
Now that #149310 has restricted lifetime intrinsics to only work on allocas, we can also drop the explicit size argument. Instead, the size is implied by the alloca. This removes the ability to only mark a prefix of an alloca alive/dead. We never used that capability, so we should remove the need to handle that possibility everywhere (though many key places, including stack coloring, did not actually respect this).
3428 lines
143 KiB
C++
3428 lines
143 KiB
C++
//===- InlineFunction.cpp - Code to perform function inlining -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements inlining of a function into a call site, resolving
|
|
// parameters and the return value as appropriate.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/CtxProfAnalysis.h"
|
|
#include "llvm/Analysis/IndirectCallVisitor.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/MemoryProfileInfo.h"
|
|
#include "llvm/Analysis/ObjCARCAnalysisUtils.h"
|
|
#include "llvm/Analysis/ObjCARCUtil.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/AttributeMask.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/EHPersonalities.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/ProfDataUtils.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <deque>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "inline-function"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::memprof;
|
|
using ProfileCount = Function::ProfileCount;
|
|
|
|
static cl::opt<bool>
|
|
EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
|
|
cl::Hidden,
|
|
cl::desc("Convert noalias attributes to metadata during inlining."));
|
|
|
|
static cl::opt<bool>
|
|
UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
|
|
cl::init(true),
|
|
cl::desc("Use the llvm.experimental.noalias.scope.decl "
|
|
"intrinsic during inlining."));
|
|
|
|
// Disabled by default, because the added alignment assumptions may increase
|
|
// compile-time and block optimizations. This option is not suitable for use
|
|
// with frontends that emit comprehensive parameter alignment annotations.
|
|
static cl::opt<bool>
|
|
PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
|
|
cl::init(false), cl::Hidden,
|
|
cl::desc("Convert align attributes to assumptions during inlining."));
|
|
|
|
static cl::opt<unsigned> InlinerAttributeWindow(
|
|
"max-inst-checked-for-throw-during-inlining", cl::Hidden,
|
|
cl::desc("the maximum number of instructions analyzed for may throw during "
|
|
"attribute inference in inlined body"),
|
|
cl::init(4));
|
|
|
|
namespace {
|
|
|
|
/// A class for recording information about inlining a landing pad.
|
|
class LandingPadInliningInfo {
|
|
/// Destination of the invoke's unwind.
|
|
BasicBlock *OuterResumeDest;
|
|
|
|
/// Destination for the callee's resume.
|
|
BasicBlock *InnerResumeDest = nullptr;
|
|
|
|
/// LandingPadInst associated with the invoke.
|
|
LandingPadInst *CallerLPad = nullptr;
|
|
|
|
/// PHI for EH values from landingpad insts.
|
|
PHINode *InnerEHValuesPHI = nullptr;
|
|
|
|
SmallVector<Value*, 8> UnwindDestPHIValues;
|
|
|
|
public:
|
|
LandingPadInliningInfo(InvokeInst *II)
|
|
: OuterResumeDest(II->getUnwindDest()) {
|
|
// If there are PHI nodes in the unwind destination block, we need to keep
|
|
// track of which values came into them from the invoke before removing
|
|
// the edge from this block.
|
|
BasicBlock *InvokeBB = II->getParent();
|
|
BasicBlock::iterator I = OuterResumeDest->begin();
|
|
for (; isa<PHINode>(I); ++I) {
|
|
// Save the value to use for this edge.
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
|
|
}
|
|
|
|
CallerLPad = cast<LandingPadInst>(I);
|
|
}
|
|
|
|
/// The outer unwind destination is the target of
|
|
/// unwind edges introduced for calls within the inlined function.
|
|
BasicBlock *getOuterResumeDest() const {
|
|
return OuterResumeDest;
|
|
}
|
|
|
|
BasicBlock *getInnerResumeDest();
|
|
|
|
LandingPadInst *getLandingPadInst() const { return CallerLPad; }
|
|
|
|
/// Forward the 'resume' instruction to the caller's landing pad block.
|
|
/// When the landing pad block has only one predecessor, this is
|
|
/// a simple branch. When there is more than one predecessor, we need to
|
|
/// split the landing pad block after the landingpad instruction and jump
|
|
/// to there.
|
|
void forwardResume(ResumeInst *RI,
|
|
SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
|
|
|
|
/// Add incoming-PHI values to the unwind destination block for the given
|
|
/// basic block, using the values for the original invoke's source block.
|
|
void addIncomingPHIValuesFor(BasicBlock *BB) const {
|
|
addIncomingPHIValuesForInto(BB, OuterResumeDest);
|
|
}
|
|
|
|
void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
|
|
BasicBlock::iterator I = dest->begin();
|
|
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
|
|
PHINode *phi = cast<PHINode>(I);
|
|
phi->addIncoming(UnwindDestPHIValues[i], src);
|
|
}
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static IntrinsicInst *getConvergenceEntry(BasicBlock &BB) {
|
|
BasicBlock::iterator It = BB.getFirstNonPHIIt();
|
|
while (It != BB.end()) {
|
|
if (auto *IntrinsicCall = dyn_cast<ConvergenceControlInst>(It)) {
|
|
if (IntrinsicCall->isEntry()) {
|
|
return IntrinsicCall;
|
|
}
|
|
}
|
|
It = std::next(It);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Get or create a target for the branch from ResumeInsts.
|
|
BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
|
|
if (InnerResumeDest) return InnerResumeDest;
|
|
|
|
// Split the landing pad.
|
|
BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
|
|
InnerResumeDest =
|
|
OuterResumeDest->splitBasicBlock(SplitPoint,
|
|
OuterResumeDest->getName() + ".body");
|
|
|
|
// The number of incoming edges we expect to the inner landing pad.
|
|
const unsigned PHICapacity = 2;
|
|
|
|
// Create corresponding new PHIs for all the PHIs in the outer landing pad.
|
|
BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
|
|
BasicBlock::iterator I = OuterResumeDest->begin();
|
|
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
|
|
PHINode *OuterPHI = cast<PHINode>(I);
|
|
PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
|
|
OuterPHI->getName() + ".lpad-body");
|
|
InnerPHI->insertBefore(InsertPoint);
|
|
OuterPHI->replaceAllUsesWith(InnerPHI);
|
|
InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
|
|
}
|
|
|
|
// Create a PHI for the exception values.
|
|
InnerEHValuesPHI =
|
|
PHINode::Create(CallerLPad->getType(), PHICapacity, "eh.lpad-body");
|
|
InnerEHValuesPHI->insertBefore(InsertPoint);
|
|
CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
|
|
InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
|
|
|
|
// All done.
|
|
return InnerResumeDest;
|
|
}
|
|
|
|
/// Forward the 'resume' instruction to the caller's landing pad block.
|
|
/// When the landing pad block has only one predecessor, this is a simple
|
|
/// branch. When there is more than one predecessor, we need to split the
|
|
/// landing pad block after the landingpad instruction and jump to there.
|
|
void LandingPadInliningInfo::forwardResume(
|
|
ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
|
|
BasicBlock *Dest = getInnerResumeDest();
|
|
BasicBlock *Src = RI->getParent();
|
|
|
|
auto *BI = BranchInst::Create(Dest, Src);
|
|
BI->setDebugLoc(RI->getDebugLoc());
|
|
|
|
// Update the PHIs in the destination. They were inserted in an order which
|
|
// makes this work.
|
|
addIncomingPHIValuesForInto(Src, Dest);
|
|
|
|
InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
|
|
RI->eraseFromParent();
|
|
}
|
|
|
|
/// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
|
|
static Value *getParentPad(Value *EHPad) {
|
|
if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
|
|
return FPI->getParentPad();
|
|
return cast<CatchSwitchInst>(EHPad)->getParentPad();
|
|
}
|
|
|
|
using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
|
|
|
|
/// Helper for getUnwindDestToken that does the descendant-ward part of
|
|
/// the search.
|
|
static Value *getUnwindDestTokenHelper(Instruction *EHPad,
|
|
UnwindDestMemoTy &MemoMap) {
|
|
SmallVector<Instruction *, 8> Worklist(1, EHPad);
|
|
|
|
while (!Worklist.empty()) {
|
|
Instruction *CurrentPad = Worklist.pop_back_val();
|
|
// We only put pads on the worklist that aren't in the MemoMap. When
|
|
// we find an unwind dest for a pad we may update its ancestors, but
|
|
// the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
|
|
// so they should never get updated while queued on the worklist.
|
|
assert(!MemoMap.count(CurrentPad));
|
|
Value *UnwindDestToken = nullptr;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
|
|
if (CatchSwitch->hasUnwindDest()) {
|
|
UnwindDestToken = &*CatchSwitch->getUnwindDest()->getFirstNonPHIIt();
|
|
} else {
|
|
// Catchswitch doesn't have a 'nounwind' variant, and one might be
|
|
// annotated as "unwinds to caller" when really it's nounwind (see
|
|
// e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
|
|
// parent's unwind dest from this. We can check its catchpads'
|
|
// descendants, since they might include a cleanuppad with an
|
|
// "unwinds to caller" cleanupret, which can be trusted.
|
|
for (auto HI = CatchSwitch->handler_begin(),
|
|
HE = CatchSwitch->handler_end();
|
|
HI != HE && !UnwindDestToken; ++HI) {
|
|
BasicBlock *HandlerBlock = *HI;
|
|
auto *CatchPad =
|
|
cast<CatchPadInst>(&*HandlerBlock->getFirstNonPHIIt());
|
|
for (User *Child : CatchPad->users()) {
|
|
// Intentionally ignore invokes here -- since the catchswitch is
|
|
// marked "unwind to caller", it would be a verifier error if it
|
|
// contained an invoke which unwinds out of it, so any invoke we'd
|
|
// encounter must unwind to some child of the catch.
|
|
if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
|
|
continue;
|
|
|
|
Instruction *ChildPad = cast<Instruction>(Child);
|
|
auto Memo = MemoMap.find(ChildPad);
|
|
if (Memo == MemoMap.end()) {
|
|
// Haven't figured out this child pad yet; queue it.
|
|
Worklist.push_back(ChildPad);
|
|
continue;
|
|
}
|
|
// We've already checked this child, but might have found that
|
|
// it offers no proof either way.
|
|
Value *ChildUnwindDestToken = Memo->second;
|
|
if (!ChildUnwindDestToken)
|
|
continue;
|
|
// We already know the child's unwind dest, which can either
|
|
// be ConstantTokenNone to indicate unwind to caller, or can
|
|
// be another child of the catchpad. Only the former indicates
|
|
// the unwind dest of the catchswitch.
|
|
if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
|
|
UnwindDestToken = ChildUnwindDestToken;
|
|
break;
|
|
}
|
|
assert(getParentPad(ChildUnwindDestToken) == CatchPad);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
|
|
for (User *U : CleanupPad->users()) {
|
|
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
|
|
if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
|
|
UnwindDestToken = &*RetUnwindDest->getFirstNonPHIIt();
|
|
else
|
|
UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
|
|
break;
|
|
}
|
|
Value *ChildUnwindDestToken;
|
|
if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
|
|
ChildUnwindDestToken = &*Invoke->getUnwindDest()->getFirstNonPHIIt();
|
|
} else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
|
|
Instruction *ChildPad = cast<Instruction>(U);
|
|
auto Memo = MemoMap.find(ChildPad);
|
|
if (Memo == MemoMap.end()) {
|
|
// Haven't resolved this child yet; queue it and keep searching.
|
|
Worklist.push_back(ChildPad);
|
|
continue;
|
|
}
|
|
// We've checked this child, but still need to ignore it if it
|
|
// had no proof either way.
|
|
ChildUnwindDestToken = Memo->second;
|
|
if (!ChildUnwindDestToken)
|
|
continue;
|
|
} else {
|
|
// Not a relevant user of the cleanuppad
|
|
continue;
|
|
}
|
|
// In a well-formed program, the child/invoke must either unwind to
|
|
// an(other) child of the cleanup, or exit the cleanup. In the
|
|
// first case, continue searching.
|
|
if (isa<Instruction>(ChildUnwindDestToken) &&
|
|
getParentPad(ChildUnwindDestToken) == CleanupPad)
|
|
continue;
|
|
UnwindDestToken = ChildUnwindDestToken;
|
|
break;
|
|
}
|
|
}
|
|
// If we haven't found an unwind dest for CurrentPad, we may have queued its
|
|
// children, so move on to the next in the worklist.
|
|
if (!UnwindDestToken)
|
|
continue;
|
|
|
|
// Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
|
|
// any ancestors of CurrentPad up to but not including UnwindDestToken's
|
|
// parent pad. Record this in the memo map, and check to see if the
|
|
// original EHPad being queried is one of the ones exited.
|
|
Value *UnwindParent;
|
|
if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
|
|
UnwindParent = getParentPad(UnwindPad);
|
|
else
|
|
UnwindParent = nullptr;
|
|
bool ExitedOriginalPad = false;
|
|
for (Instruction *ExitedPad = CurrentPad;
|
|
ExitedPad && ExitedPad != UnwindParent;
|
|
ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
|
|
// Skip over catchpads since they just follow their catchswitches.
|
|
if (isa<CatchPadInst>(ExitedPad))
|
|
continue;
|
|
MemoMap[ExitedPad] = UnwindDestToken;
|
|
ExitedOriginalPad |= (ExitedPad == EHPad);
|
|
}
|
|
|
|
if (ExitedOriginalPad)
|
|
return UnwindDestToken;
|
|
|
|
// Continue the search.
|
|
}
|
|
|
|
// No definitive information is contained within this funclet.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
|
|
/// return that pad instruction. If it unwinds to caller, return
|
|
/// ConstantTokenNone. If it does not have a definitive unwind destination,
|
|
/// return nullptr.
|
|
///
|
|
/// This routine gets invoked for calls in funclets in inlinees when inlining
|
|
/// an invoke. Since many funclets don't have calls inside them, it's queried
|
|
/// on-demand rather than building a map of pads to unwind dests up front.
|
|
/// Determining a funclet's unwind dest may require recursively searching its
|
|
/// descendants, and also ancestors and cousins if the descendants don't provide
|
|
/// an answer. Since most funclets will have their unwind dest immediately
|
|
/// available as the unwind dest of a catchswitch or cleanupret, this routine
|
|
/// searches top-down from the given pad and then up. To avoid worst-case
|
|
/// quadratic run-time given that approach, it uses a memo map to avoid
|
|
/// re-processing funclet trees. The callers that rewrite the IR as they go
|
|
/// take advantage of this, for correctness, by checking/forcing rewritten
|
|
/// pads' entries to match the original callee view.
|
|
static Value *getUnwindDestToken(Instruction *EHPad,
|
|
UnwindDestMemoTy &MemoMap) {
|
|
// Catchpads unwind to the same place as their catchswitch;
|
|
// redirct any queries on catchpads so the code below can
|
|
// deal with just catchswitches and cleanuppads.
|
|
if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
|
|
EHPad = CPI->getCatchSwitch();
|
|
|
|
// Check if we've already determined the unwind dest for this pad.
|
|
auto Memo = MemoMap.find(EHPad);
|
|
if (Memo != MemoMap.end())
|
|
return Memo->second;
|
|
|
|
// Search EHPad and, if necessary, its descendants.
|
|
Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
|
|
assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
|
|
if (UnwindDestToken)
|
|
return UnwindDestToken;
|
|
|
|
// No information is available for this EHPad from itself or any of its
|
|
// descendants. An unwind all the way out to a pad in the caller would
|
|
// need also to agree with the unwind dest of the parent funclet, so
|
|
// search up the chain to try to find a funclet with information. Put
|
|
// null entries in the memo map to avoid re-processing as we go up.
|
|
MemoMap[EHPad] = nullptr;
|
|
#ifndef NDEBUG
|
|
SmallPtrSet<Instruction *, 4> TempMemos;
|
|
TempMemos.insert(EHPad);
|
|
#endif
|
|
Instruction *LastUselessPad = EHPad;
|
|
Value *AncestorToken;
|
|
for (AncestorToken = getParentPad(EHPad);
|
|
auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
|
|
AncestorToken = getParentPad(AncestorToken)) {
|
|
// Skip over catchpads since they just follow their catchswitches.
|
|
if (isa<CatchPadInst>(AncestorPad))
|
|
continue;
|
|
// If the MemoMap had an entry mapping AncestorPad to nullptr, since we
|
|
// haven't yet called getUnwindDestTokenHelper for AncestorPad in this
|
|
// call to getUnwindDestToken, that would mean that AncestorPad had no
|
|
// information in itself, its descendants, or its ancestors. If that
|
|
// were the case, then we should also have recorded the lack of information
|
|
// for the descendant that we're coming from. So assert that we don't
|
|
// find a null entry in the MemoMap for AncestorPad.
|
|
assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
|
|
auto AncestorMemo = MemoMap.find(AncestorPad);
|
|
if (AncestorMemo == MemoMap.end()) {
|
|
UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
|
|
} else {
|
|
UnwindDestToken = AncestorMemo->second;
|
|
}
|
|
if (UnwindDestToken)
|
|
break;
|
|
LastUselessPad = AncestorPad;
|
|
MemoMap[LastUselessPad] = nullptr;
|
|
#ifndef NDEBUG
|
|
TempMemos.insert(LastUselessPad);
|
|
#endif
|
|
}
|
|
|
|
// We know that getUnwindDestTokenHelper was called on LastUselessPad and
|
|
// returned nullptr (and likewise for EHPad and any of its ancestors up to
|
|
// LastUselessPad), so LastUselessPad has no information from below. Since
|
|
// getUnwindDestTokenHelper must investigate all downward paths through
|
|
// no-information nodes to prove that a node has no information like this,
|
|
// and since any time it finds information it records it in the MemoMap for
|
|
// not just the immediately-containing funclet but also any ancestors also
|
|
// exited, it must be the case that, walking downward from LastUselessPad,
|
|
// visiting just those nodes which have not been mapped to an unwind dest
|
|
// by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
|
|
// they are just used to keep getUnwindDestTokenHelper from repeating work),
|
|
// any node visited must have been exhaustively searched with no information
|
|
// for it found.
|
|
SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
|
|
while (!Worklist.empty()) {
|
|
Instruction *UselessPad = Worklist.pop_back_val();
|
|
auto Memo = MemoMap.find(UselessPad);
|
|
if (Memo != MemoMap.end() && Memo->second) {
|
|
// Here the name 'UselessPad' is a bit of a misnomer, because we've found
|
|
// that it is a funclet that does have information about unwinding to
|
|
// a particular destination; its parent was a useless pad.
|
|
// Since its parent has no information, the unwind edge must not escape
|
|
// the parent, and must target a sibling of this pad. This local unwind
|
|
// gives us no information about EHPad. Leave it and the subtree rooted
|
|
// at it alone.
|
|
assert(getParentPad(Memo->second) == getParentPad(UselessPad));
|
|
continue;
|
|
}
|
|
// We know we don't have information for UselesPad. If it has an entry in
|
|
// the MemoMap (mapping it to nullptr), it must be one of the TempMemos
|
|
// added on this invocation of getUnwindDestToken; if a previous invocation
|
|
// recorded nullptr, it would have had to prove that the ancestors of
|
|
// UselessPad, which include LastUselessPad, had no information, and that
|
|
// in turn would have required proving that the descendants of
|
|
// LastUselesPad, which include EHPad, have no information about
|
|
// LastUselessPad, which would imply that EHPad was mapped to nullptr in
|
|
// the MemoMap on that invocation, which isn't the case if we got here.
|
|
assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
|
|
// Assert as we enumerate users that 'UselessPad' doesn't have any unwind
|
|
// information that we'd be contradicting by making a map entry for it
|
|
// (which is something that getUnwindDestTokenHelper must have proved for
|
|
// us to get here). Just assert on is direct users here; the checks in
|
|
// this downward walk at its descendants will verify that they don't have
|
|
// any unwind edges that exit 'UselessPad' either (i.e. they either have no
|
|
// unwind edges or unwind to a sibling).
|
|
MemoMap[UselessPad] = UnwindDestToken;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
|
|
assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
|
|
for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
|
|
auto *CatchPad = &*HandlerBlock->getFirstNonPHIIt();
|
|
for (User *U : CatchPad->users()) {
|
|
assert((!isa<InvokeInst>(U) ||
|
|
(getParentPad(&*cast<InvokeInst>(U)
|
|
->getUnwindDest()
|
|
->getFirstNonPHIIt()) == CatchPad)) &&
|
|
"Expected useless pad");
|
|
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
|
|
Worklist.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
} else {
|
|
assert(isa<CleanupPadInst>(UselessPad));
|
|
for (User *U : UselessPad->users()) {
|
|
assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
|
|
assert(
|
|
(!isa<InvokeInst>(U) ||
|
|
(getParentPad(
|
|
&*cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHIIt()) ==
|
|
UselessPad)) &&
|
|
"Expected useless pad");
|
|
if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
|
|
Worklist.push_back(cast<Instruction>(U));
|
|
}
|
|
}
|
|
}
|
|
|
|
return UnwindDestToken;
|
|
}
|
|
|
|
/// When we inline a basic block into an invoke,
|
|
/// we have to turn all of the calls that can throw into invokes.
|
|
/// This function analyze BB to see if there are any calls, and if so,
|
|
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
|
|
/// nodes in that block with the values specified in InvokeDestPHIValues.
|
|
static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
|
|
BasicBlock *BB, BasicBlock *UnwindEdge,
|
|
UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
|
|
for (Instruction &I : llvm::make_early_inc_range(*BB)) {
|
|
// We only need to check for function calls: inlined invoke
|
|
// instructions require no special handling.
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
|
|
if (!CI || CI->doesNotThrow())
|
|
continue;
|
|
|
|
// We do not need to (and in fact, cannot) convert possibly throwing calls
|
|
// to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
|
|
// invokes. The caller's "segment" of the deoptimization continuation
|
|
// attached to the newly inlined @llvm.experimental_deoptimize
|
|
// (resp. @llvm.experimental.guard) call should contain the exception
|
|
// handling logic, if any.
|
|
if (auto *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
|
|
F->getIntrinsicID() == Intrinsic::experimental_guard)
|
|
continue;
|
|
|
|
if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
|
|
// This call is nested inside a funclet. If that funclet has an unwind
|
|
// destination within the inlinee, then unwinding out of this call would
|
|
// be UB. Rewriting this call to an invoke which targets the inlined
|
|
// invoke's unwind dest would give the call's parent funclet multiple
|
|
// unwind destinations, which is something that subsequent EH table
|
|
// generation can't handle and that the veirifer rejects. So when we
|
|
// see such a call, leave it as a call.
|
|
auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
|
|
Value *UnwindDestToken =
|
|
getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
|
|
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
|
|
continue;
|
|
#ifndef NDEBUG
|
|
Instruction *MemoKey;
|
|
if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
|
|
MemoKey = CatchPad->getCatchSwitch();
|
|
else
|
|
MemoKey = FuncletPad;
|
|
assert(FuncletUnwindMap->count(MemoKey) &&
|
|
(*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
|
|
"must get memoized to avoid confusing later searches");
|
|
#endif // NDEBUG
|
|
}
|
|
|
|
changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
|
|
return BB;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes.
|
|
///
|
|
/// II is the invoke instruction being inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *InvokeDest = II->getUnwindDest();
|
|
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
// The inlined code is currently at the end of the function, scan from the
|
|
// start of the inlined code to its end, checking for stuff we need to
|
|
// rewrite.
|
|
LandingPadInliningInfo Invoke(II);
|
|
|
|
// Get all of the inlined landing pad instructions.
|
|
SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
|
|
for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
|
|
I != E; ++I)
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
|
|
InlinedLPads.insert(II->getLandingPadInst());
|
|
|
|
// Append the clauses from the outer landing pad instruction into the inlined
|
|
// landing pad instructions.
|
|
LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
|
|
for (LandingPadInst *InlinedLPad : InlinedLPads) {
|
|
unsigned OuterNum = OuterLPad->getNumClauses();
|
|
InlinedLPad->reserveClauses(OuterNum);
|
|
for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
|
|
InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
|
|
if (OuterLPad->isCleanup())
|
|
InlinedLPad->setCleanup(true);
|
|
}
|
|
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
|
|
BB != E; ++BB) {
|
|
if (InlinedCodeInfo.ContainsCalls)
|
|
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
|
|
&*BB, Invoke.getOuterResumeDest()))
|
|
// Update any PHI nodes in the exceptional block to indicate that there
|
|
// is now a new entry in them.
|
|
Invoke.addIncomingPHIValuesFor(NewBB);
|
|
|
|
// Forward any resumes that are remaining here.
|
|
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
|
|
Invoke.forwardResume(RI, InlinedLPads);
|
|
}
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
InvokeDest->removePredecessor(II->getParent());
|
|
}
|
|
|
|
/// If we inlined an invoke site, we need to convert calls
|
|
/// in the body of the inlined function into invokes.
|
|
///
|
|
/// II is the invoke instruction being inlined. FirstNewBlock is the first
|
|
/// block of the inlined code (the last block is the end of the function),
|
|
/// and InlineCodeInfo is information about the code that got inlined.
|
|
static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
|
|
ClonedCodeInfo &InlinedCodeInfo) {
|
|
BasicBlock *UnwindDest = II->getUnwindDest();
|
|
Function *Caller = FirstNewBlock->getParent();
|
|
|
|
assert(UnwindDest->getFirstNonPHIIt()->isEHPad() && "unexpected BasicBlock!");
|
|
|
|
// If there are PHI nodes in the unwind destination block, we need to keep
|
|
// track of which values came into them from the invoke before removing the
|
|
// edge from this block.
|
|
SmallVector<Value *, 8> UnwindDestPHIValues;
|
|
BasicBlock *InvokeBB = II->getParent();
|
|
for (PHINode &PHI : UnwindDest->phis()) {
|
|
// Save the value to use for this edge.
|
|
UnwindDestPHIValues.push_back(PHI.getIncomingValueForBlock(InvokeBB));
|
|
}
|
|
|
|
// Add incoming-PHI values to the unwind destination block for the given basic
|
|
// block, using the values for the original invoke's source block.
|
|
auto UpdatePHINodes = [&](BasicBlock *Src) {
|
|
BasicBlock::iterator I = UnwindDest->begin();
|
|
for (Value *V : UnwindDestPHIValues) {
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
PHI->addIncoming(V, Src);
|
|
++I;
|
|
}
|
|
};
|
|
|
|
// This connects all the instructions which 'unwind to caller' to the invoke
|
|
// destination.
|
|
UnwindDestMemoTy FuncletUnwindMap;
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
|
|
BB != E; ++BB) {
|
|
if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
|
|
if (CRI->unwindsToCaller()) {
|
|
auto *CleanupPad = CRI->getCleanupPad();
|
|
CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI->getIterator());
|
|
CRI->eraseFromParent();
|
|
UpdatePHINodes(&*BB);
|
|
// Finding a cleanupret with an unwind destination would confuse
|
|
// subsequent calls to getUnwindDestToken, so map the cleanuppad
|
|
// to short-circuit any such calls and recognize this as an "unwind
|
|
// to caller" cleanup.
|
|
assert(!FuncletUnwindMap.count(CleanupPad) ||
|
|
isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
|
|
FuncletUnwindMap[CleanupPad] =
|
|
ConstantTokenNone::get(Caller->getContext());
|
|
}
|
|
}
|
|
|
|
BasicBlock::iterator I = BB->getFirstNonPHIIt();
|
|
if (!I->isEHPad())
|
|
continue;
|
|
|
|
Instruction *Replacement = nullptr;
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
|
|
if (CatchSwitch->unwindsToCaller()) {
|
|
Value *UnwindDestToken;
|
|
if (auto *ParentPad =
|
|
dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
|
|
// This catchswitch is nested inside another funclet. If that
|
|
// funclet has an unwind destination within the inlinee, then
|
|
// unwinding out of this catchswitch would be UB. Rewriting this
|
|
// catchswitch to unwind to the inlined invoke's unwind dest would
|
|
// give the parent funclet multiple unwind destinations, which is
|
|
// something that subsequent EH table generation can't handle and
|
|
// that the veirifer rejects. So when we see such a call, leave it
|
|
// as "unwind to caller".
|
|
UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
|
|
if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
|
|
continue;
|
|
} else {
|
|
// This catchswitch has no parent to inherit constraints from, and
|
|
// none of its descendants can have an unwind edge that exits it and
|
|
// targets another funclet in the inlinee. It may or may not have a
|
|
// descendant that definitively has an unwind to caller. In either
|
|
// case, we'll have to assume that any unwinds out of it may need to
|
|
// be routed to the caller, so treat it as though it has a definitive
|
|
// unwind to caller.
|
|
UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
|
|
}
|
|
auto *NewCatchSwitch = CatchSwitchInst::Create(
|
|
CatchSwitch->getParentPad(), UnwindDest,
|
|
CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
|
|
CatchSwitch->getIterator());
|
|
for (BasicBlock *PadBB : CatchSwitch->handlers())
|
|
NewCatchSwitch->addHandler(PadBB);
|
|
// Propagate info for the old catchswitch over to the new one in
|
|
// the unwind map. This also serves to short-circuit any subsequent
|
|
// checks for the unwind dest of this catchswitch, which would get
|
|
// confused if they found the outer handler in the callee.
|
|
FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
|
|
Replacement = NewCatchSwitch;
|
|
}
|
|
} else if (!isa<FuncletPadInst>(I)) {
|
|
llvm_unreachable("unexpected EHPad!");
|
|
}
|
|
|
|
if (Replacement) {
|
|
Replacement->takeName(&*I);
|
|
I->replaceAllUsesWith(Replacement);
|
|
I->eraseFromParent();
|
|
UpdatePHINodes(&*BB);
|
|
}
|
|
}
|
|
|
|
if (InlinedCodeInfo.ContainsCalls)
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(),
|
|
E = Caller->end();
|
|
BB != E; ++BB)
|
|
if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
|
|
&*BB, UnwindDest, &FuncletUnwindMap))
|
|
// Update any PHI nodes in the exceptional block to indicate that there
|
|
// is now a new entry in them.
|
|
UpdatePHINodes(NewBB);
|
|
|
|
// Now that everything is happy, we have one final detail. The PHI nodes in
|
|
// the exception destination block still have entries due to the original
|
|
// invoke instruction. Eliminate these entries (which might even delete the
|
|
// PHI node) now.
|
|
UnwindDest->removePredecessor(InvokeBB);
|
|
}
|
|
|
|
static bool haveCommonPrefix(MDNode *MIBStackContext,
|
|
MDNode *CallsiteStackContext) {
|
|
assert(MIBStackContext->getNumOperands() > 0 &&
|
|
CallsiteStackContext->getNumOperands() > 0);
|
|
// Because of the context trimming performed during matching, the callsite
|
|
// context could have more stack ids than the MIB. We match up to the end of
|
|
// the shortest stack context.
|
|
for (auto MIBStackIter = MIBStackContext->op_begin(),
|
|
CallsiteStackIter = CallsiteStackContext->op_begin();
|
|
MIBStackIter != MIBStackContext->op_end() &&
|
|
CallsiteStackIter != CallsiteStackContext->op_end();
|
|
MIBStackIter++, CallsiteStackIter++) {
|
|
auto *Val1 = mdconst::dyn_extract<ConstantInt>(*MIBStackIter);
|
|
auto *Val2 = mdconst::dyn_extract<ConstantInt>(*CallsiteStackIter);
|
|
assert(Val1 && Val2);
|
|
if (Val1->getZExtValue() != Val2->getZExtValue())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void removeMemProfMetadata(CallBase *Call) {
|
|
Call->setMetadata(LLVMContext::MD_memprof, nullptr);
|
|
}
|
|
|
|
static void removeCallsiteMetadata(CallBase *Call) {
|
|
Call->setMetadata(LLVMContext::MD_callsite, nullptr);
|
|
}
|
|
|
|
static void updateMemprofMetadata(CallBase *CI,
|
|
const std::vector<Metadata *> &MIBList,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
assert(!MIBList.empty());
|
|
// Remove existing memprof, which will either be replaced or may not be needed
|
|
// if we are able to use a single allocation type function attribute.
|
|
removeMemProfMetadata(CI);
|
|
CallStackTrie CallStack(ORE);
|
|
for (Metadata *MIB : MIBList)
|
|
CallStack.addCallStack(cast<MDNode>(MIB));
|
|
bool MemprofMDAttached = CallStack.buildAndAttachMIBMetadata(CI);
|
|
assert(MemprofMDAttached == CI->hasMetadata(LLVMContext::MD_memprof));
|
|
if (!MemprofMDAttached)
|
|
// If we used a function attribute remove the callsite metadata as well.
|
|
removeCallsiteMetadata(CI);
|
|
}
|
|
|
|
// Update the metadata on the inlined copy ClonedCall of a call OrigCall in the
|
|
// inlined callee body, based on the callsite metadata InlinedCallsiteMD from
|
|
// the call that was inlined.
|
|
static void propagateMemProfHelper(const CallBase *OrigCall,
|
|
CallBase *ClonedCall,
|
|
MDNode *InlinedCallsiteMD,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
MDNode *OrigCallsiteMD = ClonedCall->getMetadata(LLVMContext::MD_callsite);
|
|
MDNode *ClonedCallsiteMD = nullptr;
|
|
// Check if the call originally had callsite metadata, and update it for the
|
|
// new call in the inlined body.
|
|
if (OrigCallsiteMD) {
|
|
// The cloned call's context is now the concatenation of the original call's
|
|
// callsite metadata and the callsite metadata on the call where it was
|
|
// inlined.
|
|
ClonedCallsiteMD = MDNode::concatenate(OrigCallsiteMD, InlinedCallsiteMD);
|
|
ClonedCall->setMetadata(LLVMContext::MD_callsite, ClonedCallsiteMD);
|
|
}
|
|
|
|
// Update any memprof metadata on the cloned call.
|
|
MDNode *OrigMemProfMD = ClonedCall->getMetadata(LLVMContext::MD_memprof);
|
|
if (!OrigMemProfMD)
|
|
return;
|
|
// We currently expect that allocations with memprof metadata also have
|
|
// callsite metadata for the allocation's part of the context.
|
|
assert(OrigCallsiteMD);
|
|
|
|
// New call's MIB list.
|
|
std::vector<Metadata *> NewMIBList;
|
|
|
|
// For each MIB metadata, check if its call stack context starts with the
|
|
// new clone's callsite metadata. If so, that MIB goes onto the cloned call in
|
|
// the inlined body. If not, it stays on the out-of-line original call.
|
|
for (auto &MIBOp : OrigMemProfMD->operands()) {
|
|
MDNode *MIB = dyn_cast<MDNode>(MIBOp);
|
|
// Stack is first operand of MIB.
|
|
MDNode *StackMD = getMIBStackNode(MIB);
|
|
assert(StackMD);
|
|
// See if the new cloned callsite context matches this profiled context.
|
|
if (haveCommonPrefix(StackMD, ClonedCallsiteMD))
|
|
// Add it to the cloned call's MIB list.
|
|
NewMIBList.push_back(MIB);
|
|
}
|
|
if (NewMIBList.empty()) {
|
|
removeMemProfMetadata(ClonedCall);
|
|
removeCallsiteMetadata(ClonedCall);
|
|
return;
|
|
}
|
|
if (NewMIBList.size() < OrigMemProfMD->getNumOperands())
|
|
updateMemprofMetadata(ClonedCall, NewMIBList, ORE);
|
|
}
|
|
|
|
// Update memprof related metadata (!memprof and !callsite) based on the
|
|
// inlining of Callee into the callsite at CB. The updates include merging the
|
|
// inlined callee's callsite metadata with that of the inlined call,
|
|
// and moving the subset of any memprof contexts to the inlined callee
|
|
// allocations if they match the new inlined call stack.
|
|
static void
|
|
propagateMemProfMetadata(Function *Callee, CallBase &CB,
|
|
bool ContainsMemProfMetadata,
|
|
const ValueMap<const Value *, WeakTrackingVH> &VMap,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
MDNode *CallsiteMD = CB.getMetadata(LLVMContext::MD_callsite);
|
|
// Only need to update if the inlined callsite had callsite metadata, or if
|
|
// there was any memprof metadata inlined.
|
|
if (!CallsiteMD && !ContainsMemProfMetadata)
|
|
return;
|
|
|
|
// Propagate metadata onto the cloned calls in the inlined callee.
|
|
for (const auto &Entry : VMap) {
|
|
// See if this is a call that has been inlined and remapped, and not
|
|
// simplified away in the process.
|
|
auto *OrigCall = dyn_cast_or_null<CallBase>(Entry.first);
|
|
auto *ClonedCall = dyn_cast_or_null<CallBase>(Entry.second);
|
|
if (!OrigCall || !ClonedCall)
|
|
continue;
|
|
// If the inlined callsite did not have any callsite metadata, then it isn't
|
|
// involved in any profiled call contexts, and we can remove any memprof
|
|
// metadata on the cloned call.
|
|
if (!CallsiteMD) {
|
|
removeMemProfMetadata(ClonedCall);
|
|
removeCallsiteMetadata(ClonedCall);
|
|
continue;
|
|
}
|
|
propagateMemProfHelper(OrigCall, ClonedCall, CallsiteMD, ORE);
|
|
}
|
|
}
|
|
|
|
/// When inlining a call site that has !llvm.mem.parallel_loop_access,
|
|
/// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
|
|
/// be propagated to all memory-accessing cloned instructions.
|
|
static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
|
|
Function::iterator FEnd) {
|
|
MDNode *MemParallelLoopAccess =
|
|
CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
|
|
MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
|
|
MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
|
|
MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
|
|
if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
|
|
return;
|
|
|
|
for (BasicBlock &BB : make_range(FStart, FEnd)) {
|
|
for (Instruction &I : BB) {
|
|
// This metadata is only relevant for instructions that access memory.
|
|
if (!I.mayReadOrWriteMemory())
|
|
continue;
|
|
|
|
if (MemParallelLoopAccess) {
|
|
// TODO: This probably should not overwrite MemParalleLoopAccess.
|
|
MemParallelLoopAccess = MDNode::concatenate(
|
|
I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
|
|
MemParallelLoopAccess);
|
|
I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
|
|
MemParallelLoopAccess);
|
|
}
|
|
|
|
if (AccessGroup)
|
|
I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
|
|
I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
|
|
|
|
if (AliasScope)
|
|
I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
|
|
I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
|
|
|
|
if (NoAlias)
|
|
I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
|
|
I.getMetadata(LLVMContext::MD_noalias), NoAlias));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Bundle operands of the inlined function must be added to inlined call sites.
|
|
static void PropagateOperandBundles(Function::iterator InlinedBB,
|
|
Instruction *CallSiteEHPad) {
|
|
for (Instruction &II : llvm::make_early_inc_range(*InlinedBB)) {
|
|
CallBase *I = dyn_cast<CallBase>(&II);
|
|
if (!I)
|
|
continue;
|
|
// Skip call sites which already have a "funclet" bundle.
|
|
if (I->getOperandBundle(LLVMContext::OB_funclet))
|
|
continue;
|
|
// Skip call sites which are nounwind intrinsics (as long as they don't
|
|
// lower into regular function calls in the course of IR transformations).
|
|
auto *CalledFn =
|
|
dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
|
|
if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow() &&
|
|
!IntrinsicInst::mayLowerToFunctionCall(CalledFn->getIntrinsicID()))
|
|
continue;
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
I->getOperandBundlesAsDefs(OpBundles);
|
|
OpBundles.emplace_back("funclet", CallSiteEHPad);
|
|
|
|
Instruction *NewInst = CallBase::Create(I, OpBundles, I->getIterator());
|
|
NewInst->takeName(I);
|
|
I->replaceAllUsesWith(NewInst);
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
/// Utility for cloning !noalias and !alias.scope metadata. When a code region
|
|
/// using scoped alias metadata is inlined, the aliasing relationships may not
|
|
/// hold between the two version. It is necessary to create a deep clone of the
|
|
/// metadata, putting the two versions in separate scope domains.
|
|
class ScopedAliasMetadataDeepCloner {
|
|
using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
|
|
SetVector<const MDNode *> MD;
|
|
MetadataMap MDMap;
|
|
void addRecursiveMetadataUses();
|
|
|
|
public:
|
|
ScopedAliasMetadataDeepCloner(const Function *F);
|
|
|
|
/// Create a new clone of the scoped alias metadata, which will be used by
|
|
/// subsequent remap() calls.
|
|
void clone();
|
|
|
|
/// Remap instructions in the given range from the original to the cloned
|
|
/// metadata.
|
|
void remap(Function::iterator FStart, Function::iterator FEnd);
|
|
};
|
|
} // namespace
|
|
|
|
ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
|
|
const Function *F) {
|
|
for (const BasicBlock &BB : *F) {
|
|
for (const Instruction &I : BB) {
|
|
if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
|
|
MD.insert(M);
|
|
if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
|
|
MD.insert(M);
|
|
|
|
// We also need to clone the metadata in noalias intrinsics.
|
|
if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
|
|
MD.insert(Decl->getScopeList());
|
|
}
|
|
}
|
|
addRecursiveMetadataUses();
|
|
}
|
|
|
|
void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
|
|
SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
|
|
while (!Queue.empty()) {
|
|
const MDNode *M = cast<MDNode>(Queue.pop_back_val());
|
|
for (const Metadata *Op : M->operands())
|
|
if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
|
|
if (MD.insert(OpMD))
|
|
Queue.push_back(OpMD);
|
|
}
|
|
}
|
|
|
|
void ScopedAliasMetadataDeepCloner::clone() {
|
|
assert(MDMap.empty() && "clone() already called ?");
|
|
|
|
SmallVector<TempMDTuple, 16> DummyNodes;
|
|
for (const MDNode *I : MD) {
|
|
DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), {}));
|
|
MDMap[I].reset(DummyNodes.back().get());
|
|
}
|
|
|
|
// Create new metadata nodes to replace the dummy nodes, replacing old
|
|
// metadata references with either a dummy node or an already-created new
|
|
// node.
|
|
SmallVector<Metadata *, 4> NewOps;
|
|
for (const MDNode *I : MD) {
|
|
for (const Metadata *Op : I->operands()) {
|
|
if (const MDNode *M = dyn_cast<MDNode>(Op))
|
|
NewOps.push_back(MDMap[M]);
|
|
else
|
|
NewOps.push_back(const_cast<Metadata *>(Op));
|
|
}
|
|
|
|
MDNode *NewM = MDNode::get(I->getContext(), NewOps);
|
|
MDTuple *TempM = cast<MDTuple>(MDMap[I]);
|
|
assert(TempM->isTemporary() && "Expected temporary node");
|
|
|
|
TempM->replaceAllUsesWith(NewM);
|
|
NewOps.clear();
|
|
}
|
|
}
|
|
|
|
void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
|
|
Function::iterator FEnd) {
|
|
if (MDMap.empty())
|
|
return; // Nothing to do.
|
|
|
|
for (BasicBlock &BB : make_range(FStart, FEnd)) {
|
|
for (Instruction &I : BB) {
|
|
// TODO: The null checks for the MDMap.lookup() results should no longer
|
|
// be necessary.
|
|
if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
|
|
if (MDNode *MNew = MDMap.lookup(M))
|
|
I.setMetadata(LLVMContext::MD_alias_scope, MNew);
|
|
|
|
if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
|
|
if (MDNode *MNew = MDMap.lookup(M))
|
|
I.setMetadata(LLVMContext::MD_noalias, MNew);
|
|
|
|
if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
|
|
if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
|
|
Decl->setScopeList(MNew);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has noalias arguments,
|
|
/// then add new alias scopes for each noalias argument, tag the mapped noalias
|
|
/// parameters with noalias metadata specifying the new scope, and tag all
|
|
/// non-derived loads, stores and memory intrinsics with the new alias scopes.
|
|
static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
|
|
const DataLayout &DL, AAResults *CalleeAAR,
|
|
ClonedCodeInfo &InlinedFunctionInfo) {
|
|
if (!EnableNoAliasConversion)
|
|
return;
|
|
|
|
const Function *CalledFunc = CB.getCalledFunction();
|
|
SmallVector<const Argument *, 4> NoAliasArgs;
|
|
|
|
for (const Argument &Arg : CalledFunc->args())
|
|
if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
|
|
NoAliasArgs.push_back(&Arg);
|
|
|
|
if (NoAliasArgs.empty())
|
|
return;
|
|
|
|
// To do a good job, if a noalias variable is captured, we need to know if
|
|
// the capture point dominates the particular use we're considering.
|
|
DominatorTree DT;
|
|
DT.recalculate(const_cast<Function&>(*CalledFunc));
|
|
|
|
// noalias indicates that pointer values based on the argument do not alias
|
|
// pointer values which are not based on it. So we add a new "scope" for each
|
|
// noalias function argument. Accesses using pointers based on that argument
|
|
// become part of that alias scope, accesses using pointers not based on that
|
|
// argument are tagged as noalias with that scope.
|
|
|
|
DenseMap<const Argument *, MDNode *> NewScopes;
|
|
MDBuilder MDB(CalledFunc->getContext());
|
|
|
|
// Create a new scope domain for this function.
|
|
MDNode *NewDomain =
|
|
MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
|
|
for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
|
|
const Argument *A = NoAliasArgs[i];
|
|
|
|
std::string Name = std::string(CalledFunc->getName());
|
|
if (A->hasName()) {
|
|
Name += ": %";
|
|
Name += A->getName();
|
|
} else {
|
|
Name += ": argument ";
|
|
Name += utostr(i);
|
|
}
|
|
|
|
// Note: We always create a new anonymous root here. This is true regardless
|
|
// of the linkage of the callee because the aliasing "scope" is not just a
|
|
// property of the callee, but also all control dependencies in the caller.
|
|
MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
|
|
NewScopes.insert(std::make_pair(A, NewScope));
|
|
|
|
if (UseNoAliasIntrinsic) {
|
|
// Introduce a llvm.experimental.noalias.scope.decl for the noalias
|
|
// argument.
|
|
MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
|
|
auto *NoAliasDecl =
|
|
IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
|
|
// Ignore the result for now. The result will be used when the
|
|
// llvm.noalias intrinsic is introduced.
|
|
(void)NoAliasDecl;
|
|
}
|
|
}
|
|
|
|
// Iterate over all new instructions in the map; for all memory-access
|
|
// instructions, add the alias scope metadata.
|
|
for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
|
|
VMI != VMIE; ++VMI) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
|
|
if (!VMI->second)
|
|
continue;
|
|
|
|
Instruction *NI = dyn_cast<Instruction>(VMI->second);
|
|
if (!NI || InlinedFunctionInfo.isSimplified(I, NI))
|
|
continue;
|
|
|
|
bool IsArgMemOnlyCall = false, IsFuncCall = false;
|
|
SmallVector<const Value *, 2> PtrArgs;
|
|
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
|
|
PtrArgs.push_back(LI->getPointerOperand());
|
|
else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
|
|
PtrArgs.push_back(SI->getPointerOperand());
|
|
else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
|
|
PtrArgs.push_back(VAAI->getPointerOperand());
|
|
else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
|
|
PtrArgs.push_back(CXI->getPointerOperand());
|
|
else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
|
|
PtrArgs.push_back(RMWI->getPointerOperand());
|
|
else if (const auto *Call = dyn_cast<CallBase>(I)) {
|
|
// If we know that the call does not access memory, then we'll still
|
|
// know that about the inlined clone of this call site, and we don't
|
|
// need to add metadata.
|
|
if (Call->doesNotAccessMemory())
|
|
continue;
|
|
|
|
IsFuncCall = true;
|
|
if (CalleeAAR) {
|
|
MemoryEffects ME = CalleeAAR->getMemoryEffects(Call);
|
|
|
|
// We'll retain this knowledge without additional metadata.
|
|
if (ME.onlyAccessesInaccessibleMem())
|
|
continue;
|
|
|
|
if (ME.onlyAccessesArgPointees())
|
|
IsArgMemOnlyCall = true;
|
|
}
|
|
|
|
for (Value *Arg : Call->args()) {
|
|
// Only care about pointer arguments. If a noalias argument is
|
|
// accessed through a non-pointer argument, it must be captured
|
|
// first (e.g. via ptrtoint), and we protect against captures below.
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
|
|
PtrArgs.push_back(Arg);
|
|
}
|
|
}
|
|
|
|
// If we found no pointers, then this instruction is not suitable for
|
|
// pairing with an instruction to receive aliasing metadata.
|
|
// However, if this is a call, this we might just alias with none of the
|
|
// noalias arguments.
|
|
if (PtrArgs.empty() && !IsFuncCall)
|
|
continue;
|
|
|
|
// It is possible that there is only one underlying object, but you
|
|
// need to go through several PHIs to see it, and thus could be
|
|
// repeated in the Objects list.
|
|
SmallPtrSet<const Value *, 4> ObjSet;
|
|
SmallVector<Metadata *, 4> Scopes, NoAliases;
|
|
|
|
for (const Value *V : PtrArgs) {
|
|
SmallVector<const Value *, 4> Objects;
|
|
getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
|
|
|
|
ObjSet.insert_range(Objects);
|
|
}
|
|
|
|
// Figure out if we're derived from anything that is not a noalias
|
|
// argument.
|
|
bool RequiresNoCaptureBefore = false, UsesAliasingPtr = false,
|
|
UsesUnknownObject = false;
|
|
for (const Value *V : ObjSet) {
|
|
// Is this value a constant that cannot be derived from any pointer
|
|
// value (we need to exclude constant expressions, for example, that
|
|
// are formed from arithmetic on global symbols).
|
|
bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
|
|
isa<ConstantPointerNull>(V) ||
|
|
isa<ConstantDataVector>(V) || isa<UndefValue>(V);
|
|
if (IsNonPtrConst)
|
|
continue;
|
|
|
|
// If this is anything other than a noalias argument, then we cannot
|
|
// completely describe the aliasing properties using alias.scope
|
|
// metadata (and, thus, won't add any).
|
|
if (const Argument *A = dyn_cast<Argument>(V)) {
|
|
if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
|
|
UsesAliasingPtr = true;
|
|
} else {
|
|
UsesAliasingPtr = true;
|
|
}
|
|
|
|
if (isEscapeSource(V)) {
|
|
// An escape source can only alias with a noalias argument if it has
|
|
// been captured beforehand.
|
|
RequiresNoCaptureBefore = true;
|
|
} else if (!isa<Argument>(V) && !isIdentifiedObject(V)) {
|
|
// If this is neither an escape source, nor some identified object
|
|
// (which cannot directly alias a noalias argument), nor some other
|
|
// argument (which, by definition, also cannot alias a noalias
|
|
// argument), conservatively do not make any assumptions.
|
|
UsesUnknownObject = true;
|
|
}
|
|
}
|
|
|
|
// Nothing we can do if the used underlying object cannot be reliably
|
|
// determined.
|
|
if (UsesUnknownObject)
|
|
continue;
|
|
|
|
// A function call can always get captured noalias pointers (via other
|
|
// parameters, globals, etc.).
|
|
if (IsFuncCall && !IsArgMemOnlyCall)
|
|
RequiresNoCaptureBefore = true;
|
|
|
|
// First, we want to figure out all of the sets with which we definitely
|
|
// don't alias. Iterate over all noalias set, and add those for which:
|
|
// 1. The noalias argument is not in the set of objects from which we
|
|
// definitely derive.
|
|
// 2. The noalias argument has not yet been captured.
|
|
// An arbitrary function that might load pointers could see captured
|
|
// noalias arguments via other noalias arguments or globals, and so we
|
|
// must always check for prior capture.
|
|
for (const Argument *A : NoAliasArgs) {
|
|
if (ObjSet.contains(A))
|
|
continue; // May be based on a noalias argument.
|
|
|
|
// It might be tempting to skip the PointerMayBeCapturedBefore check if
|
|
// A->hasNoCaptureAttr() is true, but this is incorrect because
|
|
// nocapture only guarantees that no copies outlive the function, not
|
|
// that the value cannot be locally captured.
|
|
if (!RequiresNoCaptureBefore ||
|
|
!capturesAnything(PointerMayBeCapturedBefore(
|
|
A, /*ReturnCaptures=*/false, I, &DT, /*IncludeI=*/false,
|
|
CaptureComponents::Provenance)))
|
|
NoAliases.push_back(NewScopes[A]);
|
|
}
|
|
|
|
if (!NoAliases.empty())
|
|
NI->setMetadata(LLVMContext::MD_noalias,
|
|
MDNode::concatenate(
|
|
NI->getMetadata(LLVMContext::MD_noalias),
|
|
MDNode::get(CalledFunc->getContext(), NoAliases)));
|
|
|
|
// Next, we want to figure out all of the sets to which we might belong.
|
|
// We might belong to a set if the noalias argument is in the set of
|
|
// underlying objects. If there is some non-noalias argument in our list
|
|
// of underlying objects, then we cannot add a scope because the fact
|
|
// that some access does not alias with any set of our noalias arguments
|
|
// cannot itself guarantee that it does not alias with this access
|
|
// (because there is some pointer of unknown origin involved and the
|
|
// other access might also depend on this pointer). We also cannot add
|
|
// scopes to arbitrary functions unless we know they don't access any
|
|
// non-parameter pointer-values.
|
|
bool CanAddScopes = !UsesAliasingPtr;
|
|
if (CanAddScopes && IsFuncCall)
|
|
CanAddScopes = IsArgMemOnlyCall;
|
|
|
|
if (CanAddScopes)
|
|
for (const Argument *A : NoAliasArgs) {
|
|
if (ObjSet.count(A))
|
|
Scopes.push_back(NewScopes[A]);
|
|
}
|
|
|
|
if (!Scopes.empty())
|
|
NI->setMetadata(
|
|
LLVMContext::MD_alias_scope,
|
|
MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
|
|
MDNode::get(CalledFunc->getContext(), Scopes)));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool MayContainThrowingOrExitingCallAfterCB(CallBase *Begin,
|
|
ReturnInst *End) {
|
|
|
|
assert(Begin->getParent() == End->getParent() &&
|
|
"Expected to be in same basic block!");
|
|
auto BeginIt = Begin->getIterator();
|
|
assert(BeginIt != End->getIterator() && "Non-empty BB has empty iterator");
|
|
return !llvm::isGuaranteedToTransferExecutionToSuccessor(
|
|
++BeginIt, End->getIterator(), InlinerAttributeWindow + 1);
|
|
}
|
|
|
|
// Add attributes from CB params and Fn attributes that can always be propagated
|
|
// to the corresponding argument / inner callbases.
|
|
static void AddParamAndFnBasicAttributes(const CallBase &CB,
|
|
ValueToValueMapTy &VMap,
|
|
ClonedCodeInfo &InlinedFunctionInfo) {
|
|
auto *CalledFunction = CB.getCalledFunction();
|
|
auto &Context = CalledFunction->getContext();
|
|
|
|
// Collect valid attributes for all params.
|
|
SmallVector<AttrBuilder> ValidObjParamAttrs, ValidExactParamAttrs;
|
|
bool HasAttrToPropagate = false;
|
|
|
|
// Attributes we can only propagate if the exact parameter is forwarded.
|
|
// We can propagate both poison generating and UB generating attributes
|
|
// without any extra checks. The only attribute that is tricky to propagate
|
|
// is `noundef` (skipped for now) as that can create new UB where previous
|
|
// behavior was just using a poison value.
|
|
static const Attribute::AttrKind ExactAttrsToPropagate[] = {
|
|
Attribute::Dereferenceable, Attribute::DereferenceableOrNull,
|
|
Attribute::NonNull, Attribute::NoFPClass,
|
|
Attribute::Alignment, Attribute::Range};
|
|
|
|
for (unsigned I = 0, E = CB.arg_size(); I < E; ++I) {
|
|
ValidObjParamAttrs.emplace_back(AttrBuilder{CB.getContext()});
|
|
ValidExactParamAttrs.emplace_back(AttrBuilder{CB.getContext()});
|
|
// Access attributes can be propagated to any param with the same underlying
|
|
// object as the argument.
|
|
if (CB.paramHasAttr(I, Attribute::ReadNone))
|
|
ValidObjParamAttrs.back().addAttribute(Attribute::ReadNone);
|
|
if (CB.paramHasAttr(I, Attribute::ReadOnly))
|
|
ValidObjParamAttrs.back().addAttribute(Attribute::ReadOnly);
|
|
|
|
for (Attribute::AttrKind AK : ExactAttrsToPropagate) {
|
|
Attribute Attr = CB.getParamAttr(I, AK);
|
|
if (Attr.isValid())
|
|
ValidExactParamAttrs.back().addAttribute(Attr);
|
|
}
|
|
|
|
HasAttrToPropagate |= ValidObjParamAttrs.back().hasAttributes();
|
|
HasAttrToPropagate |= ValidExactParamAttrs.back().hasAttributes();
|
|
}
|
|
|
|
// Won't be able to propagate anything.
|
|
if (!HasAttrToPropagate)
|
|
return;
|
|
|
|
for (BasicBlock &BB : *CalledFunction) {
|
|
for (Instruction &Ins : BB) {
|
|
const auto *InnerCB = dyn_cast<CallBase>(&Ins);
|
|
if (!InnerCB)
|
|
continue;
|
|
auto *NewInnerCB = dyn_cast_or_null<CallBase>(VMap.lookup(InnerCB));
|
|
if (!NewInnerCB)
|
|
continue;
|
|
// The InnerCB might have be simplified during the inlining
|
|
// process which can make propagation incorrect.
|
|
if (InlinedFunctionInfo.isSimplified(InnerCB, NewInnerCB))
|
|
continue;
|
|
|
|
AttributeList AL = NewInnerCB->getAttributes();
|
|
for (unsigned I = 0, E = InnerCB->arg_size(); I < E; ++I) {
|
|
// It's unsound or requires special handling to propagate
|
|
// attributes to byval arguments. Even if CalledFunction
|
|
// doesn't e.g. write to the argument (readonly), the call to
|
|
// NewInnerCB may write to its by-value copy.
|
|
if (NewInnerCB->paramHasAttr(I, Attribute::ByVal))
|
|
continue;
|
|
|
|
// Don't bother propagating attrs to constants.
|
|
if (match(NewInnerCB->getArgOperand(I),
|
|
llvm::PatternMatch::m_ImmConstant()))
|
|
continue;
|
|
|
|
// Check if the underlying value for the parameter is an argument.
|
|
const Argument *Arg = dyn_cast<Argument>(InnerCB->getArgOperand(I));
|
|
unsigned ArgNo;
|
|
if (Arg) {
|
|
ArgNo = Arg->getArgNo();
|
|
// For dereferenceable, dereferenceable_or_null, align, etc...
|
|
// we don't want to propagate if the existing param has the same
|
|
// attribute with "better" constraints. So remove from the
|
|
// new AL if the region of the existing param is larger than
|
|
// what we can propagate.
|
|
AttrBuilder NewAB{
|
|
Context, AttributeSet::get(Context, ValidExactParamAttrs[ArgNo])};
|
|
if (AL.getParamDereferenceableBytes(I) >
|
|
NewAB.getDereferenceableBytes())
|
|
NewAB.removeAttribute(Attribute::Dereferenceable);
|
|
if (AL.getParamDereferenceableOrNullBytes(I) >
|
|
NewAB.getDereferenceableOrNullBytes())
|
|
NewAB.removeAttribute(Attribute::DereferenceableOrNull);
|
|
if (AL.getParamAlignment(I).valueOrOne() >
|
|
NewAB.getAlignment().valueOrOne())
|
|
NewAB.removeAttribute(Attribute::Alignment);
|
|
if (auto ExistingRange = AL.getParamRange(I)) {
|
|
if (auto NewRange = NewAB.getRange()) {
|
|
ConstantRange CombinedRange =
|
|
ExistingRange->intersectWith(*NewRange);
|
|
NewAB.removeAttribute(Attribute::Range);
|
|
NewAB.addRangeAttr(CombinedRange);
|
|
}
|
|
}
|
|
|
|
if (FPClassTest ExistingNoFP = AL.getParamNoFPClass(I))
|
|
NewAB.addNoFPClassAttr(ExistingNoFP | NewAB.getNoFPClass());
|
|
|
|
AL = AL.addParamAttributes(Context, I, NewAB);
|
|
} else if (NewInnerCB->getArgOperand(I)->getType()->isPointerTy()) {
|
|
// Check if the underlying value for the parameter is an argument.
|
|
const Value *UnderlyingV =
|
|
getUnderlyingObject(InnerCB->getArgOperand(I));
|
|
Arg = dyn_cast<Argument>(UnderlyingV);
|
|
if (!Arg)
|
|
continue;
|
|
ArgNo = Arg->getArgNo();
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
// If so, propagate its access attributes.
|
|
AL = AL.addParamAttributes(Context, I, ValidObjParamAttrs[ArgNo]);
|
|
|
|
// We can have conflicting attributes from the inner callsite and
|
|
// to-be-inlined callsite. In that case, choose the most
|
|
// restrictive.
|
|
|
|
// readonly + writeonly means we can never deref so make readnone.
|
|
if (AL.hasParamAttr(I, Attribute::ReadOnly) &&
|
|
AL.hasParamAttr(I, Attribute::WriteOnly))
|
|
AL = AL.addParamAttribute(Context, I, Attribute::ReadNone);
|
|
|
|
// If have readnone, need to clear readonly/writeonly
|
|
if (AL.hasParamAttr(I, Attribute::ReadNone)) {
|
|
AL = AL.removeParamAttribute(Context, I, Attribute::ReadOnly);
|
|
AL = AL.removeParamAttribute(Context, I, Attribute::WriteOnly);
|
|
}
|
|
|
|
// Writable cannot exist in conjunction w/ readonly/readnone
|
|
if (AL.hasParamAttr(I, Attribute::ReadOnly) ||
|
|
AL.hasParamAttr(I, Attribute::ReadNone))
|
|
AL = AL.removeParamAttribute(Context, I, Attribute::Writable);
|
|
}
|
|
NewInnerCB->setAttributes(AL);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only allow these white listed attributes to be propagated back to the
|
|
// callee. This is because other attributes may only be valid on the call
|
|
// itself, i.e. attributes such as signext and zeroext.
|
|
|
|
// Attributes that are always okay to propagate as if they are violated its
|
|
// immediate UB.
|
|
static AttrBuilder IdentifyValidUBGeneratingAttributes(CallBase &CB) {
|
|
AttrBuilder Valid(CB.getContext());
|
|
if (auto DerefBytes = CB.getRetDereferenceableBytes())
|
|
Valid.addDereferenceableAttr(DerefBytes);
|
|
if (auto DerefOrNullBytes = CB.getRetDereferenceableOrNullBytes())
|
|
Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
|
|
if (CB.hasRetAttr(Attribute::NoAlias))
|
|
Valid.addAttribute(Attribute::NoAlias);
|
|
if (CB.hasRetAttr(Attribute::NoUndef))
|
|
Valid.addAttribute(Attribute::NoUndef);
|
|
return Valid;
|
|
}
|
|
|
|
// Attributes that need additional checks as propagating them may change
|
|
// behavior or cause new UB.
|
|
static AttrBuilder IdentifyValidPoisonGeneratingAttributes(CallBase &CB) {
|
|
AttrBuilder Valid(CB.getContext());
|
|
if (CB.hasRetAttr(Attribute::NonNull))
|
|
Valid.addAttribute(Attribute::NonNull);
|
|
if (CB.hasRetAttr(Attribute::Alignment))
|
|
Valid.addAlignmentAttr(CB.getRetAlign());
|
|
if (std::optional<ConstantRange> Range = CB.getRange())
|
|
Valid.addRangeAttr(*Range);
|
|
return Valid;
|
|
}
|
|
|
|
static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap,
|
|
ClonedCodeInfo &InlinedFunctionInfo) {
|
|
AttrBuilder ValidUB = IdentifyValidUBGeneratingAttributes(CB);
|
|
AttrBuilder ValidPG = IdentifyValidPoisonGeneratingAttributes(CB);
|
|
if (!ValidUB.hasAttributes() && !ValidPG.hasAttributes())
|
|
return;
|
|
auto *CalledFunction = CB.getCalledFunction();
|
|
auto &Context = CalledFunction->getContext();
|
|
|
|
for (auto &BB : *CalledFunction) {
|
|
auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
|
|
if (!RI || !isa<CallBase>(RI->getOperand(0)))
|
|
continue;
|
|
auto *RetVal = cast<CallBase>(RI->getOperand(0));
|
|
// Check that the cloned RetVal exists and is a call, otherwise we cannot
|
|
// add the attributes on the cloned RetVal. Simplification during inlining
|
|
// could have transformed the cloned instruction.
|
|
auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
|
|
if (!NewRetVal)
|
|
continue;
|
|
|
|
// The RetVal might have be simplified during the inlining
|
|
// process which can make propagation incorrect.
|
|
if (InlinedFunctionInfo.isSimplified(RetVal, NewRetVal))
|
|
continue;
|
|
// Backward propagation of attributes to the returned value may be incorrect
|
|
// if it is control flow dependent.
|
|
// Consider:
|
|
// @callee {
|
|
// %rv = call @foo()
|
|
// %rv2 = call @bar()
|
|
// if (%rv2 != null)
|
|
// return %rv2
|
|
// if (%rv == null)
|
|
// exit()
|
|
// return %rv
|
|
// }
|
|
// caller() {
|
|
// %val = call nonnull @callee()
|
|
// }
|
|
// Here we cannot add the nonnull attribute on either foo or bar. So, we
|
|
// limit the check to both RetVal and RI are in the same basic block and
|
|
// there are no throwing/exiting instructions between these instructions.
|
|
if (RI->getParent() != RetVal->getParent() ||
|
|
MayContainThrowingOrExitingCallAfterCB(RetVal, RI))
|
|
continue;
|
|
// Add to the existing attributes of NewRetVal, i.e. the cloned call
|
|
// instruction.
|
|
// NB! When we have the same attribute already existing on NewRetVal, but
|
|
// with a differing value, the AttributeList's merge API honours the already
|
|
// existing attribute value (i.e. attributes such as dereferenceable,
|
|
// dereferenceable_or_null etc). See AttrBuilder::merge for more details.
|
|
AttributeList AL = NewRetVal->getAttributes();
|
|
if (ValidUB.getDereferenceableBytes() < AL.getRetDereferenceableBytes())
|
|
ValidUB.removeAttribute(Attribute::Dereferenceable);
|
|
if (ValidUB.getDereferenceableOrNullBytes() <
|
|
AL.getRetDereferenceableOrNullBytes())
|
|
ValidUB.removeAttribute(Attribute::DereferenceableOrNull);
|
|
AttributeList NewAL = AL.addRetAttributes(Context, ValidUB);
|
|
// Attributes that may generate poison returns are a bit tricky. If we
|
|
// propagate them, other uses of the callsite might have their behavior
|
|
// change or cause UB (if they have noundef) b.c of the new potential
|
|
// poison.
|
|
// Take the following three cases:
|
|
//
|
|
// 1)
|
|
// define nonnull ptr @foo() {
|
|
// %p = call ptr @bar()
|
|
// call void @use(ptr %p) willreturn nounwind
|
|
// ret ptr %p
|
|
// }
|
|
//
|
|
// 2)
|
|
// define noundef nonnull ptr @foo() {
|
|
// %p = call ptr @bar()
|
|
// call void @use(ptr %p) willreturn nounwind
|
|
// ret ptr %p
|
|
// }
|
|
//
|
|
// 3)
|
|
// define nonnull ptr @foo() {
|
|
// %p = call noundef ptr @bar()
|
|
// ret ptr %p
|
|
// }
|
|
//
|
|
// In case 1, we can't propagate nonnull because poison value in @use may
|
|
// change behavior or trigger UB.
|
|
// In case 2, we don't need to be concerned about propagating nonnull, as
|
|
// any new poison at @use will trigger UB anyways.
|
|
// In case 3, we can never propagate nonnull because it may create UB due to
|
|
// the noundef on @bar.
|
|
if (ValidPG.getAlignment().valueOrOne() < AL.getRetAlignment().valueOrOne())
|
|
ValidPG.removeAttribute(Attribute::Alignment);
|
|
if (ValidPG.hasAttributes()) {
|
|
Attribute CBRange = ValidPG.getAttribute(Attribute::Range);
|
|
if (CBRange.isValid()) {
|
|
Attribute NewRange = AL.getRetAttr(Attribute::Range);
|
|
if (NewRange.isValid()) {
|
|
ValidPG.addRangeAttr(
|
|
CBRange.getRange().intersectWith(NewRange.getRange()));
|
|
}
|
|
}
|
|
// Three checks.
|
|
// If the callsite has `noundef`, then a poison due to violating the
|
|
// return attribute will create UB anyways so we can always propagate.
|
|
// Otherwise, if the return value (callee to be inlined) has `noundef`, we
|
|
// can't propagate as a new poison return will cause UB.
|
|
// Finally, check if the return value has no uses whose behavior may
|
|
// change/may cause UB if we potentially return poison. At the moment this
|
|
// is implemented overly conservatively with a single-use check.
|
|
// TODO: Update the single-use check to iterate through uses and only bail
|
|
// if we have a potentially dangerous use.
|
|
|
|
if (CB.hasRetAttr(Attribute::NoUndef) ||
|
|
(RetVal->hasOneUse() && !RetVal->hasRetAttr(Attribute::NoUndef)))
|
|
NewAL = NewAL.addRetAttributes(Context, ValidPG);
|
|
}
|
|
NewRetVal->setAttributes(NewAL);
|
|
}
|
|
}
|
|
|
|
/// If the inlined function has non-byval align arguments, then
|
|
/// add @llvm.assume-based alignment assumptions to preserve this information.
|
|
static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
|
|
if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
|
|
return;
|
|
|
|
AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
|
|
auto &DL = CB.getDataLayout();
|
|
|
|
// To avoid inserting redundant assumptions, we should check for assumptions
|
|
// already in the caller. To do this, we might need a DT of the caller.
|
|
DominatorTree DT;
|
|
bool DTCalculated = false;
|
|
|
|
Function *CalledFunc = CB.getCalledFunction();
|
|
for (Argument &Arg : CalledFunc->args()) {
|
|
if (!Arg.getType()->isPointerTy() || Arg.hasPassPointeeByValueCopyAttr() ||
|
|
Arg.use_empty())
|
|
continue;
|
|
MaybeAlign Alignment = Arg.getParamAlign();
|
|
if (!Alignment)
|
|
continue;
|
|
|
|
if (!DTCalculated) {
|
|
DT.recalculate(*CB.getCaller());
|
|
DTCalculated = true;
|
|
}
|
|
// If we can already prove the asserted alignment in the context of the
|
|
// caller, then don't bother inserting the assumption.
|
|
Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
|
|
if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= *Alignment)
|
|
continue;
|
|
|
|
CallInst *NewAsmp = IRBuilder<>(&CB).CreateAlignmentAssumption(
|
|
DL, ArgVal, Alignment->value());
|
|
AC->registerAssumption(cast<AssumeInst>(NewAsmp));
|
|
}
|
|
}
|
|
|
|
static void HandleByValArgumentInit(Type *ByValType, Value *Dst, Value *Src,
|
|
MaybeAlign SrcAlign, Module *M,
|
|
BasicBlock *InsertBlock,
|
|
InlineFunctionInfo &IFI,
|
|
Function *CalledFunc) {
|
|
IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
|
|
|
|
Value *Size =
|
|
Builder.getInt64(M->getDataLayout().getTypeStoreSize(ByValType));
|
|
|
|
Align DstAlign = Dst->getPointerAlignment(M->getDataLayout());
|
|
|
|
// Generate a memcpy with the correct alignments.
|
|
CallInst *CI = Builder.CreateMemCpy(Dst, DstAlign, Src, SrcAlign, Size);
|
|
|
|
// The verifier requires that all calls of debug-info-bearing functions
|
|
// from debug-info-bearing functions have a debug location (for inlining
|
|
// purposes). Assign a dummy location to satisfy the constraint.
|
|
if (!CI->getDebugLoc() && InsertBlock->getParent()->getSubprogram())
|
|
if (DISubprogram *SP = CalledFunc->getSubprogram())
|
|
CI->setDebugLoc(DILocation::get(SP->getContext(), 0, 0, SP));
|
|
}
|
|
|
|
/// When inlining a call site that has a byval argument,
|
|
/// we have to make the implicit memcpy explicit by adding it.
|
|
static Value *HandleByValArgument(Type *ByValType, Value *Arg,
|
|
Instruction *TheCall,
|
|
const Function *CalledFunc,
|
|
InlineFunctionInfo &IFI,
|
|
MaybeAlign ByValAlignment) {
|
|
Function *Caller = TheCall->getFunction();
|
|
const DataLayout &DL = Caller->getDataLayout();
|
|
|
|
// If the called function is readonly, then it could not mutate the caller's
|
|
// copy of the byval'd memory. In this case, it is safe to elide the copy and
|
|
// temporary.
|
|
if (CalledFunc->onlyReadsMemory()) {
|
|
// If the byval argument has a specified alignment that is greater than the
|
|
// passed in pointer, then we either have to round up the input pointer or
|
|
// give up on this transformation.
|
|
if (ByValAlignment.valueOrOne() == 1)
|
|
return Arg;
|
|
|
|
AssumptionCache *AC =
|
|
IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
|
|
|
|
// If the pointer is already known to be sufficiently aligned, or if we can
|
|
// round it up to a larger alignment, then we don't need a temporary.
|
|
if (getOrEnforceKnownAlignment(Arg, *ByValAlignment, DL, TheCall, AC) >=
|
|
*ByValAlignment)
|
|
return Arg;
|
|
|
|
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
|
|
// for code quality, but rarely happens and is required for correctness.
|
|
}
|
|
|
|
// Create the alloca. If we have DataLayout, use nice alignment.
|
|
Align Alignment = DL.getPrefTypeAlign(ByValType);
|
|
|
|
// If the byval had an alignment specified, we *must* use at least that
|
|
// alignment, as it is required by the byval argument (and uses of the
|
|
// pointer inside the callee).
|
|
if (ByValAlignment)
|
|
Alignment = std::max(Alignment, *ByValAlignment);
|
|
|
|
AllocaInst *NewAlloca =
|
|
new AllocaInst(ByValType, Arg->getType()->getPointerAddressSpace(),
|
|
nullptr, Alignment, Arg->getName());
|
|
NewAlloca->setDebugLoc(DebugLoc::getCompilerGenerated());
|
|
NewAlloca->insertBefore(Caller->begin()->begin());
|
|
IFI.StaticAllocas.push_back(NewAlloca);
|
|
|
|
// Uses of the argument in the function should use our new alloca
|
|
// instead.
|
|
return NewAlloca;
|
|
}
|
|
|
|
// Check whether this Value is used by a lifetime intrinsic.
|
|
static bool isUsedByLifetimeMarker(Value *V) {
|
|
for (User *U : V->users())
|
|
if (isa<LifetimeIntrinsic>(U))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Check whether the given alloca already has
|
|
// lifetime.start or lifetime.end intrinsics.
|
|
static bool hasLifetimeMarkers(AllocaInst *AI) {
|
|
Type *Ty = AI->getType();
|
|
Type *Int8PtrTy =
|
|
PointerType::get(Ty->getContext(), Ty->getPointerAddressSpace());
|
|
if (Ty == Int8PtrTy)
|
|
return isUsedByLifetimeMarker(AI);
|
|
|
|
// Do a scan to find all the casts to i8*.
|
|
for (User *U : AI->users()) {
|
|
if (U->getType() != Int8PtrTy) continue;
|
|
if (U->stripPointerCasts() != AI) continue;
|
|
if (isUsedByLifetimeMarker(U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Return the result of AI->isStaticAlloca() if AI were moved to the entry
|
|
/// block. Allocas used in inalloca calls and allocas of dynamic array size
|
|
/// cannot be static.
|
|
static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
|
|
return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
|
|
}
|
|
|
|
/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
|
|
/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
|
|
static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
|
|
LLVMContext &Ctx,
|
|
DenseMap<const MDNode *, MDNode *> &IANodes) {
|
|
auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
|
|
return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
|
|
OrigDL.getScope(), IA, OrigDL.isImplicitCode(),
|
|
OrigDL->getAtomGroup(), OrigDL->getAtomRank());
|
|
}
|
|
|
|
/// Update inlined instructions' line numbers to
|
|
/// to encode location where these instructions are inlined.
|
|
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
|
|
Instruction *TheCall, bool CalleeHasDebugInfo) {
|
|
if (!TheCall->getDebugLoc())
|
|
return;
|
|
|
|
// Don't propagate the source location atom from the call to inlined nodebug
|
|
// instructions, and avoid putting it in the InlinedAt field of inlined
|
|
// not-nodebug instructions. FIXME: Possibly worth transferring/generating
|
|
// an atom for the returned value, otherwise we miss stepping on inlined
|
|
// nodebug functions (which is different to existing behaviour).
|
|
DebugLoc TheCallDL = TheCall->getDebugLoc()->getWithoutAtom();
|
|
|
|
auto &Ctx = Fn->getContext();
|
|
DILocation *InlinedAtNode = TheCallDL;
|
|
|
|
// Create a unique call site, not to be confused with any other call from the
|
|
// same location.
|
|
InlinedAtNode = DILocation::getDistinct(
|
|
Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
|
|
InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
|
|
|
|
// Cache the inlined-at nodes as they're built so they are reused, without
|
|
// this every instruction's inlined-at chain would become distinct from each
|
|
// other.
|
|
DenseMap<const MDNode *, MDNode *> IANodes;
|
|
|
|
// Check if we are not generating inline line tables and want to use
|
|
// the call site location instead.
|
|
bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
|
|
|
|
// Helper-util for updating the metadata attached to an instruction.
|
|
auto UpdateInst = [&](Instruction &I) {
|
|
// Loop metadata needs to be updated so that the start and end locs
|
|
// reference inlined-at locations.
|
|
auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode,
|
|
&IANodes](Metadata *MD) -> Metadata * {
|
|
if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
|
|
return inlineDebugLoc(Loc, InlinedAtNode, Ctx, IANodes).get();
|
|
return MD;
|
|
};
|
|
updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
|
|
|
|
if (!NoInlineLineTables)
|
|
if (DebugLoc DL = I.getDebugLoc()) {
|
|
DebugLoc IDL =
|
|
inlineDebugLoc(DL, InlinedAtNode, I.getContext(), IANodes);
|
|
I.setDebugLoc(IDL);
|
|
return;
|
|
}
|
|
|
|
if (CalleeHasDebugInfo && !NoInlineLineTables)
|
|
return;
|
|
|
|
// If the inlined instruction has no line number, or if inline info
|
|
// is not being generated, make it look as if it originates from the call
|
|
// location. This is important for ((__always_inline, __nodebug__))
|
|
// functions which must use caller location for all instructions in their
|
|
// function body.
|
|
|
|
// Don't update static allocas, as they may get moved later.
|
|
if (auto *AI = dyn_cast<AllocaInst>(&I))
|
|
if (allocaWouldBeStaticInEntry(AI))
|
|
return;
|
|
|
|
// Do not force a debug loc for pseudo probes, since they do not need to
|
|
// be debuggable, and also they are expected to have a zero/null dwarf
|
|
// discriminator at this point which could be violated otherwise.
|
|
if (isa<PseudoProbeInst>(I))
|
|
return;
|
|
|
|
I.setDebugLoc(TheCallDL);
|
|
};
|
|
|
|
// Helper-util for updating debug-info records attached to instructions.
|
|
auto UpdateDVR = [&](DbgRecord *DVR) {
|
|
assert(DVR->getDebugLoc() && "Debug Value must have debug loc");
|
|
if (NoInlineLineTables) {
|
|
DVR->setDebugLoc(TheCallDL);
|
|
return;
|
|
}
|
|
DebugLoc DL = DVR->getDebugLoc();
|
|
DebugLoc IDL =
|
|
inlineDebugLoc(DL, InlinedAtNode,
|
|
DVR->getMarker()->getParent()->getContext(), IANodes);
|
|
DVR->setDebugLoc(IDL);
|
|
};
|
|
|
|
// Iterate over all instructions, updating metadata and debug-info records.
|
|
for (; FI != Fn->end(); ++FI) {
|
|
for (Instruction &I : *FI) {
|
|
UpdateInst(I);
|
|
for (DbgRecord &DVR : I.getDbgRecordRange()) {
|
|
UpdateDVR(&DVR);
|
|
}
|
|
}
|
|
|
|
// Remove debug info records if we're not keeping inline info.
|
|
if (NoInlineLineTables) {
|
|
BasicBlock::iterator BI = FI->begin();
|
|
while (BI != FI->end()) {
|
|
BI->dropDbgRecords();
|
|
++BI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "assignment-tracking"
|
|
/// Find Alloca and linked DbgAssignIntrinsic for locals escaped by \p CB.
|
|
static at::StorageToVarsMap collectEscapedLocals(const DataLayout &DL,
|
|
const CallBase &CB) {
|
|
at::StorageToVarsMap EscapedLocals;
|
|
SmallPtrSet<const Value *, 4> SeenBases;
|
|
|
|
LLVM_DEBUG(
|
|
errs() << "# Finding caller local variables escaped by callee\n");
|
|
for (const Value *Arg : CB.args()) {
|
|
LLVM_DEBUG(errs() << "INSPECT: " << *Arg << "\n");
|
|
if (!Arg->getType()->isPointerTy()) {
|
|
LLVM_DEBUG(errs() << " | SKIP: Not a pointer\n");
|
|
continue;
|
|
}
|
|
|
|
const Instruction *I = dyn_cast<Instruction>(Arg);
|
|
if (!I) {
|
|
LLVM_DEBUG(errs() << " | SKIP: Not result of instruction\n");
|
|
continue;
|
|
}
|
|
|
|
// Walk back to the base storage.
|
|
assert(Arg->getType()->isPtrOrPtrVectorTy());
|
|
APInt TmpOffset(DL.getIndexTypeSizeInBits(Arg->getType()), 0, false);
|
|
const AllocaInst *Base = dyn_cast<AllocaInst>(
|
|
Arg->stripAndAccumulateConstantOffsets(DL, TmpOffset, true));
|
|
if (!Base) {
|
|
LLVM_DEBUG(errs() << " | SKIP: Couldn't walk back to base storage\n");
|
|
continue;
|
|
}
|
|
|
|
assert(Base);
|
|
LLVM_DEBUG(errs() << " | BASE: " << *Base << "\n");
|
|
// We only need to process each base address once - skip any duplicates.
|
|
if (!SeenBases.insert(Base).second)
|
|
continue;
|
|
|
|
// Find all local variables associated with the backing storage.
|
|
auto CollectAssignsForStorage = [&](DbgVariableRecord *DbgAssign) {
|
|
// Skip variables from inlined functions - they are not local variables.
|
|
if (DbgAssign->getDebugLoc().getInlinedAt())
|
|
return;
|
|
LLVM_DEBUG(errs() << " > DEF : " << *DbgAssign << "\n");
|
|
EscapedLocals[Base].insert(at::VarRecord(DbgAssign));
|
|
};
|
|
for_each(at::getDVRAssignmentMarkers(Base), CollectAssignsForStorage);
|
|
}
|
|
return EscapedLocals;
|
|
}
|
|
|
|
static void trackInlinedStores(Function::iterator Start, Function::iterator End,
|
|
const CallBase &CB) {
|
|
LLVM_DEBUG(errs() << "trackInlinedStores into "
|
|
<< Start->getParent()->getName() << " from "
|
|
<< CB.getCalledFunction()->getName() << "\n");
|
|
const DataLayout &DL = CB.getDataLayout();
|
|
at::trackAssignments(Start, End, collectEscapedLocals(DL, CB), DL);
|
|
}
|
|
|
|
/// Update inlined instructions' DIAssignID metadata. We need to do this
|
|
/// otherwise a function inlined more than once into the same function
|
|
/// will cause DIAssignID to be shared by many instructions.
|
|
static void fixupAssignments(Function::iterator Start, Function::iterator End) {
|
|
DenseMap<DIAssignID *, DIAssignID *> Map;
|
|
// Loop over all the inlined instructions. If we find a DIAssignID
|
|
// attachment or use, replace it with a new version.
|
|
for (auto BBI = Start; BBI != End; ++BBI) {
|
|
for (Instruction &I : *BBI)
|
|
at::remapAssignID(Map, I);
|
|
}
|
|
}
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "inline-function"
|
|
|
|
/// Update the block frequencies of the caller after a callee has been inlined.
|
|
///
|
|
/// Each block cloned into the caller has its block frequency scaled by the
|
|
/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
|
|
/// callee's entry block gets the same frequency as the callsite block and the
|
|
/// relative frequencies of all cloned blocks remain the same after cloning.
|
|
static void updateCallerBFI(BasicBlock *CallSiteBlock,
|
|
const ValueToValueMapTy &VMap,
|
|
BlockFrequencyInfo *CallerBFI,
|
|
BlockFrequencyInfo *CalleeBFI,
|
|
const BasicBlock &CalleeEntryBlock) {
|
|
SmallPtrSet<BasicBlock *, 16> ClonedBBs;
|
|
for (auto Entry : VMap) {
|
|
if (!isa<BasicBlock>(Entry.first) || !Entry.second)
|
|
continue;
|
|
auto *OrigBB = cast<BasicBlock>(Entry.first);
|
|
auto *ClonedBB = cast<BasicBlock>(Entry.second);
|
|
BlockFrequency Freq = CalleeBFI->getBlockFreq(OrigBB);
|
|
if (!ClonedBBs.insert(ClonedBB).second) {
|
|
// Multiple blocks in the callee might get mapped to one cloned block in
|
|
// the caller since we prune the callee as we clone it. When that happens,
|
|
// we want to use the maximum among the original blocks' frequencies.
|
|
BlockFrequency NewFreq = CallerBFI->getBlockFreq(ClonedBB);
|
|
if (NewFreq > Freq)
|
|
Freq = NewFreq;
|
|
}
|
|
CallerBFI->setBlockFreq(ClonedBB, Freq);
|
|
}
|
|
BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
|
|
CallerBFI->setBlockFreqAndScale(
|
|
EntryClone, CallerBFI->getBlockFreq(CallSiteBlock), ClonedBBs);
|
|
}
|
|
|
|
/// Update the branch metadata for cloned call instructions.
|
|
static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
|
|
const ProfileCount &CalleeEntryCount,
|
|
const CallBase &TheCall, ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *CallerBFI) {
|
|
if (CalleeEntryCount.isSynthetic() || CalleeEntryCount.getCount() < 1)
|
|
return;
|
|
auto CallSiteCount =
|
|
PSI ? PSI->getProfileCount(TheCall, CallerBFI) : std::nullopt;
|
|
int64_t CallCount =
|
|
std::min(CallSiteCount.value_or(0), CalleeEntryCount.getCount());
|
|
updateProfileCallee(Callee, -CallCount, &VMap);
|
|
}
|
|
|
|
void llvm::updateProfileCallee(
|
|
Function *Callee, int64_t EntryDelta,
|
|
const ValueMap<const Value *, WeakTrackingVH> *VMap) {
|
|
auto CalleeCount = Callee->getEntryCount();
|
|
if (!CalleeCount)
|
|
return;
|
|
|
|
const uint64_t PriorEntryCount = CalleeCount->getCount();
|
|
|
|
// Since CallSiteCount is an estimate, it could exceed the original callee
|
|
// count and has to be set to 0 so guard against underflow.
|
|
const uint64_t NewEntryCount =
|
|
(EntryDelta < 0 && static_cast<uint64_t>(-EntryDelta) > PriorEntryCount)
|
|
? 0
|
|
: PriorEntryCount + EntryDelta;
|
|
|
|
auto updateVTableProfWeight = [](CallBase *CB, const uint64_t NewEntryCount,
|
|
const uint64_t PriorEntryCount) {
|
|
Instruction *VPtr = PGOIndirectCallVisitor::tryGetVTableInstruction(CB);
|
|
if (VPtr)
|
|
scaleProfData(*VPtr, NewEntryCount, PriorEntryCount);
|
|
};
|
|
|
|
// During inlining ?
|
|
if (VMap) {
|
|
uint64_t CloneEntryCount = PriorEntryCount - NewEntryCount;
|
|
for (auto Entry : *VMap) {
|
|
if (isa<CallInst>(Entry.first))
|
|
if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) {
|
|
CI->updateProfWeight(CloneEntryCount, PriorEntryCount);
|
|
updateVTableProfWeight(CI, CloneEntryCount, PriorEntryCount);
|
|
}
|
|
|
|
if (isa<InvokeInst>(Entry.first))
|
|
if (auto *II = dyn_cast_or_null<InvokeInst>(Entry.second)) {
|
|
II->updateProfWeight(CloneEntryCount, PriorEntryCount);
|
|
updateVTableProfWeight(II, CloneEntryCount, PriorEntryCount);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (EntryDelta) {
|
|
Callee->setEntryCount(NewEntryCount);
|
|
|
|
for (BasicBlock &BB : *Callee)
|
|
// No need to update the callsite if it is pruned during inlining.
|
|
if (!VMap || VMap->count(&BB))
|
|
for (Instruction &I : BB) {
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
CI->updateProfWeight(NewEntryCount, PriorEntryCount);
|
|
updateVTableProfWeight(CI, NewEntryCount, PriorEntryCount);
|
|
}
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
II->updateProfWeight(NewEntryCount, PriorEntryCount);
|
|
updateVTableProfWeight(II, NewEntryCount, PriorEntryCount);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An operand bundle "clang.arc.attachedcall" on a call indicates the call
|
|
/// result is implicitly consumed by a call to retainRV or claimRV immediately
|
|
/// after the call. This function inlines the retainRV/claimRV calls.
|
|
///
|
|
/// There are three cases to consider:
|
|
///
|
|
/// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
|
|
/// object in the callee return block, the autoreleaseRV call and the
|
|
/// retainRV/claimRV call in the caller cancel out. If the call in the caller
|
|
/// is a claimRV call, a call to objc_release is emitted.
|
|
///
|
|
/// 2. If there is a call in the callee return block that doesn't have operand
|
|
/// bundle "clang.arc.attachedcall", the operand bundle on the original call
|
|
/// is transferred to the call in the callee.
|
|
///
|
|
/// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
|
|
/// a retainRV call.
|
|
static void
|
|
inlineRetainOrClaimRVCalls(CallBase &CB, objcarc::ARCInstKind RVCallKind,
|
|
const SmallVectorImpl<ReturnInst *> &Returns) {
|
|
assert(objcarc::isRetainOrClaimRV(RVCallKind) && "unexpected ARC function");
|
|
bool IsRetainRV = RVCallKind == objcarc::ARCInstKind::RetainRV,
|
|
IsUnsafeClaimRV = !IsRetainRV;
|
|
|
|
for (auto *RI : Returns) {
|
|
Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
|
|
bool InsertRetainCall = IsRetainRV;
|
|
IRBuilder<> Builder(RI->getContext());
|
|
|
|
// Walk backwards through the basic block looking for either a matching
|
|
// autoreleaseRV call or an unannotated call.
|
|
auto InstRange = llvm::make_range(++(RI->getIterator().getReverse()),
|
|
RI->getParent()->rend());
|
|
for (Instruction &I : llvm::make_early_inc_range(InstRange)) {
|
|
// Ignore casts.
|
|
if (isa<CastInst>(I))
|
|
continue;
|
|
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() != Intrinsic::objc_autoreleaseReturnValue ||
|
|
!II->use_empty() ||
|
|
objcarc::GetRCIdentityRoot(II->getOperand(0)) != RetOpnd)
|
|
break;
|
|
|
|
// If we've found a matching authoreleaseRV call:
|
|
// - If claimRV is attached to the call, insert a call to objc_release
|
|
// and erase the autoreleaseRV call.
|
|
// - If retainRV is attached to the call, just erase the autoreleaseRV
|
|
// call.
|
|
if (IsUnsafeClaimRV) {
|
|
Builder.SetInsertPoint(II);
|
|
Builder.CreateIntrinsic(Intrinsic::objc_release, RetOpnd);
|
|
}
|
|
II->eraseFromParent();
|
|
InsertRetainCall = false;
|
|
break;
|
|
}
|
|
|
|
auto *CI = dyn_cast<CallInst>(&I);
|
|
|
|
if (!CI)
|
|
break;
|
|
|
|
if (objcarc::GetRCIdentityRoot(CI) != RetOpnd ||
|
|
objcarc::hasAttachedCallOpBundle(CI))
|
|
break;
|
|
|
|
// If we've found an unannotated call that defines RetOpnd, add a
|
|
// "clang.arc.attachedcall" operand bundle.
|
|
Value *BundleArgs[] = {*objcarc::getAttachedARCFunction(&CB)};
|
|
OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
|
|
auto *NewCall = CallBase::addOperandBundle(
|
|
CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI->getIterator());
|
|
NewCall->copyMetadata(*CI);
|
|
CI->replaceAllUsesWith(NewCall);
|
|
CI->eraseFromParent();
|
|
InsertRetainCall = false;
|
|
break;
|
|
}
|
|
|
|
if (InsertRetainCall) {
|
|
// The retainRV is attached to the call and we've failed to find a
|
|
// matching autoreleaseRV or an annotated call in the callee. Emit a call
|
|
// to objc_retain.
|
|
Builder.SetInsertPoint(RI);
|
|
Builder.CreateIntrinsic(Intrinsic::objc_retain, RetOpnd);
|
|
}
|
|
}
|
|
}
|
|
|
|
// In contextual profiling, when an inline succeeds, we want to remap the
|
|
// indices of the callee into the index space of the caller. We can't just leave
|
|
// them as-is because the same callee may appear in other places in this caller
|
|
// (other callsites), and its (callee's) counters and sub-contextual profile
|
|
// tree would be potentially different.
|
|
// Not all BBs of the callee may survive the opportunistic DCE InlineFunction
|
|
// does (same goes for callsites in the callee).
|
|
// We will return a pair of vectors, one for basic block IDs and one for
|
|
// callsites. For such a vector V, V[Idx] will be -1 if the callee
|
|
// instrumentation with index Idx did not survive inlining, and a new value
|
|
// otherwise.
|
|
// This function will update the caller's instrumentation intrinsics
|
|
// accordingly, mapping indices as described above. We also replace the "name"
|
|
// operand because we use it to distinguish between "own" instrumentation and
|
|
// "from callee" instrumentation when performing the traversal of the CFG of the
|
|
// caller. We traverse depth-first from the callsite's BB and up to the point we
|
|
// hit BBs owned by the caller.
|
|
// The return values will be then used to update the contextual
|
|
// profile. Note: we only update the "name" and "index" operands in the
|
|
// instrumentation intrinsics, we leave the hash and total nr of indices as-is,
|
|
// it's not worth updating those.
|
|
static std::pair<std::vector<int64_t>, std::vector<int64_t>>
|
|
remapIndices(Function &Caller, BasicBlock *StartBB,
|
|
PGOContextualProfile &CtxProf, uint32_t CalleeCounters,
|
|
uint32_t CalleeCallsites) {
|
|
// We'll allocate a new ID to imported callsite counters and callsites. We're
|
|
// using -1 to indicate a counter we delete. Most likely the entry ID, for
|
|
// example, will be deleted - we don't want 2 IDs in the same BB, and the
|
|
// entry would have been cloned in the callsite's old BB.
|
|
std::vector<int64_t> CalleeCounterMap;
|
|
std::vector<int64_t> CalleeCallsiteMap;
|
|
CalleeCounterMap.resize(CalleeCounters, -1);
|
|
CalleeCallsiteMap.resize(CalleeCallsites, -1);
|
|
|
|
auto RewriteInstrIfNeeded = [&](InstrProfIncrementInst &Ins) -> bool {
|
|
if (Ins.getNameValue() == &Caller)
|
|
return false;
|
|
const auto OldID = static_cast<uint32_t>(Ins.getIndex()->getZExtValue());
|
|
if (CalleeCounterMap[OldID] == -1)
|
|
CalleeCounterMap[OldID] = CtxProf.allocateNextCounterIndex(Caller);
|
|
const auto NewID = static_cast<uint32_t>(CalleeCounterMap[OldID]);
|
|
|
|
Ins.setNameValue(&Caller);
|
|
Ins.setIndex(NewID);
|
|
return true;
|
|
};
|
|
|
|
auto RewriteCallsiteInsIfNeeded = [&](InstrProfCallsite &Ins) -> bool {
|
|
if (Ins.getNameValue() == &Caller)
|
|
return false;
|
|
const auto OldID = static_cast<uint32_t>(Ins.getIndex()->getZExtValue());
|
|
if (CalleeCallsiteMap[OldID] == -1)
|
|
CalleeCallsiteMap[OldID] = CtxProf.allocateNextCallsiteIndex(Caller);
|
|
const auto NewID = static_cast<uint32_t>(CalleeCallsiteMap[OldID]);
|
|
|
|
Ins.setNameValue(&Caller);
|
|
Ins.setIndex(NewID);
|
|
return true;
|
|
};
|
|
|
|
std::deque<BasicBlock *> Worklist;
|
|
DenseSet<const BasicBlock *> Seen;
|
|
// We will traverse the BBs starting from the callsite BB. The callsite BB
|
|
// will have at least a BB ID - maybe its own, and in any case the one coming
|
|
// from the cloned function's entry BB. The other BBs we'll start seeing from
|
|
// there on may or may not have BB IDs. BBs with IDs belonging to our caller
|
|
// are definitely not coming from the imported function and form a boundary
|
|
// past which we don't need to traverse anymore. BBs may have no
|
|
// instrumentation (because we originally inserted instrumentation as per
|
|
// MST), in which case we'll traverse past them. An invariant we'll keep is
|
|
// that a BB will have at most 1 BB ID. For example, in the callsite BB, we
|
|
// will delete the callee BB's instrumentation. This doesn't result in
|
|
// information loss: the entry BB of the callee will have the same count as
|
|
// the callsite's BB. At the end of this traversal, all the callee's
|
|
// instrumentation would be mapped into the caller's instrumentation index
|
|
// space. Some of the callee's counters may be deleted (as mentioned, this
|
|
// should result in no loss of information).
|
|
Worklist.push_back(StartBB);
|
|
while (!Worklist.empty()) {
|
|
auto *BB = Worklist.front();
|
|
Worklist.pop_front();
|
|
bool Changed = false;
|
|
auto *BBID = CtxProfAnalysis::getBBInstrumentation(*BB);
|
|
if (BBID) {
|
|
Changed |= RewriteInstrIfNeeded(*BBID);
|
|
// this may be the entryblock from the inlined callee, coming into a BB
|
|
// that didn't have instrumentation because of MST decisions. Let's make
|
|
// sure it's placed accordingly. This is a noop elsewhere.
|
|
BBID->moveBefore(BB->getFirstInsertionPt());
|
|
}
|
|
for (auto &I : llvm::make_early_inc_range(*BB)) {
|
|
if (auto *Inc = dyn_cast<InstrProfIncrementInst>(&I)) {
|
|
if (isa<InstrProfIncrementInstStep>(Inc)) {
|
|
// Step instrumentation is used for select instructions. Inlining may
|
|
// have propagated a constant resulting in the condition of the select
|
|
// being resolved, case in which function cloning resolves the value
|
|
// of the select, and elides the select instruction. If that is the
|
|
// case, the step parameter of the instrumentation will reflect that.
|
|
// We can delete the instrumentation in that case.
|
|
if (isa<Constant>(Inc->getStep())) {
|
|
assert(!Inc->getNextNode() || !isa<SelectInst>(Inc->getNextNode()));
|
|
Inc->eraseFromParent();
|
|
} else {
|
|
assert(isa_and_nonnull<SelectInst>(Inc->getNextNode()));
|
|
RewriteInstrIfNeeded(*Inc);
|
|
}
|
|
} else if (Inc != BBID) {
|
|
// If we're here it means that the BB had more than 1 IDs, presumably
|
|
// some coming from the callee. We "made up our mind" to keep the
|
|
// first one (which may or may not have been originally the caller's).
|
|
// All the others are superfluous and we delete them.
|
|
Inc->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
} else if (auto *CS = dyn_cast<InstrProfCallsite>(&I)) {
|
|
Changed |= RewriteCallsiteInsIfNeeded(*CS);
|
|
}
|
|
}
|
|
if (!BBID || Changed)
|
|
for (auto *Succ : successors(BB))
|
|
if (Seen.insert(Succ).second)
|
|
Worklist.push_back(Succ);
|
|
}
|
|
|
|
assert(!llvm::is_contained(CalleeCounterMap, 0) &&
|
|
"Counter index mapping should be either to -1 or to non-zero index, "
|
|
"because the 0 "
|
|
"index corresponds to the entry BB of the caller");
|
|
assert(!llvm::is_contained(CalleeCallsiteMap, 0) &&
|
|
"Callsite index mapping should be either to -1 or to non-zero index, "
|
|
"because there should have been at least a callsite - the inlined one "
|
|
"- which would have had a 0 index.");
|
|
|
|
return {std::move(CalleeCounterMap), std::move(CalleeCallsiteMap)};
|
|
}
|
|
|
|
// Inline. If successful, update the contextual profile (if a valid one is
|
|
// given).
|
|
// The contextual profile data is organized in trees, as follows:
|
|
// - each node corresponds to a function
|
|
// - the root of each tree corresponds to an "entrypoint" - e.g.
|
|
// RPC handler for server side
|
|
// - the path from the root to a node is a particular call path
|
|
// - the counters stored in a node are counter values observed in that
|
|
// particular call path ("context")
|
|
// - the edges between nodes are annotated with callsite IDs.
|
|
//
|
|
// Updating the contextual profile after an inlining means, at a high level,
|
|
// copying over the data of the callee, **intentionally without any value
|
|
// scaling**, and copying over the callees of the inlined callee.
|
|
llvm::InlineResult llvm::InlineFunction(
|
|
CallBase &CB, InlineFunctionInfo &IFI, PGOContextualProfile &CtxProf,
|
|
bool MergeAttributes, AAResults *CalleeAAR, bool InsertLifetime,
|
|
Function *ForwardVarArgsTo, OptimizationRemarkEmitter *ORE) {
|
|
if (!CtxProf.isInSpecializedModule())
|
|
return InlineFunction(CB, IFI, MergeAttributes, CalleeAAR, InsertLifetime,
|
|
ForwardVarArgsTo, ORE);
|
|
|
|
auto &Caller = *CB.getCaller();
|
|
auto &Callee = *CB.getCalledFunction();
|
|
auto *StartBB = CB.getParent();
|
|
|
|
// Get some preliminary data about the callsite before it might get inlined.
|
|
// Inlining shouldn't delete the callee, but it's cleaner (and low-cost) to
|
|
// get this data upfront and rely less on InlineFunction's behavior.
|
|
const auto CalleeGUID = AssignGUIDPass::getGUID(Callee);
|
|
auto *CallsiteIDIns = CtxProfAnalysis::getCallsiteInstrumentation(CB);
|
|
const auto CallsiteID =
|
|
static_cast<uint32_t>(CallsiteIDIns->getIndex()->getZExtValue());
|
|
|
|
const auto NumCalleeCounters = CtxProf.getNumCounters(Callee);
|
|
const auto NumCalleeCallsites = CtxProf.getNumCallsites(Callee);
|
|
|
|
auto Ret = InlineFunction(CB, IFI, MergeAttributes, CalleeAAR, InsertLifetime,
|
|
ForwardVarArgsTo, ORE);
|
|
if (!Ret.isSuccess())
|
|
return Ret;
|
|
|
|
// Inlining succeeded, we don't need the instrumentation of the inlined
|
|
// callsite.
|
|
CallsiteIDIns->eraseFromParent();
|
|
|
|
// Assinging Maps and then capturing references into it in the lambda because
|
|
// captured structured bindings are a C++20 extension. We do also need a
|
|
// capture here, though.
|
|
const auto IndicesMaps = remapIndices(Caller, StartBB, CtxProf,
|
|
NumCalleeCounters, NumCalleeCallsites);
|
|
const uint32_t NewCountersSize = CtxProf.getNumCounters(Caller);
|
|
|
|
auto Updater = [&](PGOCtxProfContext &Ctx) {
|
|
assert(Ctx.guid() == AssignGUIDPass::getGUID(Caller));
|
|
const auto &[CalleeCounterMap, CalleeCallsiteMap] = IndicesMaps;
|
|
assert(
|
|
(Ctx.counters().size() +
|
|
llvm::count_if(CalleeCounterMap, [](auto V) { return V != -1; }) ==
|
|
NewCountersSize) &&
|
|
"The caller's counters size should have grown by the number of new "
|
|
"distinct counters inherited from the inlined callee.");
|
|
Ctx.resizeCounters(NewCountersSize);
|
|
// If the callsite wasn't exercised in this context, the value of the
|
|
// counters coming from it is 0 - which it is right now, after resizing them
|
|
// - and so we're done.
|
|
auto CSIt = Ctx.callsites().find(CallsiteID);
|
|
if (CSIt == Ctx.callsites().end())
|
|
return;
|
|
auto CalleeCtxIt = CSIt->second.find(CalleeGUID);
|
|
// The callsite was exercised, but not with this callee (so presumably this
|
|
// is an indirect callsite). Again, we're done here.
|
|
if (CalleeCtxIt == CSIt->second.end())
|
|
return;
|
|
|
|
// Let's pull in the counter values and the subcontexts coming from the
|
|
// inlined callee.
|
|
auto &CalleeCtx = CalleeCtxIt->second;
|
|
assert(CalleeCtx.guid() == CalleeGUID);
|
|
|
|
for (auto I = 0U; I < CalleeCtx.counters().size(); ++I) {
|
|
const int64_t NewIndex = CalleeCounterMap[I];
|
|
if (NewIndex >= 0) {
|
|
assert(NewIndex != 0 && "counter index mapping shouldn't happen to a 0 "
|
|
"index, that's the caller's entry BB");
|
|
Ctx.counters()[NewIndex] = CalleeCtx.counters()[I];
|
|
}
|
|
}
|
|
for (auto &[I, OtherSet] : CalleeCtx.callsites()) {
|
|
const int64_t NewCSIdx = CalleeCallsiteMap[I];
|
|
if (NewCSIdx >= 0) {
|
|
assert(NewCSIdx != 0 &&
|
|
"callsite index mapping shouldn't happen to a 0 index, the "
|
|
"caller must've had at least one callsite (with such an index)");
|
|
Ctx.ingestAllContexts(NewCSIdx, std::move(OtherSet));
|
|
}
|
|
}
|
|
// We know the traversal is preorder, so it wouldn't have yet looked at the
|
|
// sub-contexts of this context that it's currently visiting. Meaning, the
|
|
// erase below invalidates no iterators.
|
|
auto Deleted = Ctx.callsites().erase(CallsiteID);
|
|
assert(Deleted);
|
|
(void)Deleted;
|
|
};
|
|
CtxProf.update(Updater, Caller);
|
|
return Ret;
|
|
}
|
|
|
|
llvm::InlineResult llvm::CanInlineCallSite(const CallBase &CB,
|
|
InlineFunctionInfo &IFI) {
|
|
assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
|
|
|
|
// FIXME: we don't inline callbr yet.
|
|
if (isa<CallBrInst>(CB))
|
|
return InlineResult::failure("We don't inline callbr yet.");
|
|
|
|
// If IFI has any state in it, zap it before we fill it in.
|
|
IFI.reset();
|
|
|
|
Function *CalledFunc = CB.getCalledFunction();
|
|
if (!CalledFunc || // Can't inline external function or indirect
|
|
CalledFunc->isDeclaration()) // call!
|
|
return InlineResult::failure("external or indirect");
|
|
|
|
// The inliner does not know how to inline through calls with operand bundles
|
|
// in general ...
|
|
if (CB.hasOperandBundles()) {
|
|
for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
|
|
auto OBUse = CB.getOperandBundleAt(i);
|
|
uint32_t Tag = OBUse.getTagID();
|
|
// ... but it knows how to inline through "deopt" operand bundles ...
|
|
if (Tag == LLVMContext::OB_deopt)
|
|
continue;
|
|
// ... and "funclet" operand bundles.
|
|
if (Tag == LLVMContext::OB_funclet)
|
|
continue;
|
|
if (Tag == LLVMContext::OB_clang_arc_attachedcall)
|
|
continue;
|
|
if (Tag == LLVMContext::OB_kcfi)
|
|
continue;
|
|
if (Tag == LLVMContext::OB_convergencectrl) {
|
|
IFI.ConvergenceControlToken = OBUse.Inputs[0].get();
|
|
continue;
|
|
}
|
|
|
|
return InlineResult::failure("unsupported operand bundle");
|
|
}
|
|
}
|
|
|
|
// FIXME: The check below is redundant and incomplete. According to spec, if a
|
|
// convergent call is missing a token, then the caller is using uncontrolled
|
|
// convergence. If the callee has an entry intrinsic, then the callee is using
|
|
// controlled convergence, and the call cannot be inlined. A proper
|
|
// implemenation of this check requires a whole new analysis that identifies
|
|
// convergence in every function. For now, we skip that and just do this one
|
|
// cursory check. The underlying assumption is that in a compiler flow that
|
|
// fully implements convergence control tokens, there is no mixing of
|
|
// controlled and uncontrolled convergent operations in the whole program.
|
|
if (CB.isConvergent()) {
|
|
if (!IFI.ConvergenceControlToken &&
|
|
getConvergenceEntry(CalledFunc->getEntryBlock())) {
|
|
return InlineResult::failure(
|
|
"convergent call needs convergencectrl operand");
|
|
}
|
|
}
|
|
|
|
const BasicBlock *OrigBB = CB.getParent();
|
|
const Function *Caller = OrigBB->getParent();
|
|
|
|
// GC poses two hazards to inlining, which only occur when the callee has GC:
|
|
// 1. If the caller has no GC, then the callee's GC must be propagated to the
|
|
// caller.
|
|
// 2. If the caller has a differing GC, it is invalid to inline.
|
|
if (CalledFunc->hasGC()) {
|
|
if (Caller->hasGC() && CalledFunc->getGC() != Caller->getGC())
|
|
return InlineResult::failure("incompatible GC");
|
|
}
|
|
|
|
// Get the personality function from the callee if it contains a landing pad.
|
|
Constant *CalledPersonality =
|
|
CalledFunc->hasPersonalityFn()
|
|
? CalledFunc->getPersonalityFn()->stripPointerCasts()
|
|
: nullptr;
|
|
|
|
// Find the personality function used by the landing pads of the caller. If it
|
|
// exists, then check to see that it matches the personality function used in
|
|
// the callee.
|
|
Constant *CallerPersonality =
|
|
Caller->hasPersonalityFn()
|
|
? Caller->getPersonalityFn()->stripPointerCasts()
|
|
: nullptr;
|
|
if (CalledPersonality) {
|
|
// If the personality functions match, then we can perform the
|
|
// inlining. Otherwise, we can't inline.
|
|
// TODO: This isn't 100% true. Some personality functions are proper
|
|
// supersets of others and can be used in place of the other.
|
|
if (CallerPersonality && CalledPersonality != CallerPersonality)
|
|
return InlineResult::failure("incompatible personality");
|
|
}
|
|
|
|
// We need to figure out which funclet the callsite was in so that we may
|
|
// properly nest the callee.
|
|
if (CallerPersonality) {
|
|
EHPersonality Personality = classifyEHPersonality(CallerPersonality);
|
|
if (isScopedEHPersonality(Personality)) {
|
|
std::optional<OperandBundleUse> ParentFunclet =
|
|
CB.getOperandBundle(LLVMContext::OB_funclet);
|
|
if (ParentFunclet)
|
|
IFI.CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
|
|
|
|
// OK, the inlining site is legal. What about the target function?
|
|
|
|
if (IFI.CallSiteEHPad) {
|
|
if (Personality == EHPersonality::MSVC_CXX) {
|
|
// The MSVC personality cannot tolerate catches getting inlined into
|
|
// cleanup funclets.
|
|
if (isa<CleanupPadInst>(IFI.CallSiteEHPad)) {
|
|
// Ok, the call site is within a cleanuppad. Let's check the callee
|
|
// for catchpads.
|
|
for (const BasicBlock &CalledBB : *CalledFunc) {
|
|
if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHIIt()))
|
|
return InlineResult::failure("catch in cleanup funclet");
|
|
}
|
|
}
|
|
} else if (isAsynchronousEHPersonality(Personality)) {
|
|
// SEH is even less tolerant, there may not be any sort of exceptional
|
|
// funclet in the callee.
|
|
for (const BasicBlock &CalledBB : *CalledFunc) {
|
|
if (CalledBB.isEHPad())
|
|
return InlineResult::failure("SEH in cleanup funclet");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return InlineResult::success();
|
|
}
|
|
|
|
/// This function inlines the called function into the basic block of the
|
|
/// caller. This returns false if it is not possible to inline this call.
|
|
/// The program is still in a well defined state if this occurs though.
|
|
///
|
|
/// Note that this only does one level of inlining. For example, if the
|
|
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
|
|
/// exists in the instruction stream. Similarly this will inline a recursive
|
|
/// function by one level.
|
|
void llvm::InlineFunctionImpl(CallBase &CB, InlineFunctionInfo &IFI,
|
|
bool MergeAttributes, AAResults *CalleeAAR,
|
|
bool InsertLifetime, Function *ForwardVarArgsTo,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
BasicBlock *OrigBB = CB.getParent();
|
|
Function *Caller = OrigBB->getParent();
|
|
Function *CalledFunc = CB.getCalledFunction();
|
|
assert(CalledFunc && !CalledFunc->isDeclaration() &&
|
|
"CanInlineCallSite should have verified direct call to definition");
|
|
|
|
// Determine if we are dealing with a call in an EHPad which does not unwind
|
|
// to caller.
|
|
bool EHPadForCallUnwindsLocally = false;
|
|
if (IFI.CallSiteEHPad && isa<CallInst>(CB)) {
|
|
UnwindDestMemoTy FuncletUnwindMap;
|
|
Value *CallSiteUnwindDestToken =
|
|
getUnwindDestToken(IFI.CallSiteEHPad, FuncletUnwindMap);
|
|
|
|
EHPadForCallUnwindsLocally =
|
|
CallSiteUnwindDestToken &&
|
|
!isa<ConstantTokenNone>(CallSiteUnwindDestToken);
|
|
}
|
|
|
|
// Get an iterator to the last basic block in the function, which will have
|
|
// the new function inlined after it.
|
|
Function::iterator LastBlock = --Caller->end();
|
|
|
|
// Make sure to capture all of the return instructions from the cloned
|
|
// function.
|
|
SmallVector<ReturnInst*, 8> Returns;
|
|
ClonedCodeInfo InlinedFunctionInfo;
|
|
Function::iterator FirstNewBlock;
|
|
|
|
// GC poses two hazards to inlining, which only occur when the callee has GC:
|
|
// 1. If the caller has no GC, then the callee's GC must be propagated to the
|
|
// caller.
|
|
// 2. If the caller has a differing GC, it is invalid to inline.
|
|
if (CalledFunc->hasGC()) {
|
|
if (!Caller->hasGC())
|
|
Caller->setGC(CalledFunc->getGC());
|
|
else {
|
|
assert(CalledFunc->getGC() == Caller->getGC() &&
|
|
"CanInlineCallSite should have verified compatible GCs");
|
|
}
|
|
}
|
|
|
|
if (CalledFunc->hasPersonalityFn()) {
|
|
Constant *CalledPersonality =
|
|
CalledFunc->getPersonalityFn()->stripPointerCasts();
|
|
if (!Caller->hasPersonalityFn()) {
|
|
Caller->setPersonalityFn(CalledPersonality);
|
|
} else
|
|
assert(Caller->getPersonalityFn()->stripPointerCasts() ==
|
|
CalledPersonality &&
|
|
"CanInlineCallSite should have verified compatible personality");
|
|
}
|
|
|
|
{ // Scope to destroy VMap after cloning.
|
|
ValueToValueMapTy VMap;
|
|
struct ByValInit {
|
|
Value *Dst;
|
|
Value *Src;
|
|
MaybeAlign SrcAlign;
|
|
Type *Ty;
|
|
};
|
|
// Keep a list of tuples (dst, src, src_align) to emit byval
|
|
// initializations. Src Alignment is only available though the callbase,
|
|
// therefore has to be saved.
|
|
SmallVector<ByValInit, 4> ByValInits;
|
|
|
|
// When inlining a function that contains noalias scope metadata,
|
|
// this metadata needs to be cloned so that the inlined blocks
|
|
// have different "unique scopes" at every call site.
|
|
// Track the metadata that must be cloned. Do this before other changes to
|
|
// the function, so that we do not get in trouble when inlining caller ==
|
|
// callee.
|
|
ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
|
|
|
|
auto &DL = Caller->getDataLayout();
|
|
|
|
// Calculate the vector of arguments to pass into the function cloner, which
|
|
// matches up the formal to the actual argument values.
|
|
auto AI = CB.arg_begin();
|
|
unsigned ArgNo = 0;
|
|
for (Function::arg_iterator I = CalledFunc->arg_begin(),
|
|
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
|
|
Value *ActualArg = *AI;
|
|
|
|
// When byval arguments actually inlined, we need to make the copy implied
|
|
// by them explicit. However, we don't do this if the callee is readonly
|
|
// or readnone, because the copy would be unneeded: the callee doesn't
|
|
// modify the struct.
|
|
if (CB.isByValArgument(ArgNo)) {
|
|
ActualArg = HandleByValArgument(CB.getParamByValType(ArgNo), ActualArg,
|
|
&CB, CalledFunc, IFI,
|
|
CalledFunc->getParamAlign(ArgNo));
|
|
if (ActualArg != *AI)
|
|
ByValInits.push_back({ActualArg, (Value *)*AI,
|
|
CB.getParamAlign(ArgNo),
|
|
CB.getParamByValType(ArgNo)});
|
|
}
|
|
|
|
VMap[&*I] = ActualArg;
|
|
}
|
|
|
|
// TODO: Remove this when users have been updated to the assume bundles.
|
|
// Add alignment assumptions if necessary. We do this before the inlined
|
|
// instructions are actually cloned into the caller so that we can easily
|
|
// check what will be known at the start of the inlined code.
|
|
AddAlignmentAssumptions(CB, IFI);
|
|
|
|
AssumptionCache *AC =
|
|
IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
|
|
|
|
/// Preserve all attributes on of the call and its parameters.
|
|
salvageKnowledge(&CB, AC);
|
|
|
|
// We want the inliner to prune the code as it copies. We would LOVE to
|
|
// have no dead or constant instructions leftover after inlining occurs
|
|
// (which can happen, e.g., because an argument was constant), but we'll be
|
|
// happy with whatever the cloner can do.
|
|
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
|
|
/*ModuleLevelChanges=*/false, Returns, ".i",
|
|
&InlinedFunctionInfo);
|
|
// Remember the first block that is newly cloned over.
|
|
FirstNewBlock = LastBlock; ++FirstNewBlock;
|
|
|
|
// Insert retainRV/clainRV runtime calls.
|
|
objcarc::ARCInstKind RVCallKind = objcarc::getAttachedARCFunctionKind(&CB);
|
|
if (RVCallKind != objcarc::ARCInstKind::None)
|
|
inlineRetainOrClaimRVCalls(CB, RVCallKind, Returns);
|
|
|
|
// Updated caller/callee profiles only when requested. For sample loader
|
|
// inlining, the context-sensitive inlinee profile doesn't need to be
|
|
// subtracted from callee profile, and the inlined clone also doesn't need
|
|
// to be scaled based on call site count.
|
|
if (IFI.UpdateProfile) {
|
|
if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
|
|
// Update the BFI of blocks cloned into the caller.
|
|
updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
|
|
CalledFunc->front());
|
|
|
|
if (auto Profile = CalledFunc->getEntryCount())
|
|
updateCallProfile(CalledFunc, VMap, *Profile, CB, IFI.PSI,
|
|
IFI.CallerBFI);
|
|
}
|
|
|
|
// Inject byval arguments initialization.
|
|
for (ByValInit &Init : ByValInits)
|
|
HandleByValArgumentInit(Init.Ty, Init.Dst, Init.Src, Init.SrcAlign,
|
|
Caller->getParent(), &*FirstNewBlock, IFI,
|
|
CalledFunc);
|
|
|
|
std::optional<OperandBundleUse> ParentDeopt =
|
|
CB.getOperandBundle(LLVMContext::OB_deopt);
|
|
if (ParentDeopt) {
|
|
SmallVector<OperandBundleDef, 2> OpDefs;
|
|
|
|
for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
|
|
CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
|
|
if (!ICS)
|
|
continue; // instruction was DCE'd or RAUW'ed to undef
|
|
|
|
OpDefs.clear();
|
|
|
|
OpDefs.reserve(ICS->getNumOperandBundles());
|
|
|
|
for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
|
|
++COBi) {
|
|
auto ChildOB = ICS->getOperandBundleAt(COBi);
|
|
if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
|
|
// If the inlined call has other operand bundles, let them be
|
|
OpDefs.emplace_back(ChildOB);
|
|
continue;
|
|
}
|
|
|
|
// It may be useful to separate this logic (of handling operand
|
|
// bundles) out to a separate "policy" component if this gets crowded.
|
|
// Prepend the parent's deoptimization continuation to the newly
|
|
// inlined call's deoptimization continuation.
|
|
std::vector<Value *> MergedDeoptArgs;
|
|
MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
|
|
ChildOB.Inputs.size());
|
|
|
|
llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
|
|
llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
|
|
|
|
OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
|
|
}
|
|
|
|
Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS->getIterator());
|
|
|
|
// Note: the RAUW does the appropriate fixup in VMap, so we need to do
|
|
// this even if the call returns void.
|
|
ICS->replaceAllUsesWith(NewI);
|
|
|
|
VH = nullptr;
|
|
ICS->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// For 'nodebug' functions, the associated DISubprogram is always null.
|
|
// Conservatively avoid propagating the callsite debug location to
|
|
// instructions inlined from a function whose DISubprogram is not null.
|
|
fixupLineNumbers(Caller, FirstNewBlock, &CB,
|
|
CalledFunc->getSubprogram() != nullptr);
|
|
|
|
if (isAssignmentTrackingEnabled(*Caller->getParent())) {
|
|
// Interpret inlined stores to caller-local variables as assignments.
|
|
trackInlinedStores(FirstNewBlock, Caller->end(), CB);
|
|
|
|
// Update DIAssignID metadata attachments and uses so that they are
|
|
// unique to this inlined instance.
|
|
fixupAssignments(FirstNewBlock, Caller->end());
|
|
}
|
|
|
|
// Now clone the inlined noalias scope metadata.
|
|
SAMetadataCloner.clone();
|
|
SAMetadataCloner.remap(FirstNewBlock, Caller->end());
|
|
|
|
// Add noalias metadata if necessary.
|
|
AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR, InlinedFunctionInfo);
|
|
|
|
// Clone return attributes on the callsite into the calls within the inlined
|
|
// function which feed into its return value.
|
|
AddReturnAttributes(CB, VMap, InlinedFunctionInfo);
|
|
|
|
// Clone attributes on the params of the callsite to calls within the
|
|
// inlined function which use the same param.
|
|
AddParamAndFnBasicAttributes(CB, VMap, InlinedFunctionInfo);
|
|
|
|
propagateMemProfMetadata(
|
|
CalledFunc, CB, InlinedFunctionInfo.ContainsMemProfMetadata, VMap, ORE);
|
|
|
|
// Propagate metadata on the callsite if necessary.
|
|
PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
|
|
|
|
// Register any cloned assumptions.
|
|
if (IFI.GetAssumptionCache)
|
|
for (BasicBlock &NewBlock :
|
|
make_range(FirstNewBlock->getIterator(), Caller->end()))
|
|
for (Instruction &I : NewBlock)
|
|
if (auto *II = dyn_cast<AssumeInst>(&I))
|
|
IFI.GetAssumptionCache(*Caller).registerAssumption(II);
|
|
}
|
|
|
|
if (IFI.ConvergenceControlToken) {
|
|
IntrinsicInst *IntrinsicCall = getConvergenceEntry(*FirstNewBlock);
|
|
if (IntrinsicCall) {
|
|
IntrinsicCall->replaceAllUsesWith(IFI.ConvergenceControlToken);
|
|
IntrinsicCall->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// If there are any alloca instructions in the block that used to be the entry
|
|
// block for the callee, move them to the entry block of the caller. First
|
|
// calculate which instruction they should be inserted before. We insert the
|
|
// instructions at the end of the current alloca list.
|
|
{
|
|
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
|
|
for (BasicBlock::iterator I = FirstNewBlock->begin(),
|
|
E = FirstNewBlock->end(); I != E; ) {
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
|
|
if (!AI) continue;
|
|
|
|
// If the alloca is now dead, remove it. This often occurs due to code
|
|
// specialization.
|
|
if (AI->use_empty()) {
|
|
AI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (!allocaWouldBeStaticInEntry(AI))
|
|
continue;
|
|
|
|
// Keep track of the static allocas that we inline into the caller.
|
|
IFI.StaticAllocas.push_back(AI);
|
|
|
|
// Scan for the block of allocas that we can move over, and move them
|
|
// all at once.
|
|
while (isa<AllocaInst>(I) &&
|
|
!cast<AllocaInst>(I)->use_empty() &&
|
|
allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
|
|
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
|
|
++I;
|
|
}
|
|
|
|
// Transfer all of the allocas over in a block. Using splice means
|
|
// that the instructions aren't removed from the symbol table, then
|
|
// reinserted.
|
|
I.setTailBit(true);
|
|
Caller->getEntryBlock().splice(InsertPoint, &*FirstNewBlock,
|
|
AI->getIterator(), I);
|
|
}
|
|
}
|
|
|
|
// If the call to the callee cannot throw, set the 'nounwind' flag on any
|
|
// calls that we inline.
|
|
bool MarkNoUnwind = CB.doesNotThrow();
|
|
|
|
SmallVector<Value*,4> VarArgsToForward;
|
|
SmallVector<AttributeSet, 4> VarArgsAttrs;
|
|
for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
|
|
i < CB.arg_size(); i++) {
|
|
VarArgsToForward.push_back(CB.getArgOperand(i));
|
|
VarArgsAttrs.push_back(CB.getAttributes().getParamAttrs(i));
|
|
}
|
|
|
|
bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
|
|
if (InlinedFunctionInfo.ContainsCalls) {
|
|
CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
|
|
if (CallInst *CI = dyn_cast<CallInst>(&CB))
|
|
CallSiteTailKind = CI->getTailCallKind();
|
|
|
|
// For inlining purposes, the "notail" marker is the same as no marker.
|
|
if (CallSiteTailKind == CallInst::TCK_NoTail)
|
|
CallSiteTailKind = CallInst::TCK_None;
|
|
|
|
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
|
|
++BB) {
|
|
for (Instruction &I : llvm::make_early_inc_range(*BB)) {
|
|
CallInst *CI = dyn_cast<CallInst>(&I);
|
|
if (!CI)
|
|
continue;
|
|
|
|
// Forward varargs from inlined call site to calls to the
|
|
// ForwardVarArgsTo function, if requested, and to musttail calls.
|
|
if (!VarArgsToForward.empty() &&
|
|
((ForwardVarArgsTo &&
|
|
CI->getCalledFunction() == ForwardVarArgsTo) ||
|
|
CI->isMustTailCall())) {
|
|
// Collect attributes for non-vararg parameters.
|
|
AttributeList Attrs = CI->getAttributes();
|
|
SmallVector<AttributeSet, 8> ArgAttrs;
|
|
if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
|
|
for (unsigned ArgNo = 0;
|
|
ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
|
|
ArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
|
|
}
|
|
|
|
// Add VarArg attributes.
|
|
ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
|
|
Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttrs(),
|
|
Attrs.getRetAttrs(), ArgAttrs);
|
|
// Add VarArgs to existing parameters.
|
|
SmallVector<Value *, 6> Params(CI->args());
|
|
Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
|
|
CallInst *NewCI = CallInst::Create(
|
|
CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI->getIterator());
|
|
NewCI->setDebugLoc(CI->getDebugLoc());
|
|
NewCI->setAttributes(Attrs);
|
|
NewCI->setCallingConv(CI->getCallingConv());
|
|
CI->replaceAllUsesWith(NewCI);
|
|
CI->eraseFromParent();
|
|
CI = NewCI;
|
|
}
|
|
|
|
if (Function *F = CI->getCalledFunction())
|
|
InlinedDeoptimizeCalls |=
|
|
F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
|
|
|
|
// We need to reduce the strength of any inlined tail calls. For
|
|
// musttail, we have to avoid introducing potential unbounded stack
|
|
// growth. For example, if functions 'f' and 'g' are mutually recursive
|
|
// with musttail, we can inline 'g' into 'f' so long as we preserve
|
|
// musttail on the cloned call to 'f'. If either the inlined call site
|
|
// or the cloned call site is *not* musttail, the program already has
|
|
// one frame of stack growth, so it's safe to remove musttail. Here is
|
|
// a table of example transformations:
|
|
//
|
|
// f -> musttail g -> musttail f ==> f -> musttail f
|
|
// f -> musttail g -> tail f ==> f -> tail f
|
|
// f -> g -> musttail f ==> f -> f
|
|
// f -> g -> tail f ==> f -> f
|
|
//
|
|
// Inlined notail calls should remain notail calls.
|
|
CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
|
|
if (ChildTCK != CallInst::TCK_NoTail)
|
|
ChildTCK = std::min(CallSiteTailKind, ChildTCK);
|
|
CI->setTailCallKind(ChildTCK);
|
|
InlinedMustTailCalls |= CI->isMustTailCall();
|
|
|
|
// Call sites inlined through a 'nounwind' call site should be
|
|
// 'nounwind' as well. However, avoid marking call sites explicitly
|
|
// where possible. This helps expose more opportunities for CSE after
|
|
// inlining, commonly when the callee is an intrinsic.
|
|
if (MarkNoUnwind && !CI->doesNotThrow())
|
|
CI->setDoesNotThrow();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Leave lifetime markers for the static alloca's, scoping them to the
|
|
// function we just inlined.
|
|
// We need to insert lifetime intrinsics even at O0 to avoid invalid
|
|
// access caused by multithreaded coroutines. The check
|
|
// `Caller->isPresplitCoroutine()` would affect AlwaysInliner at O0 only.
|
|
if ((InsertLifetime || Caller->isPresplitCoroutine()) &&
|
|
!IFI.StaticAllocas.empty()) {
|
|
IRBuilder<> builder(&*FirstNewBlock, FirstNewBlock->begin());
|
|
for (AllocaInst *AI : IFI.StaticAllocas) {
|
|
// Don't mark swifterror allocas. They can't have bitcast uses.
|
|
if (AI->isSwiftError())
|
|
continue;
|
|
|
|
// If the alloca is already scoped to something smaller than the whole
|
|
// function then there's no need to add redundant, less accurate markers.
|
|
if (hasLifetimeMarkers(AI))
|
|
continue;
|
|
|
|
std::optional<TypeSize> Size = AI->getAllocationSize(AI->getDataLayout());
|
|
if (Size && Size->isZero())
|
|
continue;
|
|
|
|
builder.CreateLifetimeStart(AI);
|
|
for (ReturnInst *RI : Returns) {
|
|
// Don't insert llvm.lifetime.end calls between a musttail or deoptimize
|
|
// call and a return. The return kills all local allocas.
|
|
if (InlinedMustTailCalls &&
|
|
RI->getParent()->getTerminatingMustTailCall())
|
|
continue;
|
|
if (InlinedDeoptimizeCalls &&
|
|
RI->getParent()->getTerminatingDeoptimizeCall())
|
|
continue;
|
|
IRBuilder<>(RI).CreateLifetimeEnd(AI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the inlined code contained dynamic alloca instructions, wrap the inlined
|
|
// code with llvm.stacksave/llvm.stackrestore intrinsics.
|
|
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
|
|
// Insert the llvm.stacksave.
|
|
CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
|
|
.CreateStackSave("savedstack");
|
|
|
|
// Insert a call to llvm.stackrestore before any return instructions in the
|
|
// inlined function.
|
|
for (ReturnInst *RI : Returns) {
|
|
// Don't insert llvm.stackrestore calls between a musttail or deoptimize
|
|
// call and a return. The return will restore the stack pointer.
|
|
if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
|
|
continue;
|
|
if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
|
|
continue;
|
|
IRBuilder<>(RI).CreateStackRestore(SavedPtr);
|
|
}
|
|
}
|
|
|
|
// If we are inlining for an invoke instruction, we must make sure to rewrite
|
|
// any call instructions into invoke instructions. This is sensitive to which
|
|
// funclet pads were top-level in the inlinee, so must be done before
|
|
// rewriting the "parent pad" links.
|
|
if (auto *II = dyn_cast<InvokeInst>(&CB)) {
|
|
BasicBlock *UnwindDest = II->getUnwindDest();
|
|
BasicBlock::iterator FirstNonPHI = UnwindDest->getFirstNonPHIIt();
|
|
if (isa<LandingPadInst>(FirstNonPHI)) {
|
|
HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
|
|
} else {
|
|
HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
|
|
}
|
|
}
|
|
|
|
// Update the lexical scopes of the new funclets and callsites.
|
|
// Anything that had 'none' as its parent is now nested inside the callsite's
|
|
// EHPad.
|
|
if (IFI.CallSiteEHPad) {
|
|
for (Function::iterator BB = FirstNewBlock->getIterator(),
|
|
E = Caller->end();
|
|
BB != E; ++BB) {
|
|
// Add bundle operands to inlined call sites.
|
|
PropagateOperandBundles(BB, IFI.CallSiteEHPad);
|
|
|
|
// It is problematic if the inlinee has a cleanupret which unwinds to
|
|
// caller and we inline it into a call site which doesn't unwind but into
|
|
// an EH pad that does. Such an edge must be dynamically unreachable.
|
|
// As such, we replace the cleanupret with unreachable.
|
|
if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
|
|
if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
|
|
changeToUnreachable(CleanupRet);
|
|
|
|
BasicBlock::iterator I = BB->getFirstNonPHIIt();
|
|
if (!I->isEHPad())
|
|
continue;
|
|
|
|
if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
|
|
if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
|
|
CatchSwitch->setParentPad(IFI.CallSiteEHPad);
|
|
} else {
|
|
auto *FPI = cast<FuncletPadInst>(I);
|
|
if (isa<ConstantTokenNone>(FPI->getParentPad()))
|
|
FPI->setParentPad(IFI.CallSiteEHPad);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InlinedDeoptimizeCalls) {
|
|
// We need to at least remove the deoptimizing returns from the Return set,
|
|
// so that the control flow from those returns does not get merged into the
|
|
// caller (but terminate it instead). If the caller's return type does not
|
|
// match the callee's return type, we also need to change the return type of
|
|
// the intrinsic.
|
|
if (Caller->getReturnType() == CB.getType()) {
|
|
llvm::erase_if(Returns, [](ReturnInst *RI) {
|
|
return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
|
|
});
|
|
} else {
|
|
SmallVector<ReturnInst *, 8> NormalReturns;
|
|
Function *NewDeoptIntrinsic = Intrinsic::getOrInsertDeclaration(
|
|
Caller->getParent(), Intrinsic::experimental_deoptimize,
|
|
{Caller->getReturnType()});
|
|
|
|
for (ReturnInst *RI : Returns) {
|
|
CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
|
|
if (!DeoptCall) {
|
|
NormalReturns.push_back(RI);
|
|
continue;
|
|
}
|
|
|
|
// The calling convention on the deoptimize call itself may be bogus,
|
|
// since the code we're inlining may have undefined behavior (and may
|
|
// never actually execute at runtime); but all
|
|
// @llvm.experimental.deoptimize declarations have to have the same
|
|
// calling convention in a well-formed module.
|
|
auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
|
|
NewDeoptIntrinsic->setCallingConv(CallingConv);
|
|
auto *CurBB = RI->getParent();
|
|
RI->eraseFromParent();
|
|
|
|
SmallVector<Value *, 4> CallArgs(DeoptCall->args());
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
DeoptCall->getOperandBundlesAsDefs(OpBundles);
|
|
auto DeoptAttributes = DeoptCall->getAttributes();
|
|
DeoptCall->eraseFromParent();
|
|
assert(!OpBundles.empty() &&
|
|
"Expected at least the deopt operand bundle");
|
|
|
|
IRBuilder<> Builder(CurBB);
|
|
CallInst *NewDeoptCall =
|
|
Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
|
|
NewDeoptCall->setCallingConv(CallingConv);
|
|
NewDeoptCall->setAttributes(DeoptAttributes);
|
|
if (NewDeoptCall->getType()->isVoidTy())
|
|
Builder.CreateRetVoid();
|
|
else
|
|
Builder.CreateRet(NewDeoptCall);
|
|
// Since the ret type is changed, remove the incompatible attributes.
|
|
NewDeoptCall->removeRetAttrs(AttributeFuncs::typeIncompatible(
|
|
NewDeoptCall->getType(), NewDeoptCall->getRetAttributes()));
|
|
}
|
|
|
|
// Leave behind the normal returns so we can merge control flow.
|
|
std::swap(Returns, NormalReturns);
|
|
}
|
|
}
|
|
|
|
// Handle any inlined musttail call sites. In order for a new call site to be
|
|
// musttail, the source of the clone and the inlined call site must have been
|
|
// musttail. Therefore it's safe to return without merging control into the
|
|
// phi below.
|
|
if (InlinedMustTailCalls) {
|
|
// Check if we need to bitcast the result of any musttail calls.
|
|
Type *NewRetTy = Caller->getReturnType();
|
|
bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
|
|
|
|
// Handle the returns preceded by musttail calls separately.
|
|
SmallVector<ReturnInst *, 8> NormalReturns;
|
|
for (ReturnInst *RI : Returns) {
|
|
CallInst *ReturnedMustTail =
|
|
RI->getParent()->getTerminatingMustTailCall();
|
|
if (!ReturnedMustTail) {
|
|
NormalReturns.push_back(RI);
|
|
continue;
|
|
}
|
|
if (!NeedBitCast)
|
|
continue;
|
|
|
|
// Delete the old return and any preceding bitcast.
|
|
BasicBlock *CurBB = RI->getParent();
|
|
auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
|
|
RI->eraseFromParent();
|
|
if (OldCast)
|
|
OldCast->eraseFromParent();
|
|
|
|
// Insert a new bitcast and return with the right type.
|
|
IRBuilder<> Builder(CurBB);
|
|
Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
|
|
}
|
|
|
|
// Leave behind the normal returns so we can merge control flow.
|
|
std::swap(Returns, NormalReturns);
|
|
}
|
|
|
|
// Now that all of the transforms on the inlined code have taken place but
|
|
// before we splice the inlined code into the CFG and lose track of which
|
|
// blocks were actually inlined, collect the call sites. We only do this if
|
|
// call graph updates weren't requested, as those provide value handle based
|
|
// tracking of inlined call sites instead. Calls to intrinsics are not
|
|
// collected because they are not inlineable.
|
|
if (InlinedFunctionInfo.ContainsCalls) {
|
|
// Otherwise just collect the raw call sites that were inlined.
|
|
for (BasicBlock &NewBB :
|
|
make_range(FirstNewBlock->getIterator(), Caller->end()))
|
|
for (Instruction &I : NewBB)
|
|
if (auto *CB = dyn_cast<CallBase>(&I))
|
|
if (!(CB->getCalledFunction() &&
|
|
CB->getCalledFunction()->isIntrinsic()))
|
|
IFI.InlinedCallSites.push_back(CB);
|
|
}
|
|
|
|
// If we cloned in _exactly one_ basic block, and if that block ends in a
|
|
// return instruction, we splice the body of the inlined callee directly into
|
|
// the calling basic block.
|
|
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
|
|
// Move all of the instructions right before the call.
|
|
OrigBB->splice(CB.getIterator(), &*FirstNewBlock, FirstNewBlock->begin(),
|
|
FirstNewBlock->end());
|
|
// Remove the cloned basic block.
|
|
Caller->back().eraseFromParent();
|
|
|
|
// If the call site was an invoke instruction, add a branch to the normal
|
|
// destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), CB.getIterator());
|
|
NewBr->setDebugLoc(Returns[0]->getDebugLoc());
|
|
}
|
|
|
|
// If the return instruction returned a value, replace uses of the call with
|
|
// uses of the returned value.
|
|
if (!CB.use_empty()) {
|
|
ReturnInst *R = Returns[0];
|
|
if (&CB == R->getReturnValue())
|
|
CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
|
|
else
|
|
CB.replaceAllUsesWith(R->getReturnValue());
|
|
}
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
CB.eraseFromParent();
|
|
|
|
// Since we are now done with the return instruction, delete it also.
|
|
Returns[0]->eraseFromParent();
|
|
|
|
if (MergeAttributes)
|
|
AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
|
|
|
|
// We are now done with the inlining.
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have the normal case, of more than one block to inline or
|
|
// multiple return sites.
|
|
|
|
// We want to clone the entire callee function into the hole between the
|
|
// "starter" and "ender" blocks. How we accomplish this depends on whether
|
|
// this is an invoke instruction or a call instruction.
|
|
BasicBlock *AfterCallBB;
|
|
BranchInst *CreatedBranchToNormalDest = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
|
|
// Add an unconditional branch to make this look like the CallInst case...
|
|
CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), CB.getIterator());
|
|
// We intend to replace this DebugLoc with another later.
|
|
CreatedBranchToNormalDest->setDebugLoc(DebugLoc::getTemporary());
|
|
|
|
// Split the basic block. This guarantees that no PHI nodes will have to be
|
|
// updated due to new incoming edges, and make the invoke case more
|
|
// symmetric to the call case.
|
|
AfterCallBB =
|
|
OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
|
|
CalledFunc->getName() + ".exit");
|
|
|
|
} else { // It's a call
|
|
// If this is a call instruction, we need to split the basic block that
|
|
// the call lives in.
|
|
//
|
|
AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
|
|
CalledFunc->getName() + ".exit");
|
|
}
|
|
|
|
if (IFI.CallerBFI) {
|
|
// Copy original BB's block frequency to AfterCallBB
|
|
IFI.CallerBFI->setBlockFreq(AfterCallBB,
|
|
IFI.CallerBFI->getBlockFreq(OrigBB));
|
|
}
|
|
|
|
// Change the branch that used to go to AfterCallBB to branch to the first
|
|
// basic block of the inlined function.
|
|
//
|
|
Instruction *Br = OrigBB->getTerminator();
|
|
assert(Br && Br->getOpcode() == Instruction::Br &&
|
|
"splitBasicBlock broken!");
|
|
Br->setOperand(0, &*FirstNewBlock);
|
|
|
|
// Now that the function is correct, make it a little bit nicer. In
|
|
// particular, move the basic blocks inserted from the end of the function
|
|
// into the space made by splitting the source basic block.
|
|
Caller->splice(AfterCallBB->getIterator(), Caller, FirstNewBlock,
|
|
Caller->end());
|
|
|
|
// Handle all of the return instructions that we just cloned in, and eliminate
|
|
// any users of the original call/invoke instruction.
|
|
Type *RTy = CalledFunc->getReturnType();
|
|
|
|
PHINode *PHI = nullptr;
|
|
if (Returns.size() > 1) {
|
|
// The PHI node should go at the front of the new basic block to merge all
|
|
// possible incoming values.
|
|
if (!CB.use_empty()) {
|
|
PHI = PHINode::Create(RTy, Returns.size(), CB.getName());
|
|
PHI->insertBefore(AfterCallBB->begin());
|
|
// Anything that used the result of the function call should now use the
|
|
// PHI node as their operand.
|
|
CB.replaceAllUsesWith(PHI);
|
|
}
|
|
|
|
// Loop over all of the return instructions adding entries to the PHI node
|
|
// as appropriate.
|
|
if (PHI) {
|
|
for (ReturnInst *RI : Returns) {
|
|
assert(RI->getReturnValue()->getType() == PHI->getType() &&
|
|
"Ret value not consistent in function!");
|
|
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
|
|
}
|
|
}
|
|
|
|
// Add a branch to the merge points and remove return instructions.
|
|
DebugLoc Loc;
|
|
for (ReturnInst *RI : Returns) {
|
|
BranchInst *BI = BranchInst::Create(AfterCallBB, RI->getIterator());
|
|
Loc = RI->getDebugLoc();
|
|
BI->setDebugLoc(Loc);
|
|
RI->eraseFromParent();
|
|
}
|
|
// We need to set the debug location to *somewhere* inside the
|
|
// inlined function. The line number may be nonsensical, but the
|
|
// instruction will at least be associated with the right
|
|
// function.
|
|
if (CreatedBranchToNormalDest)
|
|
CreatedBranchToNormalDest->setDebugLoc(Loc);
|
|
} else if (!Returns.empty()) {
|
|
// Otherwise, if there is exactly one return value, just replace anything
|
|
// using the return value of the call with the computed value.
|
|
if (!CB.use_empty()) {
|
|
if (&CB == Returns[0]->getReturnValue())
|
|
CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
|
|
else
|
|
CB.replaceAllUsesWith(Returns[0]->getReturnValue());
|
|
}
|
|
|
|
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
|
|
BasicBlock *ReturnBB = Returns[0]->getParent();
|
|
ReturnBB->replaceAllUsesWith(AfterCallBB);
|
|
|
|
// Splice the code from the return block into the block that it will return
|
|
// to, which contains the code that was after the call.
|
|
AfterCallBB->splice(AfterCallBB->begin(), ReturnBB);
|
|
|
|
if (CreatedBranchToNormalDest)
|
|
CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
|
|
|
|
// Delete the return instruction now and empty ReturnBB now.
|
|
Returns[0]->eraseFromParent();
|
|
ReturnBB->eraseFromParent();
|
|
} else if (!CB.use_empty()) {
|
|
// In this case there are no returns to use, so there is no clear source
|
|
// location for the "return".
|
|
// FIXME: It may be correct to use the scope end line of the function here,
|
|
// since this likely means we are falling out of the function.
|
|
if (CreatedBranchToNormalDest)
|
|
CreatedBranchToNormalDest->setDebugLoc(DebugLoc::getUnknown());
|
|
// No returns, but something is using the return value of the call. Just
|
|
// nuke the result.
|
|
CB.replaceAllUsesWith(PoisonValue::get(CB.getType()));
|
|
}
|
|
|
|
// Since we are now done with the Call/Invoke, we can delete it.
|
|
CB.eraseFromParent();
|
|
|
|
// If we inlined any musttail calls and the original return is now
|
|
// unreachable, delete it. It can only contain a bitcast and ret.
|
|
if (InlinedMustTailCalls && pred_empty(AfterCallBB))
|
|
AfterCallBB->eraseFromParent();
|
|
|
|
// We should always be able to fold the entry block of the function into the
|
|
// single predecessor of the block...
|
|
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
|
|
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
|
|
|
|
// Splice the code entry block into calling block, right before the
|
|
// unconditional branch.
|
|
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
|
|
OrigBB->splice(Br->getIterator(), CalleeEntry);
|
|
|
|
// Remove the unconditional branch.
|
|
Br->eraseFromParent();
|
|
|
|
// Now we can remove the CalleeEntry block, which is now empty.
|
|
CalleeEntry->eraseFromParent();
|
|
|
|
// If we inserted a phi node, check to see if it has a single value (e.g. all
|
|
// the entries are the same or undef). If so, remove the PHI so it doesn't
|
|
// block other optimizations.
|
|
if (PHI) {
|
|
AssumptionCache *AC =
|
|
IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
|
|
auto &DL = Caller->getDataLayout();
|
|
if (Value *V = simplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
|
|
PHI->replaceAllUsesWith(V);
|
|
PHI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
if (MergeAttributes)
|
|
AttributeFuncs::mergeAttributesForInlining(*Caller, *CalledFunc);
|
|
}
|
|
|
|
llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
|
|
bool MergeAttributes,
|
|
AAResults *CalleeAAR,
|
|
bool InsertLifetime,
|
|
Function *ForwardVarArgsTo,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
llvm::InlineResult Result = CanInlineCallSite(CB, IFI);
|
|
if (Result.isSuccess()) {
|
|
InlineFunctionImpl(CB, IFI, MergeAttributes, CalleeAAR, InsertLifetime,
|
|
ForwardVarArgsTo, ORE);
|
|
}
|
|
|
|
return Result;
|
|
}
|