llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp
Florian Hahn a487b792e2
[TySan] Add initial Type Sanitizer (LLVM) (#76259)
This patch introduces the LLVM components of a type sanitizer: a
sanitizer for type-based aliasing violations.

It is based on Hal Finkel's https://reviews.llvm.org/D32198.

C/C++ have type-based aliasing rules, and LLVM's optimizer can exploit
these given TBAA metadata added by Clang. Roughly, a pointer of given
type cannot be used to access an object of a different type (with, of
course, certain exceptions). Unfortunately, there's a lot of code in the
wild that violates these rules (e.g. for type punning), and such code
often must be built with -fno-strict-aliasing. Performance is often
sacrificed as a result. Part of the problem is the difficulty of finding
TBAA violations. Hopefully, this sanitizer will help.

For each TBAA type-access descriptor, encoded in LLVM's IR using
metadata, the corresponding instrumentation pass generates descriptor
tables. Thus, for each type (and access descriptor), we have a unique
pointer representation. Excepting anonymous-namespace types, these
tables are comdat, so the pointer values should be unique across the
program. The descriptors refer to other descriptors to form a type
aliasing tree (just like LLVM's TBAA metadata does). The instrumentation
handles the "fast path" (where the types match exactly and no
partial-overlaps are detected), and defers to the runtime to handle all
of the more-complicated cases. The runtime, of course, is also
responsible for reporting errors when those are detected.

The runtime uses essentially the same shadow memory region as tsan, and
we use 8 bytes of shadow memory, the size of the pointer to the type
descriptor, for every byte of accessed data in the program. The value 0
is used to represent an unknown type. The value -1 is used to represent
an interior byte (a byte that is part of a type, but not the first
byte). The instrumentation first checks for an exact match between the
type of the current access and the type for that address recorded in the
shadow memory. If it matches, it then checks the shadow for the
remainder of the bytes in the type to make sure that they're all -1. If
not, we call the runtime. If the exact match fails, we next check if the
value is 0 (i.e. unknown). If it is, then we check the shadow for the
remainder of the byes in the type (to make sure they're all 0). If
they're not, we call the runtime. We then set the shadow for the access
address and set the shadow for the remaining bytes in the type to -1
(i.e. marking them as interior bytes). If the type indicated by the
shadow memory for the access address is neither an exact match nor 0, we
call the runtime.

The instrumentation pass inserts calls to the memset intrinsic to set
the memory updated by memset, memcpy, and memmove, as well as
allocas/byval (and for lifetime.start/end) to reset the shadow memory to
reflect that the type is now unknown. The runtime intercepts memset,
memcpy, etc. to perform the same function for the library calls.

The runtime essentially repeats these checks, but uses the full TBAA
algorithm, just as the compiler does, to determine when two types are
permitted to alias. In a situation where access overlap has occurred and
aliasing is not permitted, an error is generated.

Clang's TBAA representation currently has a problem representing unions,
as demonstrated by the one XFAIL'd test in the runtime patch. We'll
update the TBAA representation to fix this, and at the same time, update
the sanitizer.

When the sanitizer is active, we disable actually using the TBAA
metadata for AA. This way we're less likely to use TBAA to remove memory
accesses that we'd like to verify.

As a note, this implementation does not use the compressed shadow-memory
scheme discussed previously
(http://lists.llvm.org/pipermail/llvm-dev/2017-April/111766.html). That
scheme would not handle the struct-path (i.e. structure offset)
information that our TBAA represents. I expect we'll want to further
work on compressing the shadow-memory representation, but I think it
makes sense to do that as follow-up work.

It goes together with the corresponding clang changes
(https://github.com/llvm/llvm-project/pull/76260) and compiler-rt
changes (https://github.com/llvm/llvm-project/pull/76261)

PR: https://github.com/llvm/llvm-project/pull/76259
2024-12-17 13:57:34 +00:00

1001 lines
38 KiB
C++

//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass looks for safe point where the prologue and epilogue can be
// inserted.
// The safe point for the prologue (resp. epilogue) is called Save
// (resp. Restore).
// A point is safe for prologue (resp. epilogue) if and only if
// it 1) dominates (resp. post-dominates) all the frame related operations and
// between 2) two executions of the Save (resp. Restore) point there is an
// execution of the Restore (resp. Save) point.
//
// For instance, the following points are safe:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
// And the following points are not:
// for (int i = 0; i < 10; ++i) {
// Save
// ...
// }
// for (int i = 0; i < 10; ++i) {
// ...
// Restore
// }
// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
//
// This pass also ensures that the safe points are 3) cheaper than the regular
// entry and exits blocks.
//
// Property #1 is ensured via the use of MachineDominatorTree and
// MachinePostDominatorTree.
// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
// points must be in the same loop.
// Property #3 is ensured via the MachineBlockFrequencyInfo.
//
// If this pass found points matching all these properties, then
// MachineFrameInfo is updated with this information.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/MachinePostDominators.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <memory>
using namespace llvm;
#define DEBUG_TYPE "shrink-wrap"
STATISTIC(NumFunc, "Number of functions");
STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
STATISTIC(NumCandidatesDropped,
"Number of shrink-wrapping candidates dropped because of frequency");
static cl::opt<cl::boolOrDefault>
EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
cl::desc("enable the shrink-wrapping pass"));
static cl::opt<bool> EnablePostShrinkWrapOpt(
"enable-shrink-wrap-region-split", cl::init(true), cl::Hidden,
cl::desc("enable splitting of the restore block if possible"));
namespace {
/// Class to determine where the safe point to insert the
/// prologue and epilogue are.
/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
/// shrink-wrapping term for prologue/epilogue placement, this pass
/// does not rely on expensive data-flow analysis. Instead we use the
/// dominance properties and loop information to decide which point
/// are safe for such insertion.
class ShrinkWrap : public MachineFunctionPass {
/// Hold callee-saved information.
RegisterClassInfo RCI;
MachineDominatorTree *MDT = nullptr;
MachinePostDominatorTree *MPDT = nullptr;
/// Current safe point found for the prologue.
/// The prologue will be inserted before the first instruction
/// in this basic block.
MachineBasicBlock *Save = nullptr;
/// Current safe point found for the epilogue.
/// The epilogue will be inserted before the first terminator instruction
/// in this basic block.
MachineBasicBlock *Restore = nullptr;
/// Hold the information of the basic block frequency.
/// Use to check the profitability of the new points.
MachineBlockFrequencyInfo *MBFI = nullptr;
/// Hold the loop information. Used to determine if Save and Restore
/// are in the same loop.
MachineLoopInfo *MLI = nullptr;
// Emit remarks.
MachineOptimizationRemarkEmitter *ORE = nullptr;
/// Frequency of the Entry block.
BlockFrequency EntryFreq;
/// Current opcode for frame setup.
unsigned FrameSetupOpcode = ~0u;
/// Current opcode for frame destroy.
unsigned FrameDestroyOpcode = ~0u;
/// Stack pointer register, used by llvm.{savestack,restorestack}
Register SP;
/// Entry block.
const MachineBasicBlock *Entry = nullptr;
using SetOfRegs = SmallSetVector<unsigned, 16>;
/// Registers that need to be saved for the current function.
mutable SetOfRegs CurrentCSRs;
/// Current MachineFunction.
MachineFunction *MachineFunc = nullptr;
/// Is `true` for the block numbers where we assume possible stack accesses
/// or computation of stack-relative addresses on any CFG path including the
/// block itself. Is `false` for basic blocks where we can guarantee the
/// opposite. False positives won't lead to incorrect analysis results,
/// therefore this approach is fair.
BitVector StackAddressUsedBlockInfo;
/// Check if \p MI uses or defines a callee-saved register or
/// a frame index. If this is the case, this means \p MI must happen
/// after Save and before Restore.
bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
bool StackAddressUsed) const;
const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
if (CurrentCSRs.empty()) {
BitVector SavedRegs;
const TargetFrameLowering *TFI =
MachineFunc->getSubtarget().getFrameLowering();
TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
for (int Reg = SavedRegs.find_first(); Reg != -1;
Reg = SavedRegs.find_next(Reg))
CurrentCSRs.insert((unsigned)Reg);
}
return CurrentCSRs;
}
/// Update the Save and Restore points such that \p MBB is in
/// the region that is dominated by Save and post-dominated by Restore
/// and Save and Restore still match the safe point definition.
/// Such point may not exist and Save and/or Restore may be null after
/// this call.
void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
// Try to find safe point based on dominance and block frequency without
// any change in IR.
bool performShrinkWrapping(
const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
RegScavenger *RS);
/// This function tries to split the restore point if doing so can shrink the
/// save point further. \return True if restore point is split.
bool postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
RegScavenger *RS);
/// This function analyzes if the restore point can split to create a new
/// restore point. This function collects
/// 1. Any preds of current restore that are reachable by callee save/FI
/// blocks
/// - indicated by DirtyPreds
/// 2. Any preds of current restore that are not DirtyPreds - indicated by
/// CleanPreds
/// Both sets should be non-empty for considering restore point split.
bool checkIfRestoreSplittable(
const MachineBasicBlock *CurRestore,
const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
const TargetInstrInfo *TII, RegScavenger *RS);
/// Initialize the pass for \p MF.
void init(MachineFunction &MF) {
RCI.runOnMachineFunction(MF);
MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
MPDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree();
Save = nullptr;
Restore = nullptr;
MBFI = &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
EntryFreq = MBFI->getEntryFreq();
const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
FrameSetupOpcode = TII.getCallFrameSetupOpcode();
FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
Entry = &MF.front();
CurrentCSRs.clear();
MachineFunc = &MF;
++NumFunc;
}
/// Check whether or not Save and Restore points are still interesting for
/// shrink-wrapping.
bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
/// Check if shrink wrapping is enabled for this target and function.
static bool isShrinkWrapEnabled(const MachineFunction &MF);
public:
static char ID;
ShrinkWrap() : MachineFunctionPass(ID) {
initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addRequired<MachinePostDominatorTreeWrapperPass>();
AU.addRequired<MachineLoopInfoWrapperPass>();
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
/// Perform the shrink-wrapping analysis and update
/// the MachineFrameInfo attached to \p MF with the results.
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char ShrinkWrap::ID = 0;
char &llvm::ShrinkWrapID = ShrinkWrap::ID;
INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS,
bool StackAddressUsed) const {
/// Check if \p Op is known to access an address not on the function's stack .
/// At the moment, accesses where the underlying object is a global, function
/// argument, or jump table are considered non-stack accesses. Note that the
/// caller's stack may get accessed when passing an argument via the stack,
/// but not the stack of the current function.
///
auto IsKnownNonStackPtr = [](MachineMemOperand *Op) {
if (Op->getValue()) {
const Value *UO = getUnderlyingObject(Op->getValue());
if (!UO)
return false;
if (auto *Arg = dyn_cast<Argument>(UO))
return !Arg->hasPassPointeeByValueCopyAttr();
return isa<GlobalValue>(UO);
}
if (const PseudoSourceValue *PSV = Op->getPseudoValue())
return PSV->isJumpTable();
return false;
};
// Load/store operations may access the stack indirectly when we previously
// computed an address to a stack location.
if (StackAddressUsed && MI.mayLoadOrStore() &&
(MI.isCall() || MI.hasUnmodeledSideEffects() || MI.memoperands_empty() ||
!all_of(MI.memoperands(), IsKnownNonStackPtr)))
return true;
if (MI.getOpcode() == FrameSetupOpcode ||
MI.getOpcode() == FrameDestroyOpcode) {
LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
return true;
}
const MachineFunction *MF = MI.getParent()->getParent();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
for (const MachineOperand &MO : MI.operands()) {
bool UseOrDefCSR = false;
if (MO.isReg()) {
// Ignore instructions like DBG_VALUE which don't read/def the register.
if (!MO.isDef() && !MO.readsReg())
continue;
Register PhysReg = MO.getReg();
if (!PhysReg)
continue;
assert(PhysReg.isPhysical() && "Unallocated register?!");
// The stack pointer is not normally described as a callee-saved register
// in calling convention definitions, so we need to watch for it
// separately. An SP mentioned by a call instruction, we can ignore,
// though, as it's harmless and we do not want to effectively disable tail
// calls by forcing the restore point to post-dominate them.
// PPC's LR is also not normally described as a callee-saved register in
// calling convention definitions, so we need to watch for it, too. An LR
// mentioned implicitly by a return (or "branch to link register")
// instruction we can ignore, otherwise we may pessimize shrinkwrapping.
UseOrDefCSR =
(!MI.isCall() && PhysReg == SP) ||
RCI.getLastCalleeSavedAlias(PhysReg) ||
(!MI.isReturn() && TRI->isNonallocatableRegisterCalleeSave(PhysReg));
} else if (MO.isRegMask()) {
// Check if this regmask clobbers any of the CSRs.
for (unsigned Reg : getCurrentCSRs(RS)) {
if (MO.clobbersPhysReg(Reg)) {
UseOrDefCSR = true;
break;
}
}
}
// Skip FrameIndex operands in DBG_VALUE instructions.
if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
<< MO.isFI() << "): " << MI << '\n');
return true;
}
}
return false;
}
/// Helper function to find the immediate (post) dominator.
template <typename ListOfBBs, typename DominanceAnalysis>
static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
DominanceAnalysis &Dom, bool Strict = true) {
MachineBasicBlock *IDom = &Block;
for (MachineBasicBlock *BB : BBs) {
IDom = Dom.findNearestCommonDominator(IDom, BB);
if (!IDom)
break;
}
if (Strict && IDom == &Block)
return nullptr;
return IDom;
}
static bool isAnalyzableBB(const TargetInstrInfo &TII,
MachineBasicBlock &Entry) {
// Check if the block is analyzable.
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
return !TII.analyzeBranch(Entry, TBB, FBB, Cond);
}
/// Determines if any predecessor of MBB is on the path from block that has use
/// or def of CSRs/FI to MBB.
/// ReachableByDirty: All blocks reachable from block that has use or def of
/// CSR/FI.
static bool
hasDirtyPred(const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
const MachineBasicBlock &MBB) {
for (const MachineBasicBlock *PredBB : MBB.predecessors())
if (ReachableByDirty.count(PredBB))
return true;
return false;
}
/// Derives the list of all the basic blocks reachable from MBB.
static void markAllReachable(DenseSet<const MachineBasicBlock *> &Visited,
const MachineBasicBlock &MBB) {
SmallVector<MachineBasicBlock *, 4> Worklist(MBB.successors());
Visited.insert(&MBB);
while (!Worklist.empty()) {
MachineBasicBlock *SuccMBB = Worklist.pop_back_val();
if (!Visited.insert(SuccMBB).second)
continue;
Worklist.append(SuccMBB->succ_begin(), SuccMBB->succ_end());
}
}
/// Collect blocks reachable by use or def of CSRs/FI.
static void collectBlocksReachableByDirty(
const DenseSet<const MachineBasicBlock *> &DirtyBBs,
DenseSet<const MachineBasicBlock *> &ReachableByDirty) {
for (const MachineBasicBlock *MBB : DirtyBBs) {
if (ReachableByDirty.count(MBB))
continue;
// Mark all offsprings as reachable.
markAllReachable(ReachableByDirty, *MBB);
}
}
/// \return true if there is a clean path from SavePoint to the original
/// Restore.
static bool
isSaveReachableThroughClean(const MachineBasicBlock *SavePoint,
ArrayRef<MachineBasicBlock *> CleanPreds) {
DenseSet<const MachineBasicBlock *> Visited;
SmallVector<MachineBasicBlock *, 4> Worklist(CleanPreds);
while (!Worklist.empty()) {
MachineBasicBlock *CleanBB = Worklist.pop_back_val();
if (CleanBB == SavePoint)
return true;
if (!Visited.insert(CleanBB).second || !CleanBB->pred_size())
continue;
Worklist.append(CleanBB->pred_begin(), CleanBB->pred_end());
}
return false;
}
/// This function updates the branches post restore point split.
///
/// Restore point has been split.
/// Old restore point: MBB
/// New restore point: NMBB
/// Any basic block(say BBToUpdate) which had a fallthrough to MBB
/// previously should
/// 1. Fallthrough to NMBB iff NMBB is inserted immediately above MBB in the
/// block layout OR
/// 2. Branch unconditionally to NMBB iff NMBB is inserted at any other place.
static void updateTerminator(MachineBasicBlock *BBToUpdate,
MachineBasicBlock *NMBB,
const TargetInstrInfo *TII) {
DebugLoc DL = BBToUpdate->findBranchDebugLoc();
// if NMBB isn't the new layout successor for BBToUpdate, insert unconditional
// branch to it
if (!BBToUpdate->isLayoutSuccessor(NMBB))
TII->insertUnconditionalBranch(*BBToUpdate, NMBB, DL);
}
/// This function splits the restore point and returns new restore point/BB.
///
/// DirtyPreds: Predessors of \p MBB that are ReachableByDirty
///
/// Decision has been made to split the restore point.
/// old restore point: \p MBB
/// new restore point: \p NMBB
/// This function makes the necessary block layout changes so that
/// 1. \p NMBB points to \p MBB unconditionally
/// 2. All dirtyPreds that previously pointed to \p MBB point to \p NMBB
static MachineBasicBlock *
tryToSplitRestore(MachineBasicBlock *MBB,
ArrayRef<MachineBasicBlock *> DirtyPreds,
const TargetInstrInfo *TII) {
MachineFunction *MF = MBB->getParent();
// get the list of DirtyPreds who have a fallthrough to MBB
// before the block layout change. This is just to ensure that if the NMBB is
// inserted after MBB, then we create unconditional branch from
// DirtyPred/CleanPred to NMBB
SmallPtrSet<MachineBasicBlock *, 8> MBBFallthrough;
for (MachineBasicBlock *BB : DirtyPreds)
if (BB->getFallThrough(false) == MBB)
MBBFallthrough.insert(BB);
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
// Insert this block at the end of the function. Inserting in between may
// interfere with control flow optimizer decisions.
MF->insert(MF->end(), NMBB);
for (const MachineBasicBlock::RegisterMaskPair &LI : MBB->liveins())
NMBB->addLiveIn(LI.PhysReg);
TII->insertUnconditionalBranch(*NMBB, MBB, DebugLoc());
// After splitting, all predecessors of the restore point should be dirty
// blocks.
for (MachineBasicBlock *SuccBB : DirtyPreds)
SuccBB->ReplaceUsesOfBlockWith(MBB, NMBB);
NMBB->addSuccessor(MBB);
for (MachineBasicBlock *BBToUpdate : MBBFallthrough)
updateTerminator(BBToUpdate, NMBB, TII);
return NMBB;
}
/// This function undoes the restore point split done earlier.
///
/// DirtyPreds: All predecessors of \p NMBB that are ReachableByDirty.
///
/// Restore point was split and the change needs to be unrolled. Make necessary
/// changes to reset restore point from \p NMBB to \p MBB.
static void rollbackRestoreSplit(MachineFunction &MF, MachineBasicBlock *NMBB,
MachineBasicBlock *MBB,
ArrayRef<MachineBasicBlock *> DirtyPreds,
const TargetInstrInfo *TII) {
// For a BB, if NMBB is fallthrough in the current layout, then in the new
// layout a. BB should fallthrough to MBB OR b. BB should undconditionally
// branch to MBB
SmallPtrSet<MachineBasicBlock *, 8> NMBBFallthrough;
for (MachineBasicBlock *BB : DirtyPreds)
if (BB->getFallThrough(false) == NMBB)
NMBBFallthrough.insert(BB);
NMBB->removeSuccessor(MBB);
for (MachineBasicBlock *SuccBB : DirtyPreds)
SuccBB->ReplaceUsesOfBlockWith(NMBB, MBB);
NMBB->erase(NMBB->begin(), NMBB->end());
NMBB->eraseFromParent();
for (MachineBasicBlock *BBToUpdate : NMBBFallthrough)
updateTerminator(BBToUpdate, MBB, TII);
}
// A block is deemed fit for restore point split iff there exist
// 1. DirtyPreds - preds of CurRestore reachable from use or def of CSR/FI
// 2. CleanPreds - preds of CurRestore that arent DirtyPreds
bool ShrinkWrap::checkIfRestoreSplittable(
const MachineBasicBlock *CurRestore,
const DenseSet<const MachineBasicBlock *> &ReachableByDirty,
SmallVectorImpl<MachineBasicBlock *> &DirtyPreds,
SmallVectorImpl<MachineBasicBlock *> &CleanPreds,
const TargetInstrInfo *TII, RegScavenger *RS) {
for (const MachineInstr &MI : *CurRestore)
if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true))
return false;
for (MachineBasicBlock *PredBB : CurRestore->predecessors()) {
if (!isAnalyzableBB(*TII, *PredBB))
return false;
if (ReachableByDirty.count(PredBB))
DirtyPreds.push_back(PredBB);
else
CleanPreds.push_back(PredBB);
}
return !(CleanPreds.empty() || DirtyPreds.empty());
}
bool ShrinkWrap::postShrinkWrapping(bool HasCandidate, MachineFunction &MF,
RegScavenger *RS) {
if (!EnablePostShrinkWrapOpt)
return false;
MachineBasicBlock *InitSave = nullptr;
MachineBasicBlock *InitRestore = nullptr;
if (HasCandidate) {
InitSave = Save;
InitRestore = Restore;
} else {
InitRestore = nullptr;
InitSave = &MF.front();
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHFuncletEntry())
return false;
if (MBB.isReturnBlock()) {
// Do not support multiple restore points.
if (InitRestore)
return false;
InitRestore = &MBB;
}
}
}
if (!InitSave || !InitRestore || InitRestore == InitSave ||
!MDT->dominates(InitSave, InitRestore) ||
!MPDT->dominates(InitRestore, InitSave))
return false;
// Bail out of the optimization if any of the basic block is target of
// INLINEASM_BR instruction
for (MachineBasicBlock &MBB : MF)
if (MBB.isInlineAsmBrIndirectTarget())
return false;
DenseSet<const MachineBasicBlock *> DirtyBBs;
for (MachineBasicBlock &MBB : MF) {
if (MBB.isEHPad()) {
DirtyBBs.insert(&MBB);
continue;
}
for (const MachineInstr &MI : MBB)
if (useOrDefCSROrFI(MI, RS, /*StackAddressUsed=*/true)) {
DirtyBBs.insert(&MBB);
break;
}
}
// Find blocks reachable from the use or def of CSRs/FI.
DenseSet<const MachineBasicBlock *> ReachableByDirty;
collectBlocksReachableByDirty(DirtyBBs, ReachableByDirty);
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<MachineBasicBlock *, 2> DirtyPreds;
SmallVector<MachineBasicBlock *, 2> CleanPreds;
if (!checkIfRestoreSplittable(InitRestore, ReachableByDirty, DirtyPreds,
CleanPreds, TII, RS))
return false;
// Trying to reach out to the new save point which dominates all dirty blocks.
MachineBasicBlock *NewSave =
FindIDom<>(**DirtyPreds.begin(), DirtyPreds, *MDT, false);
while (NewSave && (hasDirtyPred(ReachableByDirty, *NewSave) ||
EntryFreq < MBFI->getBlockFreq(NewSave) ||
/*Entry freq has been observed more than a loop block in
some cases*/
MLI->getLoopFor(NewSave)))
NewSave = FindIDom<>(**NewSave->pred_begin(), NewSave->predecessors(), *MDT,
false);
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!NewSave || NewSave == InitSave ||
isSaveReachableThroughClean(NewSave, CleanPreds) ||
!TFI->canUseAsPrologue(*NewSave))
return false;
// Now we know that splitting a restore point can isolate the restore point
// from clean blocks and doing so can shrink the save point.
MachineBasicBlock *NewRestore =
tryToSplitRestore(InitRestore, DirtyPreds, TII);
// Make sure if the new restore point is valid as an epilogue, depending on
// targets.
if (!TFI->canUseAsEpilogue(*NewRestore)) {
rollbackRestoreSplit(MF, NewRestore, InitRestore, DirtyPreds, TII);
return false;
}
Save = NewSave;
Restore = NewRestore;
MDT->recalculate(MF);
MPDT->recalculate(MF);
assert((MDT->dominates(Save, Restore) && MPDT->dominates(Restore, Save)) &&
"Incorrect save or restore point due to dominance relations");
assert((!MLI->getLoopFor(Save) && !MLI->getLoopFor(Restore)) &&
"Unexpected save or restore point in a loop");
assert((EntryFreq >= MBFI->getBlockFreq(Save) &&
EntryFreq >= MBFI->getBlockFreq(Restore)) &&
"Incorrect save or restore point based on block frequency");
return true;
}
void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
RegScavenger *RS) {
// Get rid of the easy cases first.
if (!Save)
Save = &MBB;
else
Save = MDT->findNearestCommonDominator(Save, &MBB);
assert(Save);
if (!Restore)
Restore = &MBB;
else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
// means the block never returns. If that's the
// case, we don't want to call
// `findNearestCommonDominator`, which will
// return `Restore`.
Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
else
Restore = nullptr; // Abort, we can't find a restore point in this case.
// Make sure we would be able to insert the restore code before the
// terminator.
if (Restore == &MBB) {
for (const MachineInstr &Terminator : MBB.terminators()) {
if (!useOrDefCSROrFI(Terminator, RS, /*StackAddressUsed=*/true))
continue;
// One of the terminator needs to happen before the restore point.
if (MBB.succ_empty()) {
Restore = nullptr; // Abort, we can't find a restore point in this case.
break;
}
// Look for a restore point that post-dominates all the successors.
// The immediate post-dominator is what we are looking for.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
break;
}
}
if (!Restore) {
LLVM_DEBUG(
dbgs() << "Restore point needs to be spanned on several blocks\n");
return;
}
// Make sure Save and Restore are suitable for shrink-wrapping:
// 1. all path from Save needs to lead to Restore before exiting.
// 2. all path to Restore needs to go through Save from Entry.
// We achieve that by making sure that:
// A. Save dominates Restore.
// B. Restore post-dominates Save.
// C. Save and Restore are in the same loop.
bool SaveDominatesRestore = false;
bool RestorePostDominatesSave = false;
while (Restore &&
(!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
!(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
// Post-dominance is not enough in loops to ensure that all uses/defs
// are after the prologue and before the epilogue at runtime.
// E.g.,
// while(1) {
// Save
// Restore
// if (...)
// break;
// use/def CSRs
// }
// All the uses/defs of CSRs are dominated by Save and post-dominated
// by Restore. However, the CSRs uses are still reachable after
// Restore and before Save are executed.
//
// For now, just push the restore/save points outside of loops.
// FIXME: Refine the criteria to still find interesting cases
// for loops.
MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
// Fix (A).
if (!SaveDominatesRestore) {
Save = MDT->findNearestCommonDominator(Save, Restore);
continue;
}
// Fix (B).
if (!RestorePostDominatesSave)
Restore = MPDT->findNearestCommonDominator(Restore, Save);
// Fix (C).
if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
// Push Save outside of this loop if immediate dominator is different
// from save block. If immediate dominator is not different, bail out.
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
} else {
// If the loop does not exit, there is no point in looking
// for a post-dominator outside the loop.
SmallVector<MachineBasicBlock*, 4> ExitBlocks;
MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
// Push Restore outside of this loop.
// Look for the immediate post-dominator of the loop exits.
MachineBasicBlock *IPdom = Restore;
for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
if (!IPdom)
break;
}
// If the immediate post-dominator is not in a less nested loop,
// then we are stuck in a program with an infinite loop.
// In that case, we will not find a safe point, hence, bail out.
if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
Restore = IPdom;
else {
Restore = nullptr;
break;
}
}
}
}
}
static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
StringRef RemarkName, StringRef RemarkMessage,
const DiagnosticLocation &Loc,
const MachineBasicBlock *MBB) {
ORE->emit([&]() {
return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
<< RemarkMessage;
});
LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
return false;
}
bool ShrinkWrap::performShrinkWrapping(
const ReversePostOrderTraversal<MachineBasicBlock *> &RPOT,
RegScavenger *RS) {
for (MachineBasicBlock *MBB : RPOT) {
LLVM_DEBUG(dbgs() << "Look into: " << printMBBReference(*MBB) << '\n');
if (MBB->isEHFuncletEntry())
return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
"EH Funclets are not supported yet.",
MBB->front().getDebugLoc(), MBB);
if (MBB->isEHPad() || MBB->isInlineAsmBrIndirectTarget()) {
// Push the prologue and epilogue outside of the region that may throw (or
// jump out via inlineasm_br), by making sure that all the landing pads
// are at least at the boundary of the save and restore points. The
// problem is that a basic block can jump out from the middle in these
// cases, which we do not handle.
updateSaveRestorePoints(*MBB, RS);
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
return false;
}
continue;
}
bool StackAddressUsed = false;
// Check if we found any stack accesses in the predecessors. We are not
// doing a full dataflow analysis here to keep things simple but just
// rely on a reverse portorder traversal (RPOT) to guarantee predecessors
// are already processed except for loops (and accept the conservative
// result for loops).
for (const MachineBasicBlock *Pred : MBB->predecessors()) {
if (StackAddressUsedBlockInfo.test(Pred->getNumber())) {
StackAddressUsed = true;
break;
}
}
for (const MachineInstr &MI : *MBB) {
if (useOrDefCSROrFI(MI, RS, StackAddressUsed)) {
// Save (resp. restore) point must dominate (resp. post dominate)
// MI. Look for the proper basic block for those.
updateSaveRestorePoints(*MBB, RS);
// If we are at a point where we cannot improve the placement of
// save/restore instructions, just give up.
if (!ArePointsInteresting()) {
LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
return false;
}
// No need to look for other instructions, this basic block
// will already be part of the handled region.
StackAddressUsed = true;
break;
}
}
StackAddressUsedBlockInfo[MBB->getNumber()] = StackAddressUsed;
}
if (!ArePointsInteresting()) {
// If the points are not interesting at this point, then they must be null
// because it means we did not encounter any frame/CSR related code.
// Otherwise, we would have returned from the previous loop.
assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
return false;
}
LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: "
<< EntryFreq.getFrequency() << '\n');
const TargetFrameLowering *TFI =
MachineFunc->getSubtarget().getFrameLowering();
do {
LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
<< printMBBReference(*Save) << ' '
<< printBlockFreq(*MBFI, *Save)
<< "\nRestore: " << printMBBReference(*Restore) << ' '
<< printBlockFreq(*MBFI, *Restore) << '\n');
bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save)) &&
EntryFreq >= MBFI->getBlockFreq(Restore)) &&
((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
TFI->canUseAsEpilogue(*Restore)))
break;
LLVM_DEBUG(
dbgs() << "New points are too expensive or invalid for the target\n");
MachineBasicBlock *NewBB;
if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
if (!Save)
break;
NewBB = Save;
} else {
// Restore is expensive.
Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
if (!Restore)
break;
NewBB = Restore;
}
updateSaveRestorePoints(*NewBB, RS);
} while (Save && Restore);
if (!ArePointsInteresting()) {
++NumCandidatesDropped;
return false;
}
return true;
}
bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
return false;
LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
init(MF);
ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
// If MF is irreducible, a block may be in a loop without
// MachineLoopInfo reporting it. I.e., we may use the
// post-dominance property in loops, which lead to incorrect
// results. Moreover, we may miss that the prologue and
// epilogue are not in the same loop, leading to unbalanced
// construction/deconstruction of the stack frame.
return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
"Irreducible CFGs are not supported yet.",
MF.getFunction().getSubprogram(), &MF.front());
}
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
std::unique_ptr<RegScavenger> RS(
TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
bool Changed = false;
// Initially, conservatively assume that stack addresses can be used in each
// basic block and change the state only for those basic blocks for which we
// were able to prove the opposite.
StackAddressUsedBlockInfo.resize(MF.getNumBlockIDs(), true);
bool HasCandidate = performShrinkWrapping(RPOT, RS.get());
StackAddressUsedBlockInfo.clear();
Changed = postShrinkWrapping(HasCandidate, MF, RS.get());
if (!HasCandidate && !Changed)
return false;
if (!ArePointsInteresting())
return Changed;
LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
<< printMBBReference(*Save) << ' '
<< "\nRestore: " << printMBBReference(*Restore) << '\n');
MachineFrameInfo &MFI = MF.getFrameInfo();
MFI.setSavePoint(Save);
MFI.setRestorePoint(Restore);
++NumCandidates;
return Changed;
}
bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
switch (EnableShrinkWrapOpt) {
case cl::BOU_UNSET:
return TFI->enableShrinkWrapping(MF) &&
// Windows with CFI has some limitations that make it impossible
// to use shrink-wrapping.
!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
// Sanitizers look at the value of the stack at the location
// of the crash. Since a crash can happen anywhere, the
// frame must be lowered before anything else happen for the
// sanitizers to be able to get a correct stack frame.
!(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeType) ||
MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
// If EnableShrinkWrap is set, it takes precedence on whatever the
// target sets. The rational is that we assume we want to test
// something related to shrink-wrapping.
case cl::BOU_TRUE:
return true;
case cl::BOU_FALSE:
return false;
}
llvm_unreachable("Invalid shrink-wrapping state");
}