffers when n or buffer dimensions aren't
// compile-time constants.
if (!cn)
return success();
uint64_t n = cn.value();
uint64_t nx = 1;
if (auto nxAttr = getNxAttr()) {
nx = nxAttr.getInt();
if (nx < 1)
emitError(llvm::formatv("Expected nx > 1, got {0}", nx));
}
uint64_t ny = 0;
if (auto nyAttr = getNyAttr()) {
ny = nyAttr.getInt();
}
// FIXME: update the types of variables used in expressions bassed as
// the `minSize` argument, to avoid implicit casting at the callsites
// of this lambda.
const auto checkDim = [&](Value v, StaticSize minSize, const char *message) {
const DynSize sh = getMemRefType(v).getShape()[0];
if (!ShapedType::isDynamic(sh) && sh < minSize)
emitError(llvm::formatv("{0} got {1} < {2}", message, sh, minSize));
};
checkDim(getXy(), n * (nx + ny), "Expected dimension(xy) >= n * (nx + ny)");
for (Value opnd : getYs()) {
checkDim(opnd, n, "Expected dimension(y) >= n");
}
return success();
}
LogicalResult YieldOp::verify() {
// Check for compatible parent.
auto *parentOp = (*this)->getParentOp();
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
isa<ReduceOp>(parentOp) || isa<SelectOp>(parentOp) ||
isa<ForeachOp>(parentOp))
return success();
return emitOpError("expected parent op to be sparse_tensor unary, binary, "
"reduce, select or foreach");
}
#undef RETURN_FAILURE_IF_FAILED
//===----------------------------------------------------------------------===//
// TensorDialect Methods.
//===----------------------------------------------------------------------===//
void SparseTensorDialect::initialize() {
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
>();
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
>();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"