
[mlir][vector] Standardize base Naming Across Vector Ops (NFC) This change standardizes the naming convention for the argument representing the value to read from or write to in Vector ops that interface with Tensors or MemRefs. Specifically, it ensures that all such ops use the name `base` (i.e., the base address or location to which offsets are applied). Updated operations: * `vector.transfer_read`, * `vector.transfer_write`. For reference, these ops already use `base`: * `vector.load`, `vector.store`, `vector.scatter`, `vector.gather`, `vector.expandload`, `vector.compressstore`, `vector.maskedstore`, `vector.maskedload`. This is a non-functional change (NFC) and does not alter the semantics of these operations. However, it does require users of the XFer ops to switch from `op.getSource()` to `op.getBase()`. To ease the transition, this PR temporarily adds a `getSource()` interface method for compatibility. This is intended for downstream use only and should not be relied on upstream. The method will be removed prior to the LLVM 21 release. Implements #131602
322 lines
13 KiB
C++
322 lines
13 KiB
C++
//===- MMAUtils.cpp - MLIR NVGPU dialect utils for MMA operations----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "mlir/Dialect/NVGPU/Utils/MMAUtils.h"
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
|
|
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::nvgpu;
|
|
|
|
/// There are always 4 threads per [128|256|512] bit row.
|
|
static constexpr int64_t kThreadsPerRow = 4;
|
|
static constexpr int64_t kNumRowsPerTile = 8;
|
|
|
|
static bool isAccumulatorOrResult(MatMulOperandRole operandType) {
|
|
return operandType == MatMulOperandRole::C;
|
|
}
|
|
|
|
/// Returns the number of registers which compose a matrix fragment held by a
|
|
/// single thread.
|
|
static int64_t inferNumRegistersPerMatrixFragment(const WarpMatrixInfo &type) {
|
|
int64_t lineSize = inferTileWidthInBits(type);
|
|
auto shape = type.vectorType.getShape();
|
|
return (shape[0] / kNumRowsPerTile) *
|
|
(shape[1] * type.vectorType.getElementType().getIntOrFloatBitWidth()) /
|
|
lineSize;
|
|
}
|
|
|
|
/// Returns the number of 8 x [128|256|512] bit tiles that compose the given
|
|
/// operand shape.
|
|
static std::array<int64_t, 2> getTileShape(ArrayRef<int64_t> operandShape,
|
|
Type elementType,
|
|
int64_t lineSizeBits) {
|
|
// For each 8x128bit square, a thread is responsible for one 32bit register.
|
|
return {operandShape[0] / kNumRowsPerTile,
|
|
(operandShape[1] * elementType.getIntOrFloatBitWidth()) /
|
|
lineSizeBits};
|
|
}
|
|
|
|
/// Returns the first user of the `op` that is vector.contract. If no
|
|
/// vector.contract user exists, return failure.
|
|
FailureOr<vector::ContractionOp> nvgpu::getUserContract(Operation *op) {
|
|
for (Operation *user : op->getUsers()) {
|
|
if (auto contractOp = dyn_cast<vector::ContractionOp>(user))
|
|
return contractOp;
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
FailureOr<WarpMatrixInfo> nvgpu::getWarpMatrixInfo(Operation *op) {
|
|
WarpMatrixInfo info;
|
|
|
|
// Determine the vector type at warp-level.
|
|
if (vector::TransferWriteOp writeOp = dyn_cast<vector::TransferWriteOp>(op)) {
|
|
info.vectorType = writeOp.getVectorType();
|
|
} else if (isa<vector::TransferReadOp, vector::ContractionOp,
|
|
vector::ExtractStridedSliceOp, arith::ConstantOp>(op)) {
|
|
info.vectorType = cast<VectorType>(op->getResult(0).getType());
|
|
} else {
|
|
return op->emitError()
|
|
<< "unhandled operation type in nvgpu.mma.sync conversion path";
|
|
}
|
|
|
|
// Determine the operand role. We assume it is an accumulator/result unless it
|
|
// is directly consumed by a `vector.contract` op.
|
|
info.operandRole = MatMulOperandRole::C;
|
|
FailureOr<vector::ContractionOp> contractOp = getUserContract(op);
|
|
if (failed(contractOp))
|
|
return info;
|
|
|
|
if ((*contractOp).getLhs() == op->getResult(0))
|
|
info.operandRole = MatMulOperandRole::A;
|
|
else if ((*contractOp).getRhs() == op->getResult(0))
|
|
info.operandRole = MatMulOperandRole::B;
|
|
|
|
return info;
|
|
}
|
|
|
|
int64_t nvgpu::inferTileWidthInBits(const WarpMatrixInfo &type) {
|
|
bool isAcc = isAccumulatorOrResult(type.operandRole);
|
|
Type elType = type.vectorType.getElementType();
|
|
if (isAcc && elType.getIntOrFloatBitWidth() == 32) {
|
|
return 256;
|
|
}
|
|
if (elType.getIntOrFloatBitWidth() == 64) {
|
|
return isAcc ? 512 : 256;
|
|
}
|
|
return 128;
|
|
}
|
|
|
|
FailureOr<FragmentElementInfo>
|
|
nvgpu::getMmaSyncRegisterType(const WarpMatrixInfo &type) {
|
|
MLIRContext *ctx = type.vectorType.getContext();
|
|
const bool isAccum = isAccumulatorOrResult(type.operandRole);
|
|
|
|
Type elType = type.vectorType.getElementType();
|
|
if (elType.isF16()) {
|
|
return FragmentElementInfo{VectorType::get(2, Float16Type::get(ctx)), 2, 32,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// f64 operand
|
|
Type f64Ty = Float64Type::get(ctx);
|
|
if (elType.isF64()) {
|
|
return isAccum
|
|
? FragmentElementInfo{VectorType::get(2, f64Ty), 2, 128,
|
|
inferNumRegistersPerMatrixFragment(type)}
|
|
: FragmentElementInfo{f64Ty, 1, 64,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// int8 operand
|
|
if (elType.isInteger(8)) {
|
|
return FragmentElementInfo{VectorType::get(4, IntegerType::get(ctx, 8)), 4,
|
|
32, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// int4 operand
|
|
if (elType.isInteger(4)) {
|
|
return FragmentElementInfo{VectorType::get(8, IntegerType::get(ctx, 4)), 8,
|
|
32, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// Integer 32bit acc operands
|
|
if (elType.isInteger(32)) {
|
|
return FragmentElementInfo{VectorType::get(2, IntegerType::get(ctx, 32)), 2,
|
|
64, inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
|
|
// Floating point 32bit operands
|
|
if (elType.isF32()) {
|
|
Type f32Ty = Float32Type::get(ctx);
|
|
return isAccum
|
|
? FragmentElementInfo{VectorType::get(2, f32Ty), 2, 64,
|
|
inferNumRegistersPerMatrixFragment(type)}
|
|
: FragmentElementInfo{f32Ty, 1, 32,
|
|
inferNumRegistersPerMatrixFragment(type)};
|
|
}
|
|
return failure();
|
|
}
|
|
|
|
static AffineMap getRegisterIndexToTileOffsetMap(int64_t lineSize,
|
|
Type elementType,
|
|
ArrayRef<int64_t> operandShape,
|
|
bool isAccumulator,
|
|
int64_t elementsPerRegister,
|
|
AffineExpr logicalValueId) {
|
|
const int64_t elementsPerLine =
|
|
lineSize / elementType.getIntOrFloatBitWidth();
|
|
const std::array<int64_t, 2> num8x128bTiles =
|
|
getTileShape(operandShape, elementType, lineSize);
|
|
AffineExpr registerIdx = logicalValueId.floorDiv(elementsPerRegister);
|
|
return AffineMap::get(
|
|
2, 0,
|
|
{(registerIdx % num8x128bTiles[0]) * 8,
|
|
(registerIdx.floorDiv(num8x128bTiles[0])) * elementsPerLine},
|
|
elementType.getContext());
|
|
}
|
|
|
|
FailureOr<AffineMap>
|
|
nvgpu::getLaneIdAndValueIdToOperandCoord(OpBuilder &builder, Location loc,
|
|
const WarpMatrixInfo &fragmentType) {
|
|
Type elementType = fragmentType.vectorType.getElementType();
|
|
ArrayRef<int64_t> operandShape = fragmentType.vectorType.getShape();
|
|
FailureOr<nvgpu::FragmentElementInfo> regInfo =
|
|
getMmaSyncRegisterType(fragmentType);
|
|
if (failed(regInfo))
|
|
return failure();
|
|
|
|
const int64_t elementBitWidth = elementType.getIntOrFloatBitWidth();
|
|
const int64_t elementsPerRegister =
|
|
regInfo->registerWidthBits / elementBitWidth;
|
|
const int64_t lineSize = inferTileWidthInBits(fragmentType);
|
|
|
|
AffineExpr laneId, logicalValueIdDim;
|
|
bindDims(builder.getContext(), laneId, logicalValueIdDim);
|
|
|
|
// Determine what register logicalValueId corresponds to. Use that as a
|
|
// linear index into the coordinate mapping `index -> (tile row, tile col)`.
|
|
AffineMap registerIndexToTileCoord = getRegisterIndexToTileOffsetMap(
|
|
lineSize, elementType, operandShape,
|
|
isAccumulatorOrResult(fragmentType.operandRole), elementsPerRegister,
|
|
logicalValueIdDim);
|
|
|
|
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
|
|
return AffineMap::get(2, 0, dimExprs, builder.getContext());
|
|
};
|
|
|
|
auto tileRow = registerIndexToTileCoord.getResult(0);
|
|
auto tileCol = registerIndexToTileCoord.getResult(1);
|
|
return makeMap({tileRow + laneId.floorDiv(kThreadsPerRow),
|
|
tileCol + (laneId % kThreadsPerRow) * elementsPerRegister +
|
|
(logicalValueIdDim % elementsPerRegister)});
|
|
}
|
|
|
|
FailureOr<nvgpu::LdMatrixParams>
|
|
nvgpu::getLdMatrixParams(const WarpMatrixInfo &type, bool transpose) {
|
|
LdMatrixParams params;
|
|
Type elType = type.vectorType.getElementType();
|
|
params.fragmentType = type.vectorType;
|
|
if (type.operandRole == MatMulOperandRole::A ||
|
|
type.operandRole == MatMulOperandRole::C) {
|
|
params.targetLayout = NVVM::MMALayout::row;
|
|
} else {
|
|
params.targetLayout = NVVM::MMALayout::col;
|
|
}
|
|
ArrayRef<int64_t> shape = type.vectorType.getShape();
|
|
params.contiguousDimType = transpose ? vector::IteratorType::parallel
|
|
: vector::IteratorType::reduction;
|
|
|
|
if (params.contiguousDimType == vector::IteratorType::reduction) {
|
|
params.numTiles = (shape[0] / kNumRowsPerTile) *
|
|
((shape[1] * elType.getIntOrFloatBitWidth()) / 128);
|
|
} else {
|
|
params.numTiles = (shape[1] / kNumRowsPerTile) *
|
|
((shape[0] * elType.getIntOrFloatBitWidth()) / 128);
|
|
}
|
|
|
|
if (params.numTiles == 0)
|
|
return failure();
|
|
|
|
return params;
|
|
}
|
|
|
|
FailureOr<AffineMap>
|
|
nvgpu::getLaneIdToLdMatrixMatrixCoord(OpBuilder &builder, Location loc,
|
|
const LdMatrixParams ¶ms) {
|
|
// One thread per 128b row.
|
|
const int bitsPerElement = static_cast<int>(
|
|
params.fragmentType.getElementType().getIntOrFloatBitWidth());
|
|
const int kElementsPer128b = (128 / bitsPerElement);
|
|
ArrayRef<int64_t> operandShape = params.fragmentType.getShape();
|
|
AffineExpr d0 = getAffineDimExpr(0, builder.getContext());
|
|
|
|
auto makeMap = [&](ArrayRef<AffineExpr> dimExprs) -> AffineMap {
|
|
return AffineMap::get(1, 0, dimExprs, builder.getContext());
|
|
};
|
|
|
|
// Index `idx` in vectorType `operandShape` maps to the strided dimension of
|
|
// the `srcMemref` memory of the LdMatrixOp.
|
|
int idx =
|
|
(params.contiguousDimType == vector::IteratorType::reduction) ? 0 : 1;
|
|
|
|
// Affine expr in strided and contiguous dimension encodes the coordinate
|
|
// mapping for the element a thread points to for warp-wide LdMatrixOp.
|
|
AffineExpr strided = d0 % (operandShape[idx]);
|
|
AffineExpr contiguous = d0.floorDiv(operandShape[idx]) * (kElementsPer128b);
|
|
|
|
// This case corresponds to row-major matrixA or col-major matrixB or
|
|
// row-major matrixC. This is when the memory layout in `srcMemref`
|
|
// match mma.sync hardware vector register operand layout.
|
|
if (params.contiguousDimType == vector::IteratorType::reduction)
|
|
return makeMap({strided, contiguous});
|
|
|
|
// This case corresponds to col-major matrixA or row-major matrixB or
|
|
// col-major matrixC. This is when the memory layout in `srcMemref` does not
|
|
// match mma.sync hardware vector register operand layout.
|
|
if (params.contiguousDimType == vector::IteratorType::parallel)
|
|
return makeMap({contiguous, strided});
|
|
|
|
return failure();
|
|
}
|
|
|
|
bool nvgpu::canLowerToWarpMatrixOperation(vector::TransferReadOp op) {
|
|
if (op.getMask() || op.hasOutOfBoundsDim())
|
|
return false;
|
|
VectorType type = op.getType();
|
|
// The result type should be 2D. Note that it is possible to expand support so
|
|
// that we are robust to extra unit dimensions that failed to fold, but that
|
|
// would significantly increase downstream code complexity in the conversion
|
|
// step. For now, we rely on other patterns to ensure canonical 2D form is
|
|
// used when targeting the `nvgpu.mma.sync` lowering path.
|
|
if (!type.hasStaticShape() || type.getRank() != 2)
|
|
return false;
|
|
|
|
// Currently we can't support reads on tensor types because we need stride
|
|
// information to ensure correctness of downstream assumptions. It is possible
|
|
// to enable this if caller can assert that tensor will be lowered in a
|
|
// particular manner.
|
|
auto sourceType = dyn_cast<MemRefType>(op.getBase().getType());
|
|
if (!sourceType)
|
|
return false;
|
|
|
|
// Check that the last dimension of the read is contiguous. Note that it is
|
|
// possible to expand support for this by scalarizing all the loads during
|
|
// conversion.
|
|
auto [strides, offset] = sourceType.getStridesAndOffset();
|
|
return strides.back() == 1;
|
|
}
|
|
|
|
bool nvgpu::canLowerToWarpMatrixOperation(vector::TransferWriteOp op) {
|
|
if (op.getMask() || op.hasOutOfBoundsDim() || op.getTransferRank() == 0)
|
|
return false;
|
|
VectorType type = op.getVectorType();
|
|
if (!type.hasStaticShape() || type.getRank() != 2)
|
|
return false;
|
|
// TODO: Currently we rely on lowering to a `vector.store` operation. We could
|
|
// support the transposed write case by lowering to scalarized `memref.store`
|
|
// operations.
|
|
if (!op.getPermutationMap().isMinorIdentity())
|
|
return false;
|
|
// Currently we can't support reads on tensor types because we need stride
|
|
// information to ensure correctness of downstream assumptions.
|
|
auto sourceType = dyn_cast<MemRefType>(op.getBase().getType());
|
|
if (!sourceType)
|
|
return false;
|
|
|
|
// Check that the last dimension of the target memref is contiguous. Note that
|
|
// it is possible to expand support for this by scalarizing all the stores
|
|
// during conversion.
|
|
auto [strides, offset] = sourceType.getStridesAndOffset();
|
|
return strides.back() == 1;
|
|
}
|