
This patch adds benchmarks for std::partition, is_partitioned, etc and their ranges:: variants.
184 lines
8.1 KiB
C++
184 lines
8.1 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// UNSUPPORTED: c++03, c++11, c++14, c++17
|
|
|
|
#include <algorithm>
|
|
#include <cstddef>
|
|
#include <deque>
|
|
#include <iterator>
|
|
#include <list>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "count_new.h"
|
|
#include "benchmark/benchmark.h"
|
|
#include "../../GenerateInput.h"
|
|
|
|
auto compute_median(auto first, auto last) {
|
|
std::vector v(first, last);
|
|
auto middle = v.begin() + v.size() / 2;
|
|
std::nth_element(v.begin(), middle, v.end());
|
|
return *middle;
|
|
}
|
|
|
|
int main(int argc, char** argv) {
|
|
auto std_stable_partition = [](auto first, auto last, auto pred) { return std::stable_partition(first, last, pred); };
|
|
|
|
// Benchmark {std,ranges}::stable_partition on a fully unpartitionned sequence, i.e. a lot of elements
|
|
// have to be moved around in order to partition the range.
|
|
{
|
|
auto bm = []<class Container>(std::string name, auto stable_partition) {
|
|
benchmark::RegisterBenchmark(
|
|
name,
|
|
[stable_partition](auto& st) {
|
|
std::size_t const size = st.range(0);
|
|
using ValueType = typename Container::value_type;
|
|
Container c;
|
|
std::generate_n(std::back_inserter(c), size, [] { return Generate<ValueType>::random(); });
|
|
|
|
ValueType median = compute_median(c.begin(), c.end());
|
|
auto pred1 = [median](auto const& element) { return element < median; };
|
|
auto pred2 = [median](auto const& element) { return element > median; };
|
|
bool toggle = false;
|
|
|
|
for ([[maybe_unused]] auto _ : st) {
|
|
benchmark::DoNotOptimize(c);
|
|
// By toggling the predicate, we have to move almost all elements in the sequence
|
|
// to restore the partition.
|
|
if (toggle) {
|
|
auto result = stable_partition(c.begin(), c.end(), pred1);
|
|
benchmark::DoNotOptimize(result);
|
|
} else {
|
|
auto result = stable_partition(c.begin(), c.end(), pred2);
|
|
benchmark::DoNotOptimize(result);
|
|
}
|
|
toggle = !toggle;
|
|
}
|
|
})
|
|
->Arg(32)
|
|
->Arg(50) // non power-of-two
|
|
->Arg(1024)
|
|
->Arg(8192);
|
|
};
|
|
|
|
// std::stable_partition
|
|
bm.operator()<std::vector<int>>("std::stable_partition(vector<int>) (dense)", std_stable_partition);
|
|
bm.operator()<std::deque<int>>("std::stable_partition(deque<int>) (dense)", std_stable_partition);
|
|
bm.operator()<std::list<int>>("std::stable_partition(list<int>) (dense)", std_stable_partition);
|
|
|
|
// ranges::stable_partition
|
|
bm.operator()<std::vector<int>>("rng::stable_partition(vector<int>) (dense)", std::ranges::stable_partition);
|
|
bm.operator()<std::deque<int>>("rng::stable_partition(deque<int>) (dense)", std::ranges::stable_partition);
|
|
bm.operator()<std::list<int>>("rng::stable_partition(list<int>) (dense)", std::ranges::stable_partition);
|
|
}
|
|
|
|
// Benchmark {std,ranges}::stable_partition on a mostly partitioned sequence, i.e. only 10% of the elements
|
|
// have to be moved around in order to partition the range.
|
|
{
|
|
auto bm = []<class Container>(std::string name, auto stable_partition) {
|
|
benchmark::RegisterBenchmark(
|
|
name,
|
|
[stable_partition](auto& st) {
|
|
std::size_t const size = st.range(0);
|
|
using ValueType = typename Container::value_type;
|
|
Container c;
|
|
std::generate_n(std::back_inserter(c), size, [] { return Generate<ValueType>::random(); });
|
|
ValueType median = compute_median(c.begin(), c.end());
|
|
auto pred = [median](auto const& element) { return element < median; };
|
|
std::partition(c.begin(), c.end(), pred);
|
|
|
|
// Between iterations, we swap 5% of the elements to the left of the median with 5% of the elements
|
|
// to the right of the median. This ensures that the range is slightly unpartitioned.
|
|
auto median_it = std::partition_point(c.begin(), c.end(), pred);
|
|
auto low = std::next(c.begin(), std::distance(c.begin(), median_it) - (size / 20));
|
|
auto high = std::next(median_it, size / 20);
|
|
auto shuffle = [&] { std::swap_ranges(low, median_it, high); };
|
|
shuffle();
|
|
assert(!std::is_partitioned(c.begin(), c.end(), pred));
|
|
|
|
for ([[maybe_unused]] auto _ : st) {
|
|
benchmark::DoNotOptimize(c);
|
|
auto result = stable_partition(c.begin(), c.end(), pred);
|
|
benchmark::DoNotOptimize(result);
|
|
shuffle();
|
|
}
|
|
})
|
|
->Arg(32)
|
|
->Arg(50) // non power-of-two
|
|
->Arg(1024)
|
|
->Arg(8192);
|
|
};
|
|
|
|
// std::stable_partition
|
|
bm.operator()<std::vector<int>>("std::stable_partition(vector<int>) (sparse)", std_stable_partition);
|
|
bm.operator()<std::deque<int>>("std::stable_partition(deque<int>) (sparse)", std_stable_partition);
|
|
bm.operator()<std::list<int>>("std::stable_partition(list<int>) (sparse)", std_stable_partition);
|
|
|
|
// ranges::stable_partition
|
|
bm.operator()<std::vector<int>>("rng::stable_partition(vector<int>) (sparse)", std::ranges::stable_partition);
|
|
bm.operator()<std::deque<int>>("rng::stable_partition(deque<int>) (sparse)", std::ranges::stable_partition);
|
|
bm.operator()<std::list<int>>("rng::stable_partition(list<int>) (sparse)", std::ranges::stable_partition);
|
|
}
|
|
|
|
// Benchmark {std,ranges}::stable_partition when memory allocation fails. The algorithm must fall back to
|
|
// a different algorithm that has different complexity guarantees.
|
|
{
|
|
auto bm = []<class Container>(std::string name, auto stable_partition) {
|
|
benchmark::RegisterBenchmark(
|
|
name,
|
|
[stable_partition](auto& st) {
|
|
std::size_t const size = st.range(0);
|
|
using ValueType = typename Container::value_type;
|
|
Container c;
|
|
std::generate_n(std::back_inserter(c), size, [] { return Generate<ValueType>::random(); });
|
|
|
|
ValueType median = compute_median(c.begin(), c.end());
|
|
auto pred1 = [median](auto const& element) { return element < median; };
|
|
auto pred2 = [median](auto const& element) { return element > median; };
|
|
bool toggle = false;
|
|
|
|
for ([[maybe_unused]] auto _ : st) {
|
|
benchmark::DoNotOptimize(c);
|
|
// Disable the ability to allocate memory inside this block
|
|
globalMemCounter.reset();
|
|
globalMemCounter.throw_after = 0;
|
|
|
|
if (toggle) {
|
|
auto result = stable_partition(c.begin(), c.end(), pred1);
|
|
benchmark::DoNotOptimize(result);
|
|
} else {
|
|
auto result = stable_partition(c.begin(), c.end(), pred2);
|
|
benchmark::DoNotOptimize(result);
|
|
}
|
|
toggle = !toggle;
|
|
}
|
|
})
|
|
->Arg(32)
|
|
->Arg(50) // non power-of-two
|
|
->Arg(1024)
|
|
->Arg(8192);
|
|
};
|
|
|
|
// std::stable_partition
|
|
bm.operator()<std::vector<int>>("std::stable_partition(vector<int>) (alloc fails)", std_stable_partition);
|
|
bm.operator()<std::deque<int>>("std::stable_partition(deque<int>) (alloc fails)", std_stable_partition);
|
|
bm.operator()<std::list<int>>("std::stable_partition(list<int>) (alloc fails)", std_stable_partition);
|
|
|
|
// ranges::stable_partition
|
|
bm.operator()<std::vector<int>>("rng::stable_partition(vector<int>) (alloc fails)", std::ranges::stable_partition);
|
|
bm.operator()<std::deque<int>>("rng::stable_partition(deque<int>) (alloc fails)", std::ranges::stable_partition);
|
|
bm.operator()<std::list<int>>("rng::stable_partition(list<int>) (alloc fails)", std::ranges::stable_partition);
|
|
}
|
|
|
|
benchmark::Initialize(&argc, argv);
|
|
benchmark::RunSpecifiedBenchmarks();
|
|
benchmark::Shutdown();
|
|
return 0;
|
|
}
|