llvm-project/llvm/lib/Target/X86/GISel/X86LegalizerInfo.cpp

779 lines
29 KiB
C++

//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86LegalizerInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace TargetOpcode;
using namespace LegalizeActions;
using namespace LegalityPredicates;
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
const X86TargetMachine &TM)
: Subtarget(STI) {
bool Is64Bit = Subtarget.is64Bit();
bool HasCMOV = Subtarget.canUseCMOV();
bool HasSSE1 = Subtarget.hasSSE1();
bool HasSSE2 = Subtarget.hasSSE2();
bool HasSSE41 = Subtarget.hasSSE41();
bool HasAVX = Subtarget.hasAVX();
bool HasAVX2 = Subtarget.hasAVX2();
bool HasAVX512 = Subtarget.hasAVX512();
bool HasVLX = Subtarget.hasVLX();
bool HasDQI = Subtarget.hasAVX512() && Subtarget.hasDQI();
bool HasBWI = Subtarget.hasAVX512() && Subtarget.hasBWI();
bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
bool HasPOPCNT = Subtarget.hasPOPCNT();
bool HasLZCNT = Subtarget.hasLZCNT();
bool HasBMI = Subtarget.hasBMI();
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s80 = LLT::scalar(80);
const LLT s128 = LLT::scalar(128);
const LLT sMaxScalar = Subtarget.is64Bit() ? s64 : s32;
const LLT v2s32 = LLT::fixed_vector(2, 32);
const LLT v4s8 = LLT::fixed_vector(4, 8);
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v2p0 = LLT::fixed_vector(2, p0);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v4p0 = LLT::fixed_vector(4, p0);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v8s64 = LLT::fixed_vector(8, 64);
const LLT s8MaxVector = HasAVX512 ? v64s8 : HasAVX ? v32s8 : v16s8;
const LLT s16MaxVector = HasAVX512 ? v32s16 : HasAVX ? v16s16 : v8s16;
const LLT s32MaxVector = HasAVX512 ? v16s32 : HasAVX ? v8s32 : v4s32;
const LLT s64MaxVector = HasAVX512 ? v8s64 : HasAVX ? v4s64 : v2s64;
// todo: AVX512 bool vector predicate types
// implicit/constants
// 32/64-bits needs support for s64/s128 to handle cases:
// s64 = EXTEND (G_IMPLICIT_DEF s32) -> s64 = G_IMPLICIT_DEF
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({p0, s1, s8, s16, s32, s64})
.legalFor(Is64Bit, {s128});
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0, s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar);
getActionDefinitionsBuilder(
{G_LROUND, G_LLROUND, G_FCOS, G_FCOSH, G_FACOS, G_FSIN, G_FSINH,
G_FASIN, G_FTAN, G_FTANH, G_FATAN, G_FATAN2, G_FPOW, G_FEXP,
G_FEXP2, G_FEXP10, G_FLOG, G_FLOG2, G_FLOG10, G_FPOWI, G_FSINCOS})
.libcall();
getActionDefinitionsBuilder(G_FSQRT)
.legalFor(HasSSE1 || UseX87, {s32})
.legalFor(HasSSE2 || UseX87, {s64})
.legalFor(UseX87, {s80});
// merge/unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
getActionDefinitionsBuilder(Op)
.widenScalarToNextPow2(LitTyIdx, /*Min=*/8)
.widenScalarToNextPow2(BigTyIdx, /*Min=*/16)
.minScalar(LitTyIdx, s8)
.minScalar(BigTyIdx, s32)
.legalIf([=](const LegalityQuery &Q) {
switch (Q.Types[BigTyIdx].getSizeInBits()) {
case 16:
case 32:
case 64:
case 128:
case 256:
case 512:
break;
default:
return false;
}
switch (Q.Types[LitTyIdx].getSizeInBits()) {
case 8:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
default:
return false;
}
});
}
// integer addition/subtraction
getActionDefinitionsBuilder({G_ADD, G_SUB})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX2, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v16s32, v8s64})
.legalFor(HasBWI, {v64s8, v32s16})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasBWI ? 64 : (HasAVX2 ? 32 : 16))
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX2 ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDE, G_UADDO, G_USUBE, G_USUBO})
.legalFor({{s8, s1}, {s16, s1}, {s32, s1}})
.legalFor(Is64Bit, {{s64, s1}})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.clampScalar(1, s1, s1)
.scalarize(0);
// integer multiply
getActionDefinitionsBuilder(G_MUL)
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v8s16})
.legalFor(HasSSE41, {v4s32})
.legalFor(HasAVX2, {v16s16, v8s32})
.legalFor(HasAVX512, {v16s32})
.legalFor(HasDQI, {v8s64})
.legalFor(HasDQI && HasVLX, {v2s64, v4s64})
.legalFor(HasBWI, {v32s16})
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, HasVLX ? 2 : 8)
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, 8)
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer divisions
getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.libcallFor({s64})
.clampScalar(0, s8, sMaxScalar);
// integer shifts
getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}})
.legalFor(Is64Bit, {{s64, s8}})
.clampScalar(0, s8, sMaxScalar)
.clampScalar(1, s8, s8);
// integer logic
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v64s8, v32s16, v16s32, v8s64})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasAVX512 ? 64 : (HasAVX ? 32 : 16))
.clampMaxNumElements(0, s16, HasAVX512 ? 32 : (HasAVX ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer comparison
const std::initializer_list<LLT> IntTypes32 = {s8, s16, s32, p0};
const std::initializer_list<LLT> IntTypes64 = {s8, s16, s32, s64, p0};
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct({s8}, Is64Bit ? IntTypes64 : IntTypes32)
.clampScalar(0, s8, s8)
.clampScalar(1, s8, sMaxScalar);
// bswap
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s32, sMaxScalar);
// popcount
getActionDefinitionsBuilder(G_CTPOP)
.legalFor(HasPOPCNT, {{s16, s16}, {s32, s32}})
.legalFor(HasPOPCNT && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// count leading zeros (LZCNT)
getActionDefinitionsBuilder(G_CTLZ)
.legalFor(HasLZCNT, {{s16, s16}, {s32, s32}})
.legalFor(HasLZCNT && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// count trailing zeros
getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
.legalFor({{s16, s16}, {s32, s32}})
.legalFor(Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
getActionDefinitionsBuilder(G_CTTZ)
.legalFor(HasBMI, {{s16, s16}, {s32, s32}})
.legalFor(HasBMI && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// control flow
getActionDefinitionsBuilder(G_PHI)
.legalFor({s8, s16, s32, p0})
.legalFor(UseX87, {s80})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE1, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v64s8, v32s16, v16s32, v8s64})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasAVX512 ? 64 : (HasAVX ? 32 : 16))
.clampMaxNumElements(0, s16, HasAVX512 ? 32 : (HasAVX ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
// pointer handling
const std::initializer_list<LLT> PtrTypes32 = {s1, s8, s16, s32};
const std::initializer_list<LLT> PtrTypes64 = {s1, s8, s16, s32, s64};
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct(Is64Bit ? PtrTypes64 : PtrTypes32, {p0})
.maxScalar(0, sMaxScalar)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, sMaxScalar}});
getActionDefinitionsBuilder(G_CONSTANT_POOL).legalFor({p0});
getActionDefinitionsBuilder(G_PTR_ADD)
.legalFor({{p0, s32}})
.legalFor(Is64Bit, {{p0, s64}})
.widenScalarToNextPow2(1, /*Min*/ 32)
.clampScalar(1, s32, sMaxScalar);
getActionDefinitionsBuilder({G_FRAME_INDEX, G_GLOBAL_VALUE}).legalFor({p0});
// load/store: add more corner cases
for (unsigned Op : {G_LOAD, G_STORE}) {
auto &Action = getActionDefinitionsBuilder(Op);
Action.legalForTypesWithMemDesc({{s8, p0, s8, 1},
{s16, p0, s16, 1},
{s32, p0, s32, 1},
{s80, p0, s80, 1},
{p0, p0, p0, 1},
{v4s8, p0, v4s8, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s64, 1}, {v2s32, p0, v2s32, 1}});
if (HasSSE1)
Action.legalForTypesWithMemDesc({{v4s32, p0, v4s32, 1}});
if (HasSSE2)
Action.legalForTypesWithMemDesc({{v16s8, p0, v16s8, 1},
{v8s16, p0, v8s16, 1},
{v2s64, p0, v2s64, 1},
{v2p0, p0, v2p0, 1}});
if (HasAVX)
Action.legalForTypesWithMemDesc({{v32s8, p0, v32s8, 1},
{v16s16, p0, v16s16, 1},
{v8s32, p0, v8s32, 1},
{v4s64, p0, v4s64, 1},
{v4p0, p0, v4p0, 1}});
if (HasAVX512)
Action.legalForTypesWithMemDesc({{v64s8, p0, v64s8, 1},
{v32s16, p0, v32s16, 1},
{v16s32, p0, v16s32, 1},
{v8s64, p0, v8s64, 1}});
// X86 supports extending loads but not stores for GPRs
if (Op == G_LOAD) {
Action.legalForTypesWithMemDesc({{s8, p0, s1, 1},
{s16, p0, s8, 1},
{s32, p0, s8, 1},
{s32, p0, s16, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s8, 1}, {s64, p0, s16, 1}, {s64, p0, s32, 1}});
} else {
Action.customIf([=](const LegalityQuery &Query) {
return Query.Types[0] != Query.MMODescrs[0].MemoryTy;
});
}
Action.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
}
for (unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
auto &Action = getActionDefinitionsBuilder(Op);
Action.legalForTypesWithMemDesc(
{{s16, p0, s8, 1}, {s32, p0, s8, 1}, {s32, p0, s16, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s8, 1}, {s64, p0, s16, 1}, {s64, p0, s32, 1}});
// TODO - SSE41/AVX2/AVX512F/AVX512BW vector extensions
}
// sext, zext, and anyext
getActionDefinitionsBuilder(G_ANYEXT)
.legalFor({s8, s16, s32, s128})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.widenScalarToNextPow2(1, /*Min=*/8)
.clampScalar(1, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_SEXT, G_ZEXT})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.widenScalarToNextPow2(1, /*Min=*/8)
.clampScalar(1, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
// fp constants
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({s32, s64})
.legalFor(UseX87, {s80});
// fp arithmetic
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
.legalFor({s32, s64})
.legalFor(HasSSE1, {v4s32})
.legalFor(HasSSE2, {v2s64})
.legalFor(HasAVX, {v8s32, v4s64})
.legalFor(HasAVX512, {v16s32, v8s64})
.legalFor(UseX87, {s80});
// fp comparison
getActionDefinitionsBuilder(G_FCMP)
.legalFor(HasSSE1 || UseX87, {s8, s32})
.legalFor(HasSSE2 || UseX87, {s8, s64})
.legalFor(UseX87, {s8, s80})
.clampScalar(0, s8, s8)
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// fp conversions
getActionDefinitionsBuilder(G_FPEXT)
.legalFor(HasSSE2, {{s64, s32}})
.legalFor(HasAVX, {{v4s64, v4s32}})
.legalFor(HasAVX512, {{v8s64, v8s32}});
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor(HasSSE2, {{s32, s64}})
.legalFor(HasAVX, {{v4s32, v4s64}})
.legalFor(HasAVX512, {{v8s32, v8s64}});
getActionDefinitionsBuilder(G_SITOFP)
.legalFor(HasSSE1, {{s32, s32}})
.legalFor(HasSSE1 && Is64Bit, {{s32, s64}})
.legalFor(HasSSE2, {{s64, s32}})
.legalFor(HasSSE2 && Is64Bit, {{s64, s64}})
.clampScalar(1, (UseX87 && !HasSSE1) ? s16 : s32, sMaxScalar)
.widenScalarToNextPow2(1)
.customForCartesianProduct(UseX87, {s32, s64, s80}, {s16, s32, s64})
.clampScalar(0, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FPTOSI)
.legalFor(HasSSE1, {{s32, s32}})
.legalFor(HasSSE1 && Is64Bit, {{s64, s32}})
.legalFor(HasSSE2, {{s32, s64}})
.legalFor(HasSSE2 && Is64Bit, {{s64, s64}})
.clampScalar(0, (UseX87 && !HasSSE1) ? s16 : s32, sMaxScalar)
.widenScalarToNextPow2(0)
.customForCartesianProduct(UseX87, {s16, s32, s64}, {s32, s64, s80})
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// For G_UITOFP and G_FPTOUI without AVX512, we have to custom legalize types
// <= s32 manually. Otherwise, in custom handler there is no way to
// understand whether s32 is an original type and we need to promote it to
// s64 or s32 is obtained after widening and we shouldn't widen it to s64.
//
// For AVX512 we simply widen types as there is direct mapping from opcodes
// to asm instructions.
getActionDefinitionsBuilder(G_UITOFP)
.legalFor(HasAVX512, {{s32, s32}, {s32, s64}, {s64, s32}, {s64, s64}})
.customIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(0, s32)(Query)) ||
(HasSSE2 && typeIs(0, s64)(Query))) &&
scalarNarrowerThan(1, Is64Bit ? 64 : 32)(Query);
})
.lowerIf([=](const LegalityQuery &Query) {
// Lower conversions from s64
return !HasAVX512 &&
((HasSSE1 && typeIs(0, s32)(Query)) ||
(HasSSE2 && typeIs(0, s64)(Query))) &&
(Is64Bit && typeIs(1, s64)(Query));
})
.clampScalar(0, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, sMaxScalar)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_FPTOUI)
.legalFor(HasAVX512, {{s32, s32}, {s32, s64}, {s64, s32}, {s64, s64}})
.customIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(1, s32)(Query)) ||
(HasSSE2 && typeIs(1, s64)(Query))) &&
scalarNarrowerThan(0, Is64Bit ? 64 : 32)(Query);
})
// TODO: replace with customized legalization using
// specifics of cvttsd2si. The selection of this node requires
// a vector type. Either G_SCALAR_TO_VECTOR is needed or more advanced
// support of G_BUILD_VECTOR/G_INSERT_VECTOR_ELT is required beforehand.
.lowerIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(1, s32)(Query)) ||
(HasSSE2 && typeIs(1, s64)(Query))) &&
(Is64Bit && typeIs(0, s64)(Query));
})
.clampScalar(0, s32, sMaxScalar)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// vector ops
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.customIf([=](const LegalityQuery &Query) {
return (HasSSE1 && typeInSet(0, {v4s32})(Query)) ||
(HasSSE2 && typeInSet(0, {v2s64, v8s16, v16s8})(Query)) ||
(HasAVX && typeInSet(0, {v4s64, v8s32, v16s16, v32s8})(Query)) ||
(HasAVX512 && typeInSet(0, {v8s64, v16s32, v32s16, v64s8}));
})
.clampNumElements(0, v16s8, s8MaxVector)
.clampNumElements(0, v8s16, s16MaxVector)
.clampNumElements(0, v4s32, s32MaxVector)
.clampNumElements(0, v2s64, s64MaxVector)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
unsigned SubIdx = Query.Opcode == G_EXTRACT ? 0 : 1;
unsigned FullIdx = Query.Opcode == G_EXTRACT ? 1 : 0;
return (HasAVX && typePairInSet(SubIdx, FullIdx,
{{v16s8, v32s8},
{v8s16, v16s16},
{v4s32, v8s32},
{v2s64, v4s64}})(Query)) ||
(HasAVX512 && typePairInSet(SubIdx, FullIdx,
{{v16s8, v64s8},
{v32s8, v64s8},
{v8s16, v32s16},
{v16s16, v32s16},
{v4s32, v16s32},
{v8s32, v16s32},
{v2s64, v8s64},
{v4s64, v8s64}})(Query));
});
// todo: only permit dst types up to max legal vector register size?
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor(
HasSSE1,
{{v32s8, v16s8}, {v16s16, v8s16}, {v8s32, v4s32}, {v4s64, v2s64}})
.legalFor(HasAVX, {{v64s8, v16s8},
{v64s8, v32s8},
{v32s16, v8s16},
{v32s16, v16s16},
{v16s32, v4s32},
{v16s32, v8s32},
{v8s64, v2s64},
{v8s64, v4s64}});
// todo: vectors and address spaces
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s8, s32}, {s16, s32}, {s32, s32}, {s64, s32}, {p0, s32}})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, HasCMOV ? s16 : s8, sMaxScalar)
.clampScalar(1, s32, s32);
// memory intrinsics
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder({G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE})
.lower();
// fp intrinsics
getActionDefinitionsBuilder(G_INTRINSIC_ROUNDEVEN)
.scalarize(0)
.minScalar(0, LLT::scalar(32))
.libcall();
getActionDefinitionsBuilder({G_FREEZE, G_CONSTANT_FOLD_BARRIER})
.legalFor({s8, s16, s32, s64, p0})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar);
getLegacyLegalizerInfo().computeTables();
verify(*STI.getInstrInfo());
}
bool X86LegalizerInfo::legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_BUILD_VECTOR:
return legalizeBuildVector(MI, MRI, Helper);
case TargetOpcode::G_FPTOUI:
return legalizeFPTOUI(MI, MRI, Helper);
case TargetOpcode::G_UITOFP:
return legalizeUITOFP(MI, MRI, Helper);
case TargetOpcode::G_STORE:
return legalizeNarrowingStore(MI, MRI, Helper);
case TargetOpcode::G_SITOFP:
return legalizeSITOFP(MI, MRI, Helper);
case TargetOpcode::G_FPTOSI:
return legalizeFPTOSI(MI, MRI, Helper);
}
llvm_unreachable("expected switch to return");
}
bool X86LegalizerInfo::legalizeSITOFP(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineFunction &MF = *MI.getMF();
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
assert((SrcTy.getSizeInBits() == 16 || SrcTy.getSizeInBits() == 32 ||
SrcTy.getSizeInBits() == 64) &&
"Unexpected source type for SITOFP in X87 mode.");
TypeSize MemSize = SrcTy.getSizeInBytes();
MachinePointerInfo PtrInfo;
Align Alignmt = Helper.getStackTemporaryAlignment(SrcTy);
auto SlotPointer = Helper.createStackTemporary(MemSize, Alignmt, PtrInfo);
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, MemSize, Align(MemSize));
// Store the integer value on the FPU stack.
MIRBuilder.buildStore(Src, SlotPointer, *StoreMMO);
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, MemSize, Align(MemSize));
MIRBuilder.buildInstr(X86::G_FILD)
.addDef(Dst)
.addUse(SlotPointer.getReg(0))
.addMemOperand(LoadMMO);
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeFPTOSI(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineFunction &MF = *MI.getMF();
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
TypeSize MemSize = DstTy.getSizeInBytes();
MachinePointerInfo PtrInfo;
Align Alignmt = Helper.getStackTemporaryAlignment(DstTy);
auto SlotPointer = Helper.createStackTemporary(MemSize, Alignmt, PtrInfo);
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, MemSize, Align(MemSize));
MIRBuilder.buildInstr(X86::G_FIST)
.addUse(Src)
.addUse(SlotPointer.getReg(0))
.addMemOperand(StoreMMO);
MIRBuilder.buildLoad(Dst, SlotPointer, PtrInfo, Align(MemSize));
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeBuildVector(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
const auto &BuildVector = cast<GBuildVector>(MI);
Register Dst = BuildVector.getReg(0);
LLT DstTy = MRI.getType(Dst);
MachineFunction &MF = MIRBuilder.getMF();
LLVMContext &Ctx = MF.getFunction().getContext();
uint64_t DstTySize = DstTy.getScalarSizeInBits();
SmallVector<Constant *, 4> CstIdxs;
for (unsigned i = 0; i < BuildVector.getNumSources(); ++i) {
Register Source = BuildVector.getSourceReg(i);
auto ValueAndReg = getIConstantVRegValWithLookThrough(Source, MRI);
if (ValueAndReg) {
CstIdxs.emplace_back(ConstantInt::get(Ctx, ValueAndReg->Value));
continue;
}
auto FPValueAndReg = getFConstantVRegValWithLookThrough(Source, MRI);
if (FPValueAndReg) {
CstIdxs.emplace_back(ConstantFP::get(Ctx, FPValueAndReg->Value));
continue;
}
if (getOpcodeDef<GImplicitDef>(Source, MRI)) {
CstIdxs.emplace_back(UndefValue::get(Type::getIntNTy(Ctx, DstTySize)));
continue;
}
return false;
}
Constant *ConstVal = ConstantVector::get(CstIdxs);
const DataLayout &DL = MIRBuilder.getDataLayout();
unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
Align Alignment(DL.getABITypeAlign(ConstVal->getType()));
auto Addr = MIRBuilder.buildConstantPool(
LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)),
MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment));
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
MachineMemOperand::MOLoad, DstTy, Alignment);
MIRBuilder.buildLoad(Dst, Addr, *MMO);
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeFPTOUI(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
unsigned DstSizeInBits = DstTy.getScalarSizeInBits();
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
// Simply reuse FPTOSI when it is possible to widen the type
if (DstSizeInBits <= 32) {
auto Casted = MIRBuilder.buildFPTOSI(DstTy == s32 ? s64 : s32, Src);
MIRBuilder.buildTrunc(Dst, Casted);
MI.eraseFromParent();
return true;
}
return false;
}
bool X86LegalizerInfo::legalizeUITOFP(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
// Simply reuse SITOFP when it is possible to widen the type
if (SrcTy.getSizeInBits() <= 32) {
auto Ext = MIRBuilder.buildZExt(SrcTy == s32 ? s64 : s32, Src);
MIRBuilder.buildSITOFP(Dst, Ext);
MI.eraseFromParent();
return true;
}
return false;
}
bool X86LegalizerInfo::legalizeNarrowingStore(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
auto &Store = cast<GStore>(MI);
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineMemOperand &MMO = **Store.memoperands_begin();
MachineFunction &MF = MIRBuilder.getMF();
LLT ValTy = MRI.getType(Store.getValueReg());
auto *NewMMO = MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), ValTy);
Helper.Observer.changingInstr(Store);
Store.setMemRefs(MF, {NewMMO});
Helper.Observer.changedInstr(Store);
return true;
}
bool X86LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
return true;
}