
[mlir][vector] Standardize base Naming Across Vector Ops (NFC) This change standardizes the naming convention for the argument representing the value to read from or write to in Vector ops that interface with Tensors or MemRefs. Specifically, it ensures that all such ops use the name `base` (i.e., the base address or location to which offsets are applied). Updated operations: * `vector.transfer_read`, * `vector.transfer_write`. For reference, these ops already use `base`: * `vector.load`, `vector.store`, `vector.scatter`, `vector.gather`, `vector.expandload`, `vector.compressstore`, `vector.maskedstore`, `vector.maskedload`. This is a non-functional change (NFC) and does not alter the semantics of these operations. However, it does require users of the XFer ops to switch from `op.getSource()` to `op.getBase()`. To ease the transition, this PR temporarily adds a `getSource()` interface method for compatibility. This is intended for downstream use only and should not be relied on upstream. The method will be removed prior to the LLVM 21 release. Implements #131602
985 lines
42 KiB
C++
985 lines
42 KiB
C++
//===- VectorLegalization.cpp - Legalize vectors for lowering to ArmSME ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass legalizes vector operations so they can be lowered to ArmSME.
|
|
//
|
|
// Note: In the context of this pass 'tile' always refers to an SME tile.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arith/Utils/Utils.h"
|
|
#include "mlir/Dialect/ArmSME/IR/ArmSME.h"
|
|
#include "mlir/Dialect/ArmSME/Transforms/Passes.h"
|
|
#include "mlir/Dialect/ArmSME/Utils/Utils.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
#include "mlir/Dialect/Func/Transforms/FuncConversions.h"
|
|
#include "mlir/Dialect/Index/IR/IndexDialect.h"
|
|
#include "mlir/Dialect/Index/IR/IndexOps.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
|
|
#include "mlir/Dialect/Utils/IndexingUtils.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
#define DEBUG_TYPE "arm-sme-vector-legalization"
|
|
|
|
namespace mlir::arm_sme {
|
|
#define GEN_PASS_DEF_VECTORLEGALIZATION
|
|
#include "mlir/Dialect/ArmSME/Transforms/Passes.h.inc"
|
|
} // namespace mlir::arm_sme
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::arm_sme;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Decomposition of vector operations larger than an SME tile
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Common match failure reasons.
|
|
static constexpr StringLiteral kMatchFailureNotSMETileTypeMultiple(
|
|
"op vector size is not multiple of SME tiles");
|
|
static constexpr StringLiteral kMatchFailureUnsupportedMaskOp(
|
|
"op mask is unsupported for legalization/decomposition");
|
|
static constexpr StringLiteral
|
|
kMatchFailureNonPermutationMap("op affine map is not a permutation");
|
|
static constexpr StringLiteral kMatchFailureNotIllegalToLegal(
|
|
"expected transpose from illegal type to legal type");
|
|
|
|
/// An SMESubTile represents a single SME-sized sub-tile from decomposing a
|
|
/// larger vector type. The (`row`, `col`) are the position of the tile in the
|
|
/// original vector type. For example for an [8]x[8] tile with four [4]x[4]
|
|
/// sub-tiles, we would have:
|
|
///
|
|
/// 8 x vscale
|
|
/// ┌─────────────┬─────────────┐
|
|
/// │(0,0) │(0,4) │
|
|
/// │ │ │
|
|
/// ├─────────────┼─────────────┤ 8 x vscale
|
|
/// │(4,0) │(4,4) │
|
|
/// │ │ │
|
|
/// └─────────────┴─────────────┘
|
|
struct SMESubTile {
|
|
// Note: The units of (row, col) are vscale (as SME tiles are scalable).
|
|
int row{0};
|
|
int col{0};
|
|
// The SME tile type.
|
|
VectorType type;
|
|
};
|
|
|
|
/// Adds a constant elementwise scalable offset to `indices` (which are of equal
|
|
/// length). For example, in the 2D case this would return:
|
|
// { indices[0] + offset[0] * vscale, indices[1] + offset[1] * vscale }
|
|
SmallVector<Value, 2> addConstantScalableOffset(OpBuilder &builder,
|
|
Location loc,
|
|
ValueRange indices,
|
|
ArrayRef<int> scalableOffsets) {
|
|
auto vscale = builder.create<vector::VectorScaleOp>(loc);
|
|
return llvm::map_to_vector(
|
|
llvm::zip_equal(indices, scalableOffsets), [&](auto pair) -> Value {
|
|
auto [index, base] = pair;
|
|
auto offset = builder.create<arith::MulIOp>(
|
|
loc, builder.create<arith::ConstantIndexOp>(loc, base), vscale);
|
|
return builder.create<arith::AddIOp>(loc, index, offset);
|
|
});
|
|
}
|
|
|
|
/// Adjusts `indices` (e.g. from a load/store) for a larger vector type to
|
|
/// indices for one of the SME sub-tiles it will decompose into.
|
|
///
|
|
/// For example, if you were to decompose an 8x8 load into four 4x4 tiles, the
|
|
/// indices for each tile would need to be adjusted as follows:
|
|
///
|
|
/// initial indices = [a,b], inital size = 8x8, target size = 4x4
|
|
/// ┌─────────────┬─────────────┐
|
|
/// │[a,b] │[a,b+4] │
|
|
/// │ │ │
|
|
/// ├─────────────┼─────────────┤
|
|
/// │[a+4,b] │[a+4,b+4] │
|
|
/// │ │ │
|
|
/// └─────────────┴─────────────┘
|
|
SmallVector<Value, 2> getSMESubTileIndices(OpBuilder &builder, Location loc,
|
|
ValueRange indices,
|
|
SMESubTile smeTile) {
|
|
return addConstantScalableOffset(builder, loc, indices,
|
|
{smeTile.row, smeTile.col});
|
|
}
|
|
|
|
/// Returns true if `mask` is generated by an operation that can be decomposed
|
|
/// for SME. Currently, that is just no mask, or vector.create_mask.
|
|
/// TODO: Add support for vector.constant_mask once required for SME.
|
|
bool isSupportedMaskOp(Value mask) {
|
|
return !mask || mask.getDefiningOp<vector::CreateMaskOp>();
|
|
}
|
|
|
|
/// Extracts a mask for an SME sub-tile from the mask of a larger vector type.
|
|
Value extractSMEMask(OpBuilder &builder, Location loc, Value mask,
|
|
SMESubTile smeTile) {
|
|
assert(isSupportedMaskOp(mask));
|
|
if (!mask)
|
|
return Value{};
|
|
auto createMask = mask.getDefiningOp<vector::CreateMaskOp>();
|
|
// The operands of `vector.create_mask` (from a 2D perspective) are the
|
|
// coordinates where the mask ends. So we subtract where this tile starts,
|
|
// from the mask operands to get the parameters for this sub-tile.
|
|
auto smeTileMaskDims = addConstantScalableOffset(
|
|
builder, loc, createMask.getOperands(), {-smeTile.row, -smeTile.col});
|
|
auto smeTileCreateMask = builder.create<vector::CreateMaskOp>(
|
|
loc, smeTile.type.clone(builder.getI1Type()), smeTileMaskDims);
|
|
return smeTileCreateMask.getResult();
|
|
}
|
|
|
|
/// Constructs an iterator that returns each SME tile (with coordinates)
|
|
/// contained within a VectorType. For example, if decomposing an [8]x[8] into
|
|
/// [4]x[4] tiles, the iterator would yield the tiles: (0, 0), (0, 4), (4, 0),
|
|
/// (4, 4).
|
|
auto decomposeToSMETiles(OpBuilder &builder, VectorType type,
|
|
VectorType smeTileType,
|
|
bool transposeIndices = false) {
|
|
return llvm::map_range(
|
|
StaticTileOffsetRange(
|
|
type.getShape(),
|
|
{std::min(type.getDimSize(0), smeTileType.getDimSize(0)),
|
|
std::min(type.getDimSize(1), smeTileType.getDimSize(1))}),
|
|
[=](auto indices) {
|
|
int row = int(indices[0]);
|
|
int col = int(indices[1]);
|
|
if (transposeIndices)
|
|
std::swap(row, col);
|
|
return SMESubTile{row, col, smeTileType};
|
|
});
|
|
}
|
|
|
|
/// Returns the number of SME tiles that fit into the (2D-scalable) vector type
|
|
/// `type`.
|
|
int getNumberOfSMETilesForVectorType(VectorType type) {
|
|
assert(isMultipleOfSMETileVectorType(type) &&
|
|
"`type` not multiple of SME tiles");
|
|
int64_t vectorRows = type.getDimSize(0);
|
|
int64_t vectorCols = type.getDimSize(1);
|
|
auto elementType = type.getElementType();
|
|
unsigned minNumElts = getSMETileSliceMinNumElts(elementType);
|
|
return (vectorRows * vectorCols) / (minNumElts * minNumElts);
|
|
}
|
|
|
|
/// Legalize `arith.constant dense<value>` splat operations to fit within SME
|
|
/// tiles by decomposing them into tile-sized operations.
|
|
struct LegalizeArithConstantOpsByDecomposition
|
|
: public OpConversionPattern<arith::ConstantOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(arith::ConstantOp constantOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto vectorType = dyn_cast<VectorType>(constantOp.getType());
|
|
auto denseAttr = dyn_cast<DenseElementsAttr>(constantOp.getValueAttr());
|
|
if (!vectorType || !denseAttr || !denseAttr.isSplat())
|
|
return failure();
|
|
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return rewriter.notifyMatchFailure(constantOp,
|
|
kMatchFailureNotSMETileTypeMultiple);
|
|
|
|
auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
|
|
auto tileCount = getNumberOfSMETilesForVectorType(vectorType);
|
|
auto tileSplat = rewriter.create<arith::ConstantOp>(
|
|
constantOp.getLoc(), denseAttr.resizeSplat(smeTileType));
|
|
SmallVector<Value> repl(tileCount, tileSplat);
|
|
rewriter.replaceOpWithMultiple(constantOp, {repl});
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Legalize `vector.outerproduct` operations to fit within SME tiles by
|
|
/// decomposing them into tile-sized operations.
|
|
struct LegalizeVectorOuterProductOpsByDecomposition
|
|
: public OpConversionPattern<vector::OuterProductOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::OuterProductOp outerProductOp,
|
|
OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto vectorType = outerProductOp.getResultVectorType();
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return rewriter.notifyMatchFailure(outerProductOp,
|
|
kMatchFailureNotSMETileTypeMultiple);
|
|
|
|
Value mask;
|
|
Operation *rootOp = outerProductOp;
|
|
auto loc = outerProductOp.getLoc();
|
|
if (outerProductOp.isMasked()) {
|
|
auto maskOp = outerProductOp.getMaskingOp();
|
|
mask = maskOp.getMask();
|
|
rootOp = maskOp;
|
|
rewriter.setInsertionPoint(rootOp);
|
|
}
|
|
|
|
if (!isSupportedMaskOp(mask))
|
|
return rewriter.notifyMatchFailure(outerProductOp,
|
|
kMatchFailureUnsupportedMaskOp);
|
|
|
|
ValueRange accSMETiles = adaptor.getAcc();
|
|
auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
|
|
VectorType sliceType = VectorType::Builder(smeTileType).dropDim(0);
|
|
|
|
SmallVector<Value> resultSMETiles;
|
|
for (auto [index, smeTile] : llvm::enumerate(
|
|
decomposeToSMETiles(rewriter, vectorType, smeTileType))) {
|
|
|
|
auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
|
|
auto lhs = rewriter.create<vector::ScalableExtractOp>(
|
|
loc, sliceType, outerProductOp.getLhs(), smeTile.row);
|
|
auto rhs = rewriter.create<vector::ScalableExtractOp>(
|
|
loc, sliceType, outerProductOp.getRhs(), smeTile.col);
|
|
auto smeOuterProduct = rewriter.create<vector::OuterProductOp>(
|
|
loc, smeTileType, lhs, rhs,
|
|
!accSMETiles.empty() ? accSMETiles[index] : Value{},
|
|
outerProductOp.getKind());
|
|
|
|
auto maskedOuterProduct =
|
|
vector::maskOperation(rewriter, smeOuterProduct, smeMask);
|
|
resultSMETiles.push_back(maskedOuterProduct->getResult(0));
|
|
}
|
|
|
|
rewriter.replaceOpWithMultiple(rootOp, {resultSMETiles});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Workaround for `vector.mask`. We want to match on `vector.outerproduct` (to
|
|
// get the help of the type conversion), but doing so results in the type
|
|
// conversion adding target materializations in the `vector.mask` region
|
|
// (invalid). This pattern matches on `vector.mask` then calls into the
|
|
// `vector.outerproduct` pattern to work around this issue.
|
|
struct LegalizeMaskedVectorOuterProductOpsByDecomposition
|
|
: public OpConversionPattern<vector::MaskOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::MaskOp maskOp, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (auto outerProductOp = llvm::dyn_cast_or_null<vector::OuterProductOp>(
|
|
maskOp.getMaskableOp())) {
|
|
LegalizeVectorOuterProductOpsByDecomposition pattern(*getTypeConverter(),
|
|
getContext());
|
|
return static_cast<RewritePattern &>(pattern).matchAndRewrite(
|
|
outerProductOp, rewriter);
|
|
}
|
|
return failure();
|
|
}
|
|
};
|
|
|
|
/// Legalize `vector.transfer_read` operations to fit within SME tiles by
|
|
/// decomposing them into tile-sized operations.
|
|
struct LegalizeTransferReadOpsByDecomposition
|
|
: public OpConversionPattern<vector::TransferReadOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::TransferReadOp readOp, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto vectorType = readOp.getVectorType();
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return rewriter.notifyMatchFailure(readOp,
|
|
kMatchFailureNotSMETileTypeMultiple);
|
|
|
|
auto mask = readOp.getMask();
|
|
if (!isSupportedMaskOp(mask))
|
|
return rewriter.notifyMatchFailure(readOp,
|
|
kMatchFailureUnsupportedMaskOp);
|
|
|
|
auto permutationMap = readOp.getPermutationMap();
|
|
if (!permutationMap.isPermutation())
|
|
return rewriter.notifyMatchFailure(readOp,
|
|
kMatchFailureNonPermutationMap);
|
|
|
|
// Note: For 2D vector types the only non-identity permutation is a simple
|
|
// transpose [1, 0].
|
|
bool transposed = !permutationMap.isIdentity();
|
|
|
|
auto loc = readOp.getLoc();
|
|
auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
|
|
|
|
SmallVector<Value> resultSMETiles;
|
|
for (SMESubTile smeTile :
|
|
decomposeToSMETiles(rewriter, vectorType, smeTileType, transposed)) {
|
|
auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
|
|
auto smeRead = rewriter.create<vector::TransferReadOp>(
|
|
loc, smeTileType, readOp.getBase(),
|
|
getSMESubTileIndices(rewriter, loc, readOp.getIndices(), smeTile),
|
|
readOp.getPermutationMapAttr(), readOp.getPadding(), smeMask,
|
|
readOp.getInBoundsAttr());
|
|
resultSMETiles.push_back(smeRead);
|
|
}
|
|
|
|
rewriter.replaceOpWithMultiple(readOp, {resultSMETiles});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Legalize `vector.transfer_write` operations to fit within SME tiles by
|
|
/// decomposing them into tile-sized operations.
|
|
struct LegalizeTransferWriteOpsByDecomposition
|
|
: public OpConversionPattern<vector::TransferWriteOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::TransferWriteOp writeOp, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
auto vectorType = writeOp.getVectorType();
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureNotSMETileTypeMultiple);
|
|
|
|
auto mask = writeOp.getMask();
|
|
if (!isSupportedMaskOp(mask))
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureUnsupportedMaskOp);
|
|
|
|
auto permutationMap = writeOp.getPermutationMap();
|
|
if (!permutationMap.isPermutation())
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureNonPermutationMap);
|
|
|
|
// Note: For 2D vector types the only non-identity permutation is a simple
|
|
// transpose [1, 0].
|
|
bool transposed = !permutationMap.isIdentity();
|
|
|
|
auto loc = writeOp.getLoc();
|
|
auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
|
|
auto inputSMETiles = adaptor.getValueToStore();
|
|
|
|
Value destTensorOrMemref = writeOp.getBase();
|
|
for (auto [index, smeTile] : llvm::enumerate(decomposeToSMETiles(
|
|
rewriter, vectorType, smeTileType, transposed))) {
|
|
auto smeMask = extractSMEMask(rewriter, loc, mask, smeTile);
|
|
auto smeWrite = rewriter.create<vector::TransferWriteOp>(
|
|
loc, inputSMETiles[index], destTensorOrMemref,
|
|
getSMESubTileIndices(rewriter, loc, writeOp.getIndices(), smeTile),
|
|
writeOp.getPermutationMapAttr(), smeMask, writeOp.getInBoundsAttr());
|
|
if (writeOp.hasPureTensorSemantics())
|
|
destTensorOrMemref = smeWrite.getResult();
|
|
}
|
|
|
|
if (writeOp.hasPureTensorSemantics())
|
|
rewriter.replaceOp(writeOp, destTensorOrMemref);
|
|
else
|
|
rewriter.eraseOp(writeOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Legalize a multi-tile transfer_write as a single store loop. This is done as
|
|
/// part of type decomposition as at this level we know each tile write is
|
|
/// disjoint, but that information is lost after decomposition (without analysis
|
|
/// to reconstruct it).
|
|
///
|
|
/// Example (pseudo-MLIR):
|
|
///
|
|
/// ```
|
|
/// vector.transfer_write %vector, %dest[%y, %x], %mask
|
|
/// : vector<[16]x[8]xi16>, memref<?x?xi16>
|
|
/// ```
|
|
/// Is rewritten to:
|
|
/// ```
|
|
/// scf.for %slice_idx = %c0 to %c8_vscale step %c1 {
|
|
/// %upper_slice_mask = vector.extract %mask[%slice_idx] ─┐
|
|
/// : vector<[8]xi1> from vector<[16]x[8]xi1> |
|
|
/// %upper_slice = vector.extract %upper_tile[%slice_idx] |- Store upper tile
|
|
/// : vector<[8]xi16> from vector<[8]x[8]xi16> |
|
|
/// vector.transfer_write %upper_slice, |
|
|
/// %dest[%slice_idx + %y, %x], %upper_slice_mask |
|
|
/// : vector<[8]xi16>, memref<?x?xi16> ┘
|
|
/// %lower_slice_idx = %slice_idx + %c8_vscale ─┐
|
|
/// %lower_slice_mask = vector.extract %mask[%lower_slice_idx] |
|
|
/// : vector<[8]xi1> from vector<[16]x[8]xi1> |
|
|
/// %lower_slice = vector.extract %lower_tile[%slice_idx] |- Store lower
|
|
/// : vector<[8]xi16> from vector<[8]x[8]xi16> | tile
|
|
/// vector.transfer_write %lower_slice, |
|
|
/// %dest[%lower_slice_idx + %y, %x], %lower_slice_mask |
|
|
/// : vector<[8]xi16>, memref<?x?xi16> ┘
|
|
/// }
|
|
/// ```
|
|
struct LegalizeMultiTileTransferWriteAsStoreLoop
|
|
: public OpConversionPattern<vector::TransferWriteOp> {
|
|
using OpConversionPattern::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(vector::TransferWriteOp writeOp, OneToNOpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override {
|
|
if (writeOp.hasPureTensorSemantics())
|
|
return rewriter.notifyMatchFailure(
|
|
writeOp, "TODO: tensor semantics are unsupported");
|
|
|
|
auto permutationMap = writeOp.getPermutationMap();
|
|
if (!permutationMap.isPermutation())
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureNonPermutationMap);
|
|
|
|
bool transposed = !permutationMap.isIdentity();
|
|
if (transposed)
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
"TODO: transpose unsupported");
|
|
|
|
auto vectorType = writeOp.getVectorType();
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureNotSMETileTypeMultiple);
|
|
|
|
// Note: We also disallow masks where any dimension is > 16 because that
|
|
// prevents the masking from being lowered to use arm_sve.psel.
|
|
auto mask = writeOp.getMask();
|
|
if (!isSupportedMaskOp(mask) || (mask && (vectorType.getDimSize(0) > 16 ||
|
|
vectorType.getDimSize(1) > 16)))
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureUnsupportedMaskOp);
|
|
|
|
auto loc = writeOp.getLoc();
|
|
auto createVscaleMultiple =
|
|
vector::makeVscaleConstantBuilder(rewriter, loc);
|
|
|
|
// Get SME tile and slice types.
|
|
auto smeTileType = getSMETileTypeForElement(vectorType.getElementType());
|
|
auto minTileSlices = smeTileType.getDimSize(0);
|
|
VectorType sliceMaskType =
|
|
VectorType::get(minTileSlices, rewriter.getI1Type(), true);
|
|
|
|
// Create loop over all tile slices.
|
|
auto lowerBound = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
auto upperBound = createVscaleMultiple(minTileSlices);
|
|
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
auto storeLoop =
|
|
rewriter.create<scf::ForOp>(loc, lowerBound, upperBound, step);
|
|
rewriter.setInsertionPointToStart(storeLoop.getBody());
|
|
|
|
// For each sub-tile of the multi-tile `vectorType`.
|
|
auto inputSMETiles = adaptor.getValueToStore();
|
|
auto tileSliceIndex = storeLoop.getInductionVar();
|
|
for (auto [index, smeTile] : llvm::enumerate(
|
|
decomposeToSMETiles(rewriter, vectorType, smeTileType))) {
|
|
// The coordinates of the tile within `vectorType`.
|
|
auto tileRow = createVscaleMultiple(smeTile.row);
|
|
auto tileCol = createVscaleMultiple(smeTile.col);
|
|
|
|
// The current slice of `vectorType` we are processing.
|
|
auto sliceIndex =
|
|
rewriter.create<arith::AddIOp>(loc, tileRow, tileSliceIndex);
|
|
|
|
// Where in the destination memref the current slice will be stored.
|
|
auto storeRow = rewriter.create<arith::AddIOp>(loc, sliceIndex,
|
|
writeOp.getIndices()[0]);
|
|
auto storeCol =
|
|
rewriter.create<arith::AddIOp>(loc, tileCol, writeOp.getIndices()[1]);
|
|
|
|
// Extract the mask for the current slice.
|
|
Value sliceMask = nullptr;
|
|
if (mask) {
|
|
sliceMask = rewriter.create<vector::ExtractOp>(
|
|
loc, mask, OpFoldResult(sliceIndex));
|
|
if (sliceMaskType != sliceMask.getType())
|
|
sliceMask = rewriter.create<vector::ScalableExtractOp>(
|
|
loc, sliceMaskType, sliceMask, smeTile.col);
|
|
}
|
|
|
|
// Extract and store the current slice.
|
|
Value tile = inputSMETiles[index];
|
|
auto slice =
|
|
rewriter.create<vector::ExtractOp>(loc, tile, tileSliceIndex);
|
|
rewriter.create<vector::TransferWriteOp>(
|
|
loc, slice, writeOp.getBase(), ValueRange{storeRow, storeCol},
|
|
AffineMapAttr::get(writeOp.getPermutationMap().dropResult(0)),
|
|
sliceMask,
|
|
rewriter.getBoolArrayAttr(
|
|
ArrayRef<bool>(writeOp.getInBoundsValues()).drop_front()));
|
|
}
|
|
|
|
rewriter.eraseOp(writeOp);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ArmSME-specific fixup canonicalizations/folds
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Folds an extract from a 3D `vector.create_mask` (which is a vector of
|
|
/// SME-like masks), into a compare and a 2D `vector.create_mask`. This is
|
|
/// necessary for the mask to be lowered to ArmSME.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// BEFORE:
|
|
/// ```mlir
|
|
/// %mask = vector.create_mask %nonConstantDim, %a, %b : vector<4x[4]x[4]xi1>
|
|
/// %subMask = vector.extract %mask[2]
|
|
/// : vector<[4]x[4]xi1> from vector<4x[4]x[4]xi1>
|
|
/// ```
|
|
///
|
|
/// AFTER:
|
|
/// ```mlir
|
|
/// %extractionInTrueRegion = arith.cmpi slt, %c2, %nonConstantDim : index
|
|
/// %newMaskFrontDim = arith.select %extractionInTrueRegion, %a, %c0 : index
|
|
/// %subMask = vector.create_mask %newMaskFrontDim, %b : vector<[4]x[4]xi1>
|
|
/// ```
|
|
struct FoldExtractFromVectorOfSMELikeCreateMasks
|
|
: public OpRewritePattern<vector::ExtractOp> {
|
|
using OpRewritePattern<vector::ExtractOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ExtractOp extractOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto loc = extractOp.getLoc();
|
|
auto createMaskOp =
|
|
extractOp.getVector().getDefiningOp<vector::CreateMaskOp>();
|
|
if (!createMaskOp)
|
|
return rewriter.notifyMatchFailure(
|
|
extractOp, "extract not from vector.create_mask op");
|
|
|
|
VectorType extractedMaskType =
|
|
llvm::dyn_cast<VectorType>(extractOp.getResult().getType());
|
|
if (!extractedMaskType)
|
|
return rewriter.notifyMatchFailure(extractOp,
|
|
"extracted type is not a vector type");
|
|
|
|
auto numScalable = extractedMaskType.getNumScalableDims();
|
|
if (numScalable != 2)
|
|
return rewriter.notifyMatchFailure(
|
|
extractOp, "expected extracted type to be an SME-like mask");
|
|
|
|
// TODO: Support multiple extraction indices.
|
|
if (extractOp.getStaticPosition().size() != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
extractOp, "only a single extraction index is supported");
|
|
|
|
auto frontMaskDim = createMaskOp.getOperand(0);
|
|
if (frontMaskDim.getDefiningOp<arith::ConstantOp>())
|
|
return rewriter.notifyMatchFailure(
|
|
extractOp,
|
|
"constant vector.create_masks dims should be folded elsewhere");
|
|
|
|
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
auto extractionIndex = getValueOrCreateConstantIndexOp(
|
|
rewriter, loc, extractOp.getMixedPosition()[0]);
|
|
auto extractionInTrueRegion = rewriter.create<arith::CmpIOp>(
|
|
loc, rewriter.getI1Type(), arith::CmpIPredicate::slt, extractionIndex,
|
|
frontMaskDim);
|
|
auto newMaskFrontDim = rewriter.create<arith::SelectOp>(
|
|
loc, extractionInTrueRegion, createMaskOp.getOperand(1), zero);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::CreateMaskOp>(
|
|
extractOp, extractedMaskType,
|
|
ValueRange{newMaskFrontDim, createMaskOp.getOperand(2)});
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// A vector type where no fixed dimension comes after a scalable dimension.
|
|
bool isLegalVectorType(VectorType vType) {
|
|
bool seenFixedDim = false;
|
|
for (bool scalableFlag : llvm::reverse(vType.getScalableDims())) {
|
|
seenFixedDim |= !scalableFlag;
|
|
if (seenFixedDim && scalableFlag)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Lifts an illegal vector.transpose and vector.transfer_read to a
|
|
/// memref.subview + memref.transpose, followed by a legal read.
|
|
///
|
|
/// 'Illegal' here means a leading scalable dimension and a fixed trailing
|
|
/// dimension, which has no valid lowering.
|
|
///
|
|
/// The memref.transpose is metadata-only transpose that produces a strided
|
|
/// memref, which eventually becomes a loop reading individual elements.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// BEFORE:
|
|
/// ```mlir
|
|
/// %illegalRead = vector.transfer_read %memref[%a, %b]
|
|
/// : memref<?x?xf32>, vector<[8]x4xf32>
|
|
/// %legalType = vector.transpose %illegalRead, [1, 0]
|
|
/// : vector<[8]x4xf32> to vector<4x[8]xf32>
|
|
/// ```
|
|
///
|
|
/// AFTER:
|
|
/// ```mlir
|
|
/// %readSubview = memref.subview %memref[%a, %b] [%c8_vscale, %c4] [%c1, %c1]
|
|
/// : memref<?x?xf32> to memref<?x?xf32>
|
|
/// %transpose = memref.transpose %readSubview (d0, d1) -> (d1, d0)
|
|
/// : memref<?x?xf32> to memref<?x?xf32>
|
|
/// %legalType = vector.transfer_read %transpose[%c0, %c0]
|
|
/// : memref<?x?xf32>, vector<4x[8]xf32>
|
|
/// ```
|
|
struct LiftIllegalVectorTransposeToMemory
|
|
: public OpRewritePattern<vector::TransposeOp> {
|
|
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
|
|
|
|
static Value getExtensionSource(Operation *op) {
|
|
if (isa_and_present<arith::ExtSIOp, arith::ExtUIOp, arith::ExtFOp>(op))
|
|
return op->getOperand(0);
|
|
return {};
|
|
}
|
|
|
|
LogicalResult matchAndRewrite(vector::TransposeOp transposeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto sourceType = transposeOp.getSourceVectorType();
|
|
auto resultType = transposeOp.getResultVectorType();
|
|
if (isLegalVectorType(sourceType) || !isLegalVectorType(resultType))
|
|
return rewriter.notifyMatchFailure(transposeOp,
|
|
kMatchFailureNotIllegalToLegal);
|
|
|
|
// Look through extend for transfer_read.
|
|
Value maybeRead = transposeOp.getVector();
|
|
auto *transposeSourceOp = maybeRead.getDefiningOp();
|
|
Operation *extendOp = nullptr;
|
|
if (Value extendSource = getExtensionSource(transposeSourceOp)) {
|
|
maybeRead = extendSource;
|
|
extendOp = transposeSourceOp;
|
|
}
|
|
|
|
auto illegalRead = maybeRead.getDefiningOp<vector::TransferReadOp>();
|
|
if (!illegalRead)
|
|
return rewriter.notifyMatchFailure(
|
|
transposeOp,
|
|
"expected source to be (possibly extended) transfer_read");
|
|
|
|
if (!illegalRead.getPermutationMap().isIdentity())
|
|
return rewriter.notifyMatchFailure(
|
|
illegalRead, "expected read to have identity permutation map");
|
|
|
|
auto loc = transposeOp.getLoc();
|
|
auto zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
|
|
auto one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
|
|
|
|
// Create a subview that matches the size of the illegal read vector type.
|
|
auto readType = illegalRead.getVectorType();
|
|
auto readSizes = llvm::map_to_vector(
|
|
llvm::zip_equal(readType.getShape(), readType.getScalableDims()),
|
|
[&](auto dim) -> Value {
|
|
auto [size, isScalable] = dim;
|
|
auto dimSize = rewriter.create<arith::ConstantIndexOp>(loc, size);
|
|
if (!isScalable)
|
|
return dimSize;
|
|
auto vscale = rewriter.create<vector::VectorScaleOp>(loc);
|
|
return rewriter.create<arith::MulIOp>(loc, vscale, dimSize);
|
|
});
|
|
SmallVector<Value> strides(readType.getRank(), Value(one));
|
|
auto readSubview = rewriter.create<memref::SubViewOp>(
|
|
loc, illegalRead.getBase(), illegalRead.getIndices(), readSizes,
|
|
strides);
|
|
|
|
// Apply the transpose to all values/attributes of the transfer_read:
|
|
// - The mask
|
|
Value mask = illegalRead.getMask();
|
|
if (mask) {
|
|
// Note: The transpose for the mask should fold into the
|
|
// vector.create_mask/constant_mask op, which will then become legal.
|
|
mask = rewriter.create<vector::TransposeOp>(loc, mask,
|
|
transposeOp.getPermutation());
|
|
}
|
|
// - The source memref
|
|
mlir::AffineMap transposeMap = AffineMap::getPermutationMap(
|
|
transposeOp.getPermutation(), getContext());
|
|
auto transposedSubview = rewriter.create<memref::TransposeOp>(
|
|
loc, readSubview, AffineMapAttr::get(transposeMap));
|
|
ArrayAttr inBoundsAttr = illegalRead.getInBoundsAttr();
|
|
// - The `in_bounds` attribute
|
|
if (inBoundsAttr) {
|
|
SmallVector<Attribute> inBoundsValues(inBoundsAttr.begin(),
|
|
inBoundsAttr.end());
|
|
applyPermutationToVector(inBoundsValues, transposeOp.getPermutation());
|
|
inBoundsAttr = rewriter.getArrayAttr(inBoundsValues);
|
|
}
|
|
|
|
VectorType legalReadType = resultType.clone(readType.getElementType());
|
|
// Note: The indices are all zero as the subview is already offset.
|
|
SmallVector<Value> readIndices(illegalRead.getIndices().size(), zero);
|
|
auto legalRead = rewriter.create<vector::TransferReadOp>(
|
|
loc, legalReadType, transposedSubview, readIndices,
|
|
illegalRead.getPermutationMapAttr(), illegalRead.getPadding(), mask,
|
|
inBoundsAttr);
|
|
|
|
// Replace the transpose with the new read, extending the result if
|
|
// necessary.
|
|
rewriter.replaceOp(transposeOp, [&]() -> Operation * {
|
|
if (extendOp)
|
|
return rewriter.create(loc, extendOp->getName().getIdentifier(),
|
|
Value(legalRead), resultType);
|
|
return legalRead;
|
|
}());
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// A rewrite to turn unit dim transpose-like vector.shape_casts into
|
|
/// vector.transposes. The shape_cast has to be from an illegal vector type to a
|
|
/// legal one (as defined by isLegalVectorType).
|
|
///
|
|
/// The reasoning for this is if we've got to this pass and we still have
|
|
/// shape_casts of illegal types, then they likely will not cancel out. Turning
|
|
/// them into transposes gives LiftIllegalVectorTransposeToMemory a chance to
|
|
/// eliminate them.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// BEFORE:
|
|
/// ```mlir
|
|
/// %0 = vector.shape_cast %a : vector<[4]x1xf32> to vector<1x[4]xf32>
|
|
/// ```
|
|
///
|
|
/// AFTER:
|
|
/// ```mlir
|
|
/// %0 = vector.transpose %0, [1, 0] : vector<[4]x1xf32> to vector<1x[4]xf32>
|
|
/// ```
|
|
struct ConvertIllegalShapeCastOpsToTransposes
|
|
: public OpRewritePattern<vector::ShapeCastOp> {
|
|
using OpRewritePattern<vector::ShapeCastOp>::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ShapeCastOp shapeCastOp,
|
|
PatternRewriter &rewriter) const override {
|
|
auto sourceType = shapeCastOp.getSourceVectorType();
|
|
auto resultType = shapeCastOp.getResultVectorType();
|
|
if (isLegalVectorType(sourceType) || !isLegalVectorType(resultType))
|
|
return rewriter.notifyMatchFailure(shapeCastOp,
|
|
kMatchFailureNotIllegalToLegal);
|
|
|
|
// Note: If we know that `sourceType` is an illegal vector type (and 2D)
|
|
// then dim 0 is scalable and dim 1 is fixed.
|
|
if (sourceType.getRank() != 2 || sourceType.getDimSize(1) != 1)
|
|
return rewriter.notifyMatchFailure(
|
|
shapeCastOp, "expected source to be a 2D scalable vector with a "
|
|
"trailing unit dim");
|
|
|
|
auto loc = shapeCastOp.getLoc();
|
|
auto transpose = rewriter.create<vector::TransposeOp>(
|
|
loc, shapeCastOp.getSource(), ArrayRef<int64_t>{1, 0});
|
|
|
|
if (resultType.getRank() == 1)
|
|
rewriter.replaceOpWithNewOp<vector::ShapeCastOp>(shapeCastOp, resultType,
|
|
transpose);
|
|
else
|
|
rewriter.replaceOp(shapeCastOp, transpose);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Rewrites an illegal/unsupported SVE transfer_write(transpose) to instead use
|
|
/// the ZA state. This workaround rewrite to support these transposes when ZA is
|
|
/// available.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// BEFORE:
|
|
/// ```mlir
|
|
/// %transpose = vector.transpose %vec, [1, 0]
|
|
/// : vector<2x[4]xf32> to vector<[4]x2xf32>
|
|
/// vector.transfer_write %transpose, %dest[%y, %x]
|
|
/// : vector<[4]x2xf32>, memref<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// AFTER:
|
|
/// ```mlir
|
|
/// %0 = arm_sme.get_tile : vector<[4]x[4]xf32>
|
|
/// %1 = vector.extract %vec[0] : vector<[4]xf32> from vector<2x[4]xf32>
|
|
/// %2 = vector.insert %1, %0 [0] : vector<[4]xf32> into vector<[4]x[4]xf32>
|
|
/// %3 = vector.extract %vec[1] : vector<[4]xf32> from vector<2x[4]xf32>
|
|
/// %4 = vector.insert %3, %2 [1] : vector<[4]xf32> into vector<[4]x[4]xf32>
|
|
/// %c4_vscale = arith.muli %vscale, %c4 : index
|
|
/// %mask = vector.create_mask %c4_vscale, %c2 : vector<[4]x[4]xi1>
|
|
/// vector.transfer_write %4, %dest[%y, %x], %mask
|
|
/// {permutation_map = affine_map<(d0, d1) -> (d1, d0)>}
|
|
/// : vector<[4]x[4]xf32>, memref<?x?xf32>
|
|
/// ```
|
|
///
|
|
/// Values larger than a single tile are supported via decomposition.
|
|
struct LowerIllegalTransposeStoreViaZA
|
|
: public OpRewritePattern<vector::TransferWriteOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!isSupportedMaskOp(writeOp.getMask()))
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureUnsupportedMaskOp);
|
|
|
|
auto permutationMap = writeOp.getPermutationMap();
|
|
if (!permutationMap.isIdentity())
|
|
return rewriter.notifyMatchFailure(writeOp,
|
|
kMatchFailureNonPermutationMap);
|
|
|
|
auto transposeOp = writeOp.getVector().getDefiningOp<vector::TransposeOp>();
|
|
if (!transposeOp)
|
|
return failure();
|
|
|
|
auto sourceType = transposeOp.getSourceVectorType();
|
|
auto resultType = transposeOp.getResultVectorType();
|
|
|
|
if (resultType.getRank() != 2)
|
|
return rewriter.notifyMatchFailure(transposeOp, "TransposeOp not rank 2");
|
|
|
|
if (!isLegalVectorType(sourceType) || isLegalVectorType(resultType))
|
|
return rewriter.notifyMatchFailure(
|
|
transposeOp, "not illegal/unsupported SVE transpose");
|
|
|
|
auto smeTileType = getSMETileTypeForElement(resultType.getElementType());
|
|
VectorType smeSliceType = VectorType::Builder(smeTileType).dropDim(0);
|
|
|
|
if (sourceType.getDimSize(0) <= 1 ||
|
|
sourceType.getDimSize(1) % smeSliceType.getDimSize(0) != 0)
|
|
return rewriter.notifyMatchFailure(writeOp, "unsupported source shape");
|
|
|
|
auto loc = writeOp.getLoc();
|
|
auto createVscaleMultiple =
|
|
vector::makeVscaleConstantBuilder(rewriter, loc);
|
|
|
|
auto transposeMap = AffineMapAttr::get(
|
|
AffineMap::getPermutationMap(ArrayRef<int64_t>{1, 0}, getContext()));
|
|
|
|
// Note: We need to use `get_tile` as there's no vector-level `undef`.
|
|
Value undefTile = rewriter.create<arm_sme::GetTileOp>(loc, smeTileType);
|
|
Value destTensorOrMemref = writeOp.getBase();
|
|
auto numSlicesPerTile =
|
|
std::min(sourceType.getDimSize(0), smeTileType.getDimSize(0));
|
|
auto numSlices =
|
|
rewriter.create<arith::ConstantIndexOp>(loc, numSlicesPerTile);
|
|
for (auto [index, smeTile] : llvm::enumerate(
|
|
decomposeToSMETiles(rewriter, sourceType, smeTileType))) {
|
|
// 1. _Deliberately_ drop a scalable dimension and insert a fixed number
|
|
// of slices from the source type into the SME tile. Without checking
|
|
// vscale (and emitting multiple implementations) we can't make use of the
|
|
// rows of the tile after 1*vscale rows.
|
|
Value tile = undefTile;
|
|
for (int d = 0; d < numSlicesPerTile; ++d) {
|
|
Value vector = rewriter.create<vector::ExtractOp>(
|
|
loc, transposeOp.getVector(),
|
|
rewriter.getIndexAttr(d + smeTile.row));
|
|
if (vector.getType() != smeSliceType) {
|
|
vector = rewriter.create<vector::ScalableExtractOp>(
|
|
loc, smeSliceType, vector, smeTile.col);
|
|
}
|
|
tile = rewriter.create<vector::InsertOp>(loc, vector, tile, d);
|
|
}
|
|
|
|
// 2. Transpose the tile position.
|
|
auto transposedRow = createVscaleMultiple(smeTile.col);
|
|
auto transposedCol =
|
|
rewriter.create<arith::ConstantIndexOp>(loc, smeTile.row);
|
|
|
|
// 3. Compute mask for tile store.
|
|
Value maskRows;
|
|
Value maskCols;
|
|
if (auto mask = writeOp.getMask()) {
|
|
auto createMask = mask.getDefiningOp<vector::CreateMaskOp>();
|
|
maskRows = rewriter.create<arith::SubIOp>(loc, createMask.getOperand(0),
|
|
transposedRow);
|
|
maskCols = rewriter.create<arith::SubIOp>(loc, createMask.getOperand(1),
|
|
transposedCol);
|
|
maskCols = rewriter.create<index::MinSOp>(loc, maskCols, numSlices);
|
|
} else {
|
|
maskRows = createVscaleMultiple(smeTileType.getDimSize(0));
|
|
maskCols = numSlices;
|
|
}
|
|
auto subMask = rewriter.create<vector::CreateMaskOp>(
|
|
loc, smeTileType.clone(rewriter.getI1Type()),
|
|
ValueRange{maskRows, maskCols});
|
|
|
|
// 4. Emit a transposed tile write.
|
|
auto writeIndices = writeOp.getIndices();
|
|
Value destRow =
|
|
rewriter.create<arith::AddIOp>(loc, transposedRow, writeIndices[0]);
|
|
Value destCol =
|
|
rewriter.create<arith::AddIOp>(loc, transposedCol, writeIndices[1]);
|
|
auto smeWrite = rewriter.create<vector::TransferWriteOp>(
|
|
loc, tile, destTensorOrMemref, ValueRange{destRow, destCol},
|
|
transposeMap, subMask, writeOp.getInBounds());
|
|
|
|
if (writeOp.hasPureTensorSemantics())
|
|
destTensorOrMemref = smeWrite.getResult();
|
|
}
|
|
|
|
if (writeOp.hasPureTensorSemantics())
|
|
rewriter.replaceOp(writeOp, destTensorOrMemref);
|
|
else
|
|
rewriter.eraseOp(writeOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
struct VectorLegalizationPass
|
|
: public arm_sme::impl::VectorLegalizationBase<VectorLegalizationPass> {
|
|
void runOnOperation() override {
|
|
auto *context = &getContext();
|
|
TypeConverter converter;
|
|
RewritePatternSet patterns(context);
|
|
converter.addConversion([](Type type) { return type; });
|
|
converter.addConversion(
|
|
[](VectorType vectorType,
|
|
SmallVectorImpl<Type> &types) -> std::optional<LogicalResult> {
|
|
if (!isMultipleOfSMETileVectorType(vectorType))
|
|
return std::nullopt;
|
|
auto smeTileCount = getNumberOfSMETilesForVectorType(vectorType);
|
|
auto smeTileType =
|
|
getSMETileTypeForElement(vectorType.getElementType());
|
|
types = SmallVector<Type>(smeTileCount, smeTileType);
|
|
return success();
|
|
});
|
|
|
|
// Apply preprocessing patterns.
|
|
RewritePatternSet rewritePatterns(context);
|
|
rewritePatterns.add<FoldExtractFromVectorOfSMELikeCreateMasks,
|
|
LiftIllegalVectorTransposeToMemory,
|
|
ConvertIllegalShapeCastOpsToTransposes,
|
|
LowerIllegalTransposeStoreViaZA>(context);
|
|
if (failed(
|
|
applyPatternsGreedily(getOperation(), std::move(rewritePatterns))))
|
|
return signalPassFailure();
|
|
|
|
// Note: These two patterns are added with a high benefit to ensure:
|
|
// - Masked outer products are handled before unmasked ones
|
|
// - Multi-tile writes are lowered as a store loop (if possible)
|
|
patterns.add<LegalizeMaskedVectorOuterProductOpsByDecomposition,
|
|
LegalizeMultiTileTransferWriteAsStoreLoop>(converter, context,
|
|
/*benefit=*/1024);
|
|
patterns.add<LegalizeArithConstantOpsByDecomposition,
|
|
LegalizeVectorOuterProductOpsByDecomposition,
|
|
LegalizeTransferReadOpsByDecomposition,
|
|
LegalizeTransferWriteOpsByDecomposition>(converter, context);
|
|
populateFunctionOpInterfaceTypeConversionPattern<func::FuncOp>(patterns,
|
|
converter);
|
|
populateCallOpTypeConversionPattern(patterns, converter);
|
|
populateReturnOpTypeConversionPattern(patterns, converter);
|
|
scf::populateSCFStructuralTypeConversions(converter, patterns);
|
|
|
|
ConversionTarget target(getContext());
|
|
target.markUnknownOpDynamicallyLegal(
|
|
[&](Operation *op) { return converter.isLegal(op); });
|
|
target.addDynamicallyLegalOp<func::FuncOp>([&](func::FuncOp op) {
|
|
return converter.isSignatureLegal(op.getFunctionType());
|
|
});
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
return signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
std::unique_ptr<Pass> mlir::arm_sme::createVectorLegalizationPass() {
|
|
return std::make_unique<VectorLegalizationPass>();
|
|
}
|