llvm-project/llvm/unittests/Analysis/TensorSpecTest.cpp
Mircea Trofin b1fa5ac3ba [mlgo] Factor out TensorSpec
This is a simple datatype with a few JSON utilities, and is independent
of the underlying executor. The main motivation is to allow taking a
dependency on it on the AOT side, and allow us build a correctly-sized
buffer in the cases when the requested feature isn't supported by the
model. This, in turn, allows us to grow the feature set supported by the
compiler in a backward-compatible way; and also collect traces exposing
the new features, but starting off the older model, and continue
training from those new traces.

Differential Revision: https://reviews.llvm.org/D124417
2022-04-25 18:35:46 -07:00

62 lines
2.0 KiB
C++

//===- TensorSpecTest.cpp - test for TensorSpec ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/TensorSpec.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Testing/Support/SupportHelpers.h"
#include "gtest/gtest.h"
using namespace llvm;
extern const char *TestMainArgv0;
TEST(TensorSpecTest, JSONParsing) {
auto Value = json::parse(
R"({"name": "tensor_name",
"port": 2,
"type": "int32_t",
"shape":[1,4]
})");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
Optional<TensorSpec> Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_TRUE(Spec.hasValue());
EXPECT_EQ(*Spec, TensorSpec::createSpec<int32_t>("tensor_name", {1, 4}, 2));
}
TEST(TensorSpecTest, JSONParsingInvalidTensorType) {
auto Value = json::parse(
R"(
{"name": "tensor_name",
"port": 2,
"type": "no such type",
"shape":[1,4]
}
)");
EXPECT_TRUE(!!Value);
LLVMContext Ctx;
auto Spec = getTensorSpecFromJSON(Ctx, *Value);
EXPECT_FALSE(Spec.hasValue());
}
TEST(TensorSpecTest, TensorSpecSizesAndTypes) {
auto Spec1D = TensorSpec::createSpec<int16_t>("Hi1", {1});
auto Spec2D = TensorSpec::createSpec<int16_t>("Hi2", {1, 1});
auto Spec1DLarge = TensorSpec::createSpec<float>("Hi3", {10});
auto Spec3DLarge = TensorSpec::createSpec<float>("Hi3", {2, 4, 10});
EXPECT_TRUE(Spec1D.isElementType<int16_t>());
EXPECT_FALSE(Spec3DLarge.isElementType<double>());
EXPECT_EQ(Spec1D.getElementCount(), 1U);
EXPECT_EQ(Spec2D.getElementCount(), 1U);
EXPECT_EQ(Spec1DLarge.getElementCount(), 10U);
EXPECT_EQ(Spec3DLarge.getElementCount(), 80U);
EXPECT_EQ(Spec3DLarge.getElementByteSize(), sizeof(float));
EXPECT_EQ(Spec1D.getElementByteSize(), sizeof(int16_t));
}