
[mlir][vector] Standardize base Naming Across Vector Ops (NFC) This change standardizes the naming convention for the argument representing the value to read from or write to in Vector ops that interface with Tensors or MemRefs. Specifically, it ensures that all such ops use the name `base` (i.e., the base address or location to which offsets are applied). Updated operations: * `vector.transfer_read`, * `vector.transfer_write`. For reference, these ops already use `base`: * `vector.load`, `vector.store`, `vector.scatter`, `vector.gather`, `vector.expandload`, `vector.compressstore`, `vector.maskedstore`, `vector.maskedload`. This is a non-functional change (NFC) and does not alter the semantics of these operations. However, it does require users of the XFer ops to switch from `op.getSource()` to `op.getBase()`. To ease the transition, this PR temporarily adds a `getSource()` interface method for compatibility. This is intended for downstream use only and should not be relied on upstream. The method will be removed prior to the LLVM 21 release. Implements #131602
328 lines
13 KiB
C++
328 lines
13 KiB
C++
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Vector/Transforms/BufferizableOpInterfaceImpl.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/IR/DstBufferizableOpInterfaceImpl.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/Dialect.h"
|
|
#include "mlir/IR/Operation.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
using namespace mlir::vector;
|
|
|
|
namespace mlir {
|
|
namespace vector {
|
|
namespace {
|
|
|
|
/// Bufferization of vector.transfer_read. Replaced with a new
|
|
/// vector.transfer_read that operates on a memref.
|
|
struct TransferReadOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<TransferReadOpInterface,
|
|
vector::TransferReadOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
assert(isa<RankedTensorType>(opOperand.get().getType()) &&
|
|
"only tensor types expected");
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
assert(isa<RankedTensorType>(opOperand.get().getType()) &&
|
|
"only tensor types expected");
|
|
return false;
|
|
}
|
|
|
|
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto readOp = cast<vector::TransferReadOp>(op);
|
|
assert(isa<TensorType>(readOp.getShapedType()) &&
|
|
"only tensor types expected");
|
|
FailureOr<Value> buffer = getBuffer(rewriter, readOp.getBase(), options);
|
|
if (failed(buffer))
|
|
return failure();
|
|
replaceOpWithNewBufferizedOp<vector::TransferReadOp>(
|
|
rewriter, readOp, readOp.getVectorType(), *buffer, readOp.getIndices(),
|
|
readOp.getPermutationMap(), readOp.getPadding(), readOp.getMask(),
|
|
readOp.getInBoundsAttr());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of vector.transfer_write. Replace with a new
|
|
/// vector.transfer_write that operates on a memref.
|
|
///
|
|
/// Note: DstBufferizableOpInterfaceExternalModel provides many default method
|
|
/// implementations for DestinationStyle ops.
|
|
struct TransferWriteOpInterface
|
|
: public DstBufferizableOpInterfaceExternalModel<TransferWriteOpInterface,
|
|
vector::TransferWriteOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
auto writeOp = cast<vector::TransferWriteOp>(op);
|
|
|
|
// Does not bufferize to a memory read if the vector completely overwrites
|
|
// the buffer.
|
|
|
|
// Destination must have static shape.
|
|
if (!writeOp.getShapedType().hasStaticShape())
|
|
return true;
|
|
|
|
// All offsets must be 0.
|
|
for (Value offset : writeOp.getIndices()) {
|
|
if (getConstantIntValue(offset) != 0)
|
|
return true;
|
|
}
|
|
|
|
// There is no mask.
|
|
if (writeOp.isMasked())
|
|
return true;
|
|
|
|
// Must write at least the full dimension size.
|
|
for (auto [d0, d1] : llvm::zip(writeOp.getShapedType().getShape(),
|
|
writeOp.getVectorType().getShape())) {
|
|
if (d0 > d1)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto writeOp = cast<vector::TransferWriteOp>(op);
|
|
assert(isa<TensorType>(writeOp.getShapedType()) &&
|
|
"only tensor types expected");
|
|
|
|
// Create a new transfer_write on buffer that doesn't have a return value.
|
|
FailureOr<Value> resultBuffer =
|
|
getBuffer(rewriter, writeOp.getBase(), options);
|
|
if (failed(resultBuffer))
|
|
return failure();
|
|
rewriter.create<vector::TransferWriteOp>(
|
|
writeOp.getLoc(), writeOp.getVector(), *resultBuffer,
|
|
writeOp.getIndices(), writeOp.getPermutationMapAttr(),
|
|
writeOp.getMask(), writeOp.getInBoundsAttr());
|
|
replaceOpWithBufferizedValues(rewriter, op, *resultBuffer);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of vector.gather. Replaced with a new vector.gather that
|
|
/// operates on a memref.
|
|
struct GatherOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<GatherOpInterface,
|
|
vector::GatherOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
assert(isa<RankedTensorType>(opOperand.get().getType()) &&
|
|
"only tensor types expected");
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
assert(isa<RankedTensorType>(opOperand.get().getType()) &&
|
|
"only tensor types expected");
|
|
return false;
|
|
}
|
|
|
|
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {};
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto gatherOp = cast<vector::GatherOp>(op);
|
|
assert(isa<TensorType>(gatherOp.getBaseType()) &&
|
|
"only tensor types expected");
|
|
FailureOr<Value> buffer = getBuffer(rewriter, gatherOp.getBase(), options);
|
|
if (failed(buffer))
|
|
return failure();
|
|
replaceOpWithNewBufferizedOp<vector::GatherOp>(
|
|
rewriter, gatherOp, gatherOp.getVectorType(), *buffer,
|
|
gatherOp.getIndices(), gatherOp.getIndexVec(), gatherOp.getMask(),
|
|
gatherOp.getPassThru());
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of vector.mask. Replaced with a new vector.mask that
|
|
/// operates on a memref.
|
|
struct MaskOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<MaskOpInterface,
|
|
vector::MaskOp> {
|
|
AliasingOpOperandList
|
|
getAliasingOpOperands(Operation *op, Value value,
|
|
const AnalysisState &state) const {
|
|
// MaskOps do not have tensor OpOperands. The yielded values are the result
|
|
// of the wrapped op.
|
|
auto maskOp = cast<vector::MaskOp>(op);
|
|
size_t resultNum = std::distance(op->getOpResults().begin(),
|
|
llvm::find(op->getOpResults(), value));
|
|
auto yieldOp =
|
|
cast<vector::YieldOp>(maskOp.getMaskRegion().front().getTerminator());
|
|
return {{&yieldOp->getOpOperand(resultNum), BufferRelation::Equivalent}};
|
|
}
|
|
|
|
LogicalResult resolveConflicts(Operation *op, RewriterBase &rewriter,
|
|
const AnalysisState &state) const {
|
|
auto bufferizableOp = cast<BufferizableOpInterface>(op);
|
|
if (failed(bufferizableOp.resolveTensorOpOperandConflicts(rewriter, state)))
|
|
return failure();
|
|
|
|
// TODO: Remove this function when vector.mask bodies can bufferize
|
|
// out-of-place. This is currently not supported because yielding allocs
|
|
// from a block leads to a memory leak and because vector.mask supports only
|
|
// a single op in its body.
|
|
auto maskOp = cast<vector::MaskOp>(op);
|
|
if (!maskOp.getMaskRegion()
|
|
.front()
|
|
.getOps<bufferization::AllocTensorOp>()
|
|
.empty())
|
|
return op->emitOpError("body must bufferize in-place");
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto maskOp = cast<vector::MaskOp>(op);
|
|
|
|
// Do not bufferize if the masked op is not bufferizable.
|
|
Operation *maskedOp = maskOp.getMaskableOp();
|
|
if (!options.dynCastBufferizableOp(maskedOp))
|
|
return success();
|
|
|
|
// Update the terminator: Drop all operands that are not results of the
|
|
// masked op.
|
|
auto yieldOp =
|
|
cast<vector::YieldOp>(maskOp.getMaskRegion().front().getTerminator());
|
|
SmallVector<Value> newReturnValues(maskOp->getNumResults(), Value());
|
|
SmallVector<Value> newYieldedValues;
|
|
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
|
|
if (llvm::is_contained(maskedOp->getOpResults(), it.value())) {
|
|
newYieldedValues.push_back(it.value());
|
|
} else {
|
|
// This used to be a tensor result of the masked op, but is now a memref
|
|
// that is defined outside of the vector.mask op.
|
|
newReturnValues[it.index()] = it.value();
|
|
}
|
|
}
|
|
rewriter.modifyOpInPlace(yieldOp, [&]() {
|
|
yieldOp.getOperandsMutable().assign(newYieldedValues);
|
|
});
|
|
|
|
// Create a new vector.mask op.
|
|
ValueRange newYieldedValuesRange(newYieldedValues);
|
|
TypeRange newResultTypes(newYieldedValuesRange);
|
|
auto newOp = rewriter.create<vector::MaskOp>(
|
|
op->getLoc(), newResultTypes, maskOp.getMask(), maskOp.getPassthru(),
|
|
/*maskableOp=*/nullptr,
|
|
/*maskRegionBuilder=*/[](OpBuilder &b, Operation *) {});
|
|
newOp.getRegion().takeBody(maskOp.getMaskRegion());
|
|
|
|
// Replace all uses of the old vector.mask op.
|
|
int idx = 0;
|
|
for (int i = 0; i < static_cast<int>(maskOp->getNumResults()); ++i) {
|
|
if (!newReturnValues[i])
|
|
newReturnValues[i] = newOp->getResult(idx++);
|
|
}
|
|
replaceOpWithBufferizedValues(rewriter, maskOp, newReturnValues);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
/// Bufferization of vector.yield. Replaced with a new vector.yield that
|
|
/// operates on a memref.
|
|
struct YieldOpInterface
|
|
: public BufferizableOpInterface::ExternalModel<YieldOpInterface,
|
|
vector::YieldOp> {
|
|
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return true;
|
|
}
|
|
|
|
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return false;
|
|
}
|
|
|
|
AliasingValueList getAliasingValues(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
return {{op->getParentOp()->getResult(opOperand.getOperandNumber()),
|
|
BufferRelation::Equivalent}};
|
|
}
|
|
|
|
bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
|
|
const AnalysisState &state) const {
|
|
// Yield operands always bufferize inplace. Otherwise, an alloc + copy
|
|
// may be generated inside the block. We should not return/yield allocations
|
|
// when possible.
|
|
return true;
|
|
}
|
|
|
|
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
|
|
const BufferizationOptions &options) const {
|
|
auto yieldOp = cast<vector::YieldOp>(op);
|
|
|
|
// Only supported as a vector.mask terminator.
|
|
auto maskOp = dyn_cast<vector::MaskOp>(yieldOp->getParentOp());
|
|
if (!maskOp)
|
|
return yieldOp->emitError("unsupported vector::YieldOp parent");
|
|
|
|
// Do not bufferize if the masked op is not bufferizable.
|
|
Operation *maskedOp = &maskOp.getMaskRegion().front().front();
|
|
if (!options.dynCastBufferizableOp(maskedOp))
|
|
return success();
|
|
|
|
// Create a new terminator with the same number of operands. Some of these
|
|
// may get dropped during the bufferization of vector.mask.
|
|
SmallVector<Value> newResults;
|
|
for (Value value : yieldOp.getOperands()) {
|
|
if (isa<TensorType>(value.getType())) {
|
|
FailureOr<Value> maybeBuffer = getBuffer(rewriter, value, options);
|
|
if (failed(maybeBuffer))
|
|
return failure();
|
|
newResults.push_back(*maybeBuffer);
|
|
} else {
|
|
newResults.push_back(value);
|
|
}
|
|
}
|
|
|
|
replaceOpWithNewBufferizedOp<vector::YieldOp>(rewriter, op, newResults);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
} // namespace vector
|
|
} // namespace mlir
|
|
|
|
void mlir::vector::registerBufferizableOpInterfaceExternalModels(
|
|
DialectRegistry ®istry) {
|
|
registry.addExtension(+[](MLIRContext *ctx, vector::VectorDialect *dialect) {
|
|
TransferReadOp::attachInterface<TransferReadOpInterface>(*ctx);
|
|
TransferWriteOp::attachInterface<TransferWriteOpInterface>(*ctx);
|
|
GatherOp::attachInterface<GatherOpInterface>(*ctx);
|
|
MaskOp::attachInterface<MaskOpInterface>(*ctx);
|
|
YieldOp::attachInterface<YieldOpInterface>(*ctx);
|
|
});
|
|
}
|