
[mlir][vector] Standardize base Naming Across Vector Ops (NFC) This change standardizes the naming convention for the argument representing the value to read from or write to in Vector ops that interface with Tensors or MemRefs. Specifically, it ensures that all such ops use the name `base` (i.e., the base address or location to which offsets are applied). Updated operations: * `vector.transfer_read`, * `vector.transfer_write`. For reference, these ops already use `base`: * `vector.load`, `vector.store`, `vector.scatter`, `vector.gather`, `vector.expandload`, `vector.compressstore`, `vector.maskedstore`, `vector.maskedload`. This is a non-functional change (NFC) and does not alter the semantics of these operations. However, it does require users of the XFer ops to switch from `op.getSource()` to `op.getBase()`. To ease the transition, this PR temporarily adds a `getSource()` interface method for compatibility. This is intended for downstream use only and should not be relied on upstream. The method will be removed prior to the LLVM 21 release. Implements #131602
672 lines
28 KiB
C++
672 lines
28 KiB
C++
//===- VectorTransferSplitRewritePatterns.cpp - Transfer Split Rewrites ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements target-independent patterns to rewrite a vector.transfer
|
|
// op into a fully in-bounds part and a partial part.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <optional>
|
|
#include <type_traits>
|
|
|
|
#include "mlir/Dialect/Affine/IR/AffineOps.h"
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Linalg/IR/Linalg.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/Dialect/SCF/IR/SCF.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
|
|
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Interfaces/VectorInterfaces.h"
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#define DEBUG_TYPE "vector-transfer-split"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
/// Build the condition to ensure that a particular VectorTransferOpInterface
|
|
/// is in-bounds.
|
|
static Value createInBoundsCond(RewriterBase &b,
|
|
VectorTransferOpInterface xferOp) {
|
|
assert(xferOp.getPermutationMap().isMinorIdentity() &&
|
|
"Expected minor identity map");
|
|
Value inBoundsCond;
|
|
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
|
|
// Zip over the resulting vector shape and memref indices.
|
|
// If the dimension is known to be in-bounds, it does not participate in
|
|
// the construction of `inBoundsCond`.
|
|
if (xferOp.isDimInBounds(resultIdx))
|
|
return;
|
|
// Fold or create the check that `index + vector_size` <= `memref_size`.
|
|
Location loc = xferOp.getLoc();
|
|
int64_t vectorSize = xferOp.getVectorType().getDimSize(resultIdx);
|
|
OpFoldResult sum = affine::makeComposedFoldedAffineApply(
|
|
b, loc, b.getAffineDimExpr(0) + b.getAffineConstantExpr(vectorSize),
|
|
{xferOp.getIndices()[indicesIdx]});
|
|
OpFoldResult dimSz =
|
|
memref::getMixedSize(b, loc, xferOp.getBase(), indicesIdx);
|
|
auto maybeCstSum = getConstantIntValue(sum);
|
|
auto maybeCstDimSz = getConstantIntValue(dimSz);
|
|
if (maybeCstSum && maybeCstDimSz && *maybeCstSum <= *maybeCstDimSz)
|
|
return;
|
|
Value cond =
|
|
b.create<arith::CmpIOp>(loc, arith::CmpIPredicate::sle,
|
|
getValueOrCreateConstantIndexOp(b, loc, sum),
|
|
getValueOrCreateConstantIndexOp(b, loc, dimSz));
|
|
// Conjunction over all dims for which we are in-bounds.
|
|
if (inBoundsCond)
|
|
inBoundsCond = b.create<arith::AndIOp>(loc, inBoundsCond, cond);
|
|
else
|
|
inBoundsCond = cond;
|
|
});
|
|
return inBoundsCond;
|
|
}
|
|
|
|
/// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds
|
|
/// masking) fast path and a slow path.
|
|
/// If `ifOp` is not null and the result is `success, the `ifOp` points to the
|
|
/// newly created conditional upon function return.
|
|
/// To accommodate for the fact that the original vector.transfer indexing may
|
|
/// be arbitrary and the slow path indexes @[0...0] in the temporary buffer, the
|
|
/// scf.if op returns a view and values of type index.
|
|
/// At this time, only vector.transfer_read case is implemented.
|
|
///
|
|
/// Example (a 2-D vector.transfer_read):
|
|
/// ```
|
|
/// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...>
|
|
/// ```
|
|
/// is transformed into:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// // fast path, direct cast
|
|
/// memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// // slow path, not in-bounds vector.transfer or linalg.copy.
|
|
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %4 : compatibleMemRefType, index, index
|
|
// }
|
|
/// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]}
|
|
/// ```
|
|
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
|
|
///
|
|
/// Preconditions:
|
|
/// 1. `xferOp.getPermutationMap()` must be a minor identity map
|
|
/// 2. the rank of the `xferOp.memref()` and the rank of the
|
|
/// `xferOp.getVector()` must be equal. This will be relaxed in the future
|
|
/// but requires rank-reducing subviews.
|
|
static LogicalResult
|
|
splitFullAndPartialTransferPrecondition(VectorTransferOpInterface xferOp) {
|
|
// TODO: support 0-d corner case.
|
|
if (xferOp.getTransferRank() == 0)
|
|
return failure();
|
|
|
|
// TODO: expand support to these 2 cases.
|
|
if (!xferOp.getPermutationMap().isMinorIdentity())
|
|
return failure();
|
|
// Must have some out-of-bounds dimension to be a candidate for splitting.
|
|
if (!xferOp.hasOutOfBoundsDim())
|
|
return failure();
|
|
// Don't split transfer operations directly under IfOp, this avoids applying
|
|
// the pattern recursively.
|
|
// TODO: improve the filtering condition to make it more applicable.
|
|
if (isa<scf::IfOp>(xferOp->getParentOp()))
|
|
return failure();
|
|
return success();
|
|
}
|
|
|
|
/// Given two MemRefTypes `aT` and `bT`, return a MemRefType to which both can
|
|
/// be cast. If the MemRefTypes don't have the same rank or are not strided,
|
|
/// return null; otherwise:
|
|
/// 1. if `aT` and `bT` are cast-compatible, return `aT`.
|
|
/// 2. else return a new MemRefType obtained by iterating over the shape and
|
|
/// strides and:
|
|
/// a. keeping the ones that are static and equal across `aT` and `bT`.
|
|
/// b. using a dynamic shape and/or stride for the dimensions that don't
|
|
/// agree.
|
|
static MemRefType getCastCompatibleMemRefType(MemRefType aT, MemRefType bT) {
|
|
if (memref::CastOp::areCastCompatible(aT, bT))
|
|
return aT;
|
|
if (aT.getRank() != bT.getRank())
|
|
return MemRefType();
|
|
int64_t aOffset, bOffset;
|
|
SmallVector<int64_t, 4> aStrides, bStrides;
|
|
if (failed(aT.getStridesAndOffset(aStrides, aOffset)) ||
|
|
failed(bT.getStridesAndOffset(bStrides, bOffset)) ||
|
|
aStrides.size() != bStrides.size())
|
|
return MemRefType();
|
|
|
|
ArrayRef<int64_t> aShape = aT.getShape(), bShape = bT.getShape();
|
|
int64_t resOffset;
|
|
SmallVector<int64_t, 4> resShape(aT.getRank(), 0),
|
|
resStrides(bT.getRank(), 0);
|
|
for (int64_t idx = 0, e = aT.getRank(); idx < e; ++idx) {
|
|
resShape[idx] =
|
|
(aShape[idx] == bShape[idx]) ? aShape[idx] : ShapedType::kDynamic;
|
|
resStrides[idx] =
|
|
(aStrides[idx] == bStrides[idx]) ? aStrides[idx] : ShapedType::kDynamic;
|
|
}
|
|
resOffset = (aOffset == bOffset) ? aOffset : ShapedType::kDynamic;
|
|
return MemRefType::get(
|
|
resShape, aT.getElementType(),
|
|
StridedLayoutAttr::get(aT.getContext(), resOffset, resStrides));
|
|
}
|
|
|
|
/// Casts the given memref to a compatible memref type. If the source memref has
|
|
/// a different address space than the target type, a `memref.memory_space_cast`
|
|
/// is first inserted, followed by a `memref.cast`.
|
|
static Value castToCompatibleMemRefType(OpBuilder &b, Value memref,
|
|
MemRefType compatibleMemRefType) {
|
|
MemRefType sourceType = cast<MemRefType>(memref.getType());
|
|
Value res = memref;
|
|
if (sourceType.getMemorySpace() != compatibleMemRefType.getMemorySpace()) {
|
|
sourceType = MemRefType::get(
|
|
sourceType.getShape(), sourceType.getElementType(),
|
|
sourceType.getLayout(), compatibleMemRefType.getMemorySpace());
|
|
res = b.create<memref::MemorySpaceCastOp>(memref.getLoc(), sourceType, res);
|
|
}
|
|
if (sourceType == compatibleMemRefType)
|
|
return res;
|
|
return b.create<memref::CastOp>(memref.getLoc(), compatibleMemRefType, res);
|
|
}
|
|
|
|
/// Operates under a scoped context to build the intersection between the
|
|
/// view `xferOp.getbase()` @ `xferOp.getIndices()` and the view `alloc`.
|
|
// TODO: view intersection/union/differences should be a proper std op.
|
|
static std::pair<Value, Value>
|
|
createSubViewIntersection(RewriterBase &b, VectorTransferOpInterface xferOp,
|
|
Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
int64_t memrefRank = xferOp.getShapedType().getRank();
|
|
// TODO: relax this precondition, will require rank-reducing subviews.
|
|
assert(memrefRank == cast<MemRefType>(alloc.getType()).getRank() &&
|
|
"Expected memref rank to match the alloc rank");
|
|
ValueRange leadingIndices =
|
|
xferOp.getIndices().take_front(xferOp.getLeadingShapedRank());
|
|
SmallVector<OpFoldResult, 4> sizes;
|
|
sizes.append(leadingIndices.begin(), leadingIndices.end());
|
|
auto isaWrite = isa<vector::TransferWriteOp>(xferOp);
|
|
xferOp.zipResultAndIndexing([&](int64_t resultIdx, int64_t indicesIdx) {
|
|
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
|
|
Value dimMemRef =
|
|
b.create<memref::DimOp>(xferOp.getLoc(), xferOp.getBase(), indicesIdx);
|
|
Value dimAlloc = b.create<memref::DimOp>(loc, alloc, resultIdx);
|
|
Value index = xferOp.getIndices()[indicesIdx];
|
|
AffineExpr i, j, k;
|
|
bindDims(xferOp.getContext(), i, j, k);
|
|
SmallVector<AffineMap, 4> maps =
|
|
AffineMap::inferFromExprList(MapList{{i - j, k}}, b.getContext());
|
|
// affine_min(%dimMemRef - %index, %dimAlloc)
|
|
Value affineMin = b.create<affine::AffineMinOp>(
|
|
loc, index.getType(), maps[0], ValueRange{dimMemRef, index, dimAlloc});
|
|
sizes.push_back(affineMin);
|
|
});
|
|
|
|
SmallVector<OpFoldResult> srcIndices = llvm::to_vector<4>(llvm::map_range(
|
|
xferOp.getIndices(), [](Value idx) -> OpFoldResult { return idx; }));
|
|
SmallVector<OpFoldResult> destIndices(memrefRank, b.getIndexAttr(0));
|
|
SmallVector<OpFoldResult> strides(memrefRank, b.getIndexAttr(1));
|
|
auto copySrc = b.create<memref::SubViewOp>(
|
|
loc, isaWrite ? alloc : xferOp.getBase(), srcIndices, sizes, strides);
|
|
auto copyDest = b.create<memref::SubViewOp>(
|
|
loc, isaWrite ? xferOp.getBase() : alloc, destIndices, sizes, strides);
|
|
return std::make_pair(copySrc, copyDest);
|
|
}
|
|
|
|
/// Given an `xferOp` for which:
|
|
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
|
|
/// 2. a memref of single vector `alloc` has been allocated.
|
|
/// Produce IR resembling:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>)
|
|
/// %view = memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view, ... : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// %2 = linalg.fill(%pad, %alloc)
|
|
/// %3 = subview %view [...][...][...]
|
|
/// %4 = subview %alloc [0, 0] [...] [...]
|
|
/// linalg.copy(%3, %4)
|
|
/// %5 = memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %5, ... : compatibleMemRefType, index, index
|
|
/// }
|
|
/// ```
|
|
/// Return the produced scf::IfOp.
|
|
static scf::IfOp
|
|
createFullPartialLinalgCopy(RewriterBase &b, vector::TransferReadOp xferOp,
|
|
TypeRange returnTypes, Value inBoundsCond,
|
|
MemRefType compatibleMemRefType, Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value memref = xferOp.getBase();
|
|
return b.create<scf::IfOp>(
|
|
loc, inBoundsCond,
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{res};
|
|
llvm::append_range(viewAndIndices, xferOp.getIndices());
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
},
|
|
[&](OpBuilder &b, Location loc) {
|
|
b.create<linalg::FillOp>(loc, ValueRange{xferOp.getPadding()},
|
|
ValueRange{alloc});
|
|
// Take partial subview of memref which guarantees no dimension
|
|
// overflows.
|
|
IRRewriter rewriter(b);
|
|
std::pair<Value, Value> copyArgs = createSubViewIntersection(
|
|
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
|
|
alloc);
|
|
b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second);
|
|
Value casted =
|
|
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{casted};
|
|
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
|
|
zero);
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
});
|
|
}
|
|
|
|
/// Given an `xferOp` for which:
|
|
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
|
|
/// 2. a memref of single vector `alloc` has been allocated.
|
|
/// Produce IR resembling:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// (memref.memory_space_cast %A: memref<A..., addr_space> to memref<A...>)
|
|
/// memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view, ... : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// %2 = vector.transfer_read %view[...], %pad : memref<A...>, vector<...>
|
|
/// %3 = vector.type_cast %extra_alloc :
|
|
/// memref<...> to memref<vector<...>>
|
|
/// store %2, %3[] : memref<vector<...>>
|
|
/// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %4, ... : compatibleMemRefType, index, index
|
|
/// }
|
|
/// ```
|
|
/// Return the produced scf::IfOp.
|
|
static scf::IfOp createFullPartialVectorTransferRead(
|
|
RewriterBase &b, vector::TransferReadOp xferOp, TypeRange returnTypes,
|
|
Value inBoundsCond, MemRefType compatibleMemRefType, Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
scf::IfOp fullPartialIfOp;
|
|
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value memref = xferOp.getBase();
|
|
return b.create<scf::IfOp>(
|
|
loc, inBoundsCond,
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value res = castToCompatibleMemRefType(b, memref, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{res};
|
|
llvm::append_range(viewAndIndices, xferOp.getIndices());
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
},
|
|
[&](OpBuilder &b, Location loc) {
|
|
Operation *newXfer = b.clone(*xferOp.getOperation());
|
|
Value vector = cast<VectorTransferOpInterface>(newXfer).getVector();
|
|
b.create<memref::StoreOp>(
|
|
loc, vector,
|
|
b.create<vector::TypeCastOp>(
|
|
loc, MemRefType::get({}, vector.getType()), alloc));
|
|
|
|
Value casted =
|
|
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{casted};
|
|
viewAndIndices.insert(viewAndIndices.end(), xferOp.getTransferRank(),
|
|
zero);
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
});
|
|
}
|
|
|
|
/// Given an `xferOp` for which:
|
|
/// 1. `inBoundsCond` and a `compatibleMemRefType` have been computed.
|
|
/// 2. a memref of single vector `alloc` has been allocated.
|
|
/// Produce IR resembling:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view, ... : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// %3 = vector.type_cast %extra_alloc :
|
|
/// memref<...> to memref<vector<...>>
|
|
/// %4 = memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %4, ... : compatibleMemRefType, index, index
|
|
/// }
|
|
/// ```
|
|
static ValueRange
|
|
getLocationToWriteFullVec(RewriterBase &b, vector::TransferWriteOp xferOp,
|
|
TypeRange returnTypes, Value inBoundsCond,
|
|
MemRefType compatibleMemRefType, Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
Value zero = b.create<arith::ConstantIndexOp>(loc, 0);
|
|
Value memref = xferOp.getBase();
|
|
return b
|
|
.create<scf::IfOp>(
|
|
loc, inBoundsCond,
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value res =
|
|
castToCompatibleMemRefType(b, memref, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{res};
|
|
llvm::append_range(viewAndIndices, xferOp.getIndices());
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
},
|
|
[&](OpBuilder &b, Location loc) {
|
|
Value casted =
|
|
castToCompatibleMemRefType(b, alloc, compatibleMemRefType);
|
|
scf::ValueVector viewAndIndices{casted};
|
|
viewAndIndices.insert(viewAndIndices.end(),
|
|
xferOp.getTransferRank(), zero);
|
|
b.create<scf::YieldOp>(loc, viewAndIndices);
|
|
})
|
|
->getResults();
|
|
}
|
|
|
|
/// Given an `xferOp` for which:
|
|
/// 1. `inBoundsCond` has been computed.
|
|
/// 2. a memref of single vector `alloc` has been allocated.
|
|
/// 3. it originally wrote to %view
|
|
/// Produce IR resembling:
|
|
/// ```
|
|
/// %notInBounds = arith.xori %inBounds, %true
|
|
/// scf.if (%notInBounds) {
|
|
/// %3 = subview %alloc [...][...][...]
|
|
/// %4 = subview %view [0, 0][...][...]
|
|
/// linalg.copy(%3, %4)
|
|
/// }
|
|
/// ```
|
|
static void createFullPartialLinalgCopy(RewriterBase &b,
|
|
vector::TransferWriteOp xferOp,
|
|
Value inBoundsCond, Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
auto notInBounds = b.create<arith::XOrIOp>(
|
|
loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1));
|
|
b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) {
|
|
IRRewriter rewriter(b);
|
|
std::pair<Value, Value> copyArgs = createSubViewIntersection(
|
|
rewriter, cast<VectorTransferOpInterface>(xferOp.getOperation()),
|
|
alloc);
|
|
b.create<memref::CopyOp>(loc, copyArgs.first, copyArgs.second);
|
|
b.create<scf::YieldOp>(loc, ValueRange{});
|
|
});
|
|
}
|
|
|
|
/// Given an `xferOp` for which:
|
|
/// 1. `inBoundsCond` has been computed.
|
|
/// 2. a memref of single vector `alloc` has been allocated.
|
|
/// 3. it originally wrote to %view
|
|
/// Produce IR resembling:
|
|
/// ```
|
|
/// %notInBounds = arith.xori %inBounds, %true
|
|
/// scf.if (%notInBounds) {
|
|
/// %2 = load %alloc : memref<vector<...>>
|
|
/// vector.transfer_write %2, %view[...] : memref<A...>, vector<...>
|
|
/// }
|
|
/// ```
|
|
static void createFullPartialVectorTransferWrite(RewriterBase &b,
|
|
vector::TransferWriteOp xferOp,
|
|
Value inBoundsCond,
|
|
Value alloc) {
|
|
Location loc = xferOp.getLoc();
|
|
auto notInBounds = b.create<arith::XOrIOp>(
|
|
loc, inBoundsCond, b.create<arith::ConstantIntOp>(loc, true, 1));
|
|
b.create<scf::IfOp>(loc, notInBounds, [&](OpBuilder &b, Location loc) {
|
|
IRMapping mapping;
|
|
Value load = b.create<memref::LoadOp>(
|
|
loc,
|
|
b.create<vector::TypeCastOp>(
|
|
loc, MemRefType::get({}, xferOp.getVector().getType()), alloc),
|
|
ValueRange());
|
|
mapping.map(xferOp.getVector(), load);
|
|
b.clone(*xferOp.getOperation(), mapping);
|
|
b.create<scf::YieldOp>(loc, ValueRange{});
|
|
});
|
|
}
|
|
|
|
// TODO: Parallelism and threadlocal considerations with a ParallelScope trait.
|
|
static Operation *getAutomaticAllocationScope(Operation *op) {
|
|
// Find the closest surrounding allocation scope that is not a known looping
|
|
// construct (putting alloca's in loops doesn't always lower to deallocation
|
|
// until the end of the loop).
|
|
Operation *scope = nullptr;
|
|
for (Operation *parent = op->getParentOp(); parent != nullptr;
|
|
parent = parent->getParentOp()) {
|
|
if (parent->hasTrait<OpTrait::AutomaticAllocationScope>())
|
|
scope = parent;
|
|
if (!isa<scf::ForOp, affine::AffineForOp>(parent))
|
|
break;
|
|
}
|
|
assert(scope && "Expected op to be inside automatic allocation scope");
|
|
return scope;
|
|
}
|
|
|
|
/// Split a vector.transfer operation into an in-bounds (i.e., no out-of-bounds
|
|
/// masking) fastpath and a slowpath.
|
|
///
|
|
/// For vector.transfer_read:
|
|
/// If `ifOp` is not null and the result is `success, the `ifOp` points to the
|
|
/// newly created conditional upon function return.
|
|
/// To accomodate for the fact that the original vector.transfer indexing may be
|
|
/// arbitrary and the slow path indexes @[0...0] in the temporary buffer, the
|
|
/// scf.if op returns a view and values of type index.
|
|
///
|
|
/// Example (a 2-D vector.transfer_read):
|
|
/// ```
|
|
/// %1 = vector.transfer_read %0[...], %pad : memref<A...>, vector<...>
|
|
/// ```
|
|
/// is transformed into:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// // fastpath, direct cast
|
|
/// memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// // slowpath, not in-bounds vector.transfer or linalg.copy.
|
|
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %4 : compatibleMemRefType, index, index
|
|
// }
|
|
/// %0 = vector.transfer_read %1#0[%1#1, %1#2] {in_bounds = [true ... true]}
|
|
/// ```
|
|
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
|
|
///
|
|
/// For vector.transfer_write:
|
|
/// There are 2 conditional blocks. First a block to decide which memref and
|
|
/// indices to use for an unmasked, inbounds write. Then a conditional block to
|
|
/// further copy a partial buffer into the final result in the slow path case.
|
|
///
|
|
/// Example (a 2-D vector.transfer_write):
|
|
/// ```
|
|
/// vector.transfer_write %arg, %0[...], %pad : memref<A...>, vector<...>
|
|
/// ```
|
|
/// is transformed into:
|
|
/// ```
|
|
/// %1:3 = scf.if (%inBounds) {
|
|
/// memref.cast %A: memref<A...> to compatibleMemRefType
|
|
/// scf.yield %view : compatibleMemRefType, index, index
|
|
/// } else {
|
|
/// memref.cast %alloc: memref<B...> to compatibleMemRefType
|
|
/// scf.yield %4 : compatibleMemRefType, index, index
|
|
/// }
|
|
/// %0 = vector.transfer_write %arg, %1#0[%1#1, %1#2] {in_bounds = [true ...
|
|
/// true]}
|
|
/// scf.if (%notInBounds) {
|
|
/// // slowpath: not in-bounds vector.transfer or linalg.copy.
|
|
/// }
|
|
/// ```
|
|
/// where `alloc` is a top of the function alloca'ed buffer of one vector.
|
|
///
|
|
/// Preconditions:
|
|
/// 1. `xferOp.getPermutationMap()` must be a minor identity map
|
|
/// 2. the rank of the `xferOp.getBase()` and the rank of the
|
|
/// `xferOp.getVector()` must be equal. This will be relaxed in the future
|
|
/// but requires rank-reducing subviews.
|
|
LogicalResult mlir::vector::splitFullAndPartialTransfer(
|
|
RewriterBase &b, VectorTransferOpInterface xferOp,
|
|
VectorTransformsOptions options, scf::IfOp *ifOp) {
|
|
if (options.vectorTransferSplit == VectorTransferSplit::None)
|
|
return failure();
|
|
|
|
SmallVector<bool, 4> bools(xferOp.getTransferRank(), true);
|
|
auto inBoundsAttr = b.getBoolArrayAttr(bools);
|
|
if (options.vectorTransferSplit == VectorTransferSplit::ForceInBounds) {
|
|
b.modifyOpInPlace(xferOp, [&]() {
|
|
xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr);
|
|
});
|
|
return success();
|
|
}
|
|
|
|
// Assert preconditions. Additionally, keep the variables in an inner scope to
|
|
// ensure they aren't used in the wrong scopes further down.
|
|
{
|
|
assert(succeeded(splitFullAndPartialTransferPrecondition(xferOp)) &&
|
|
"Expected splitFullAndPartialTransferPrecondition to hold");
|
|
|
|
auto xferReadOp = dyn_cast<vector::TransferReadOp>(xferOp.getOperation());
|
|
auto xferWriteOp = dyn_cast<vector::TransferWriteOp>(xferOp.getOperation());
|
|
|
|
if (!(xferReadOp || xferWriteOp))
|
|
return failure();
|
|
if (xferWriteOp && xferWriteOp.getMask())
|
|
return failure();
|
|
if (xferReadOp && xferReadOp.getMask())
|
|
return failure();
|
|
}
|
|
|
|
RewriterBase::InsertionGuard guard(b);
|
|
b.setInsertionPoint(xferOp);
|
|
Value inBoundsCond = createInBoundsCond(
|
|
b, cast<VectorTransferOpInterface>(xferOp.getOperation()));
|
|
if (!inBoundsCond)
|
|
return failure();
|
|
|
|
// Top of the function `alloc` for transient storage.
|
|
Value alloc;
|
|
{
|
|
RewriterBase::InsertionGuard guard(b);
|
|
Operation *scope = getAutomaticAllocationScope(xferOp);
|
|
assert(scope->getNumRegions() == 1 &&
|
|
"AutomaticAllocationScope with >1 regions");
|
|
b.setInsertionPointToStart(&scope->getRegion(0).front());
|
|
auto shape = xferOp.getVectorType().getShape();
|
|
Type elementType = xferOp.getVectorType().getElementType();
|
|
alloc = b.create<memref::AllocaOp>(scope->getLoc(),
|
|
MemRefType::get(shape, elementType),
|
|
ValueRange{}, b.getI64IntegerAttr(32));
|
|
}
|
|
|
|
MemRefType compatibleMemRefType =
|
|
getCastCompatibleMemRefType(cast<MemRefType>(xferOp.getShapedType()),
|
|
cast<MemRefType>(alloc.getType()));
|
|
if (!compatibleMemRefType)
|
|
return failure();
|
|
|
|
SmallVector<Type, 4> returnTypes(1 + xferOp.getTransferRank(),
|
|
b.getIndexType());
|
|
returnTypes[0] = compatibleMemRefType;
|
|
|
|
if (auto xferReadOp =
|
|
dyn_cast<vector::TransferReadOp>(xferOp.getOperation())) {
|
|
// Read case: full fill + partial copy -> in-bounds vector.xfer_read.
|
|
scf::IfOp fullPartialIfOp =
|
|
options.vectorTransferSplit == VectorTransferSplit::VectorTransfer
|
|
? createFullPartialVectorTransferRead(b, xferReadOp, returnTypes,
|
|
inBoundsCond,
|
|
compatibleMemRefType, alloc)
|
|
: createFullPartialLinalgCopy(b, xferReadOp, returnTypes,
|
|
inBoundsCond, compatibleMemRefType,
|
|
alloc);
|
|
if (ifOp)
|
|
*ifOp = fullPartialIfOp;
|
|
|
|
// Set existing read op to in-bounds, it always reads from a full buffer.
|
|
for (unsigned i = 0, e = returnTypes.size(); i != e; ++i)
|
|
xferReadOp.setOperand(i, fullPartialIfOp.getResult(i));
|
|
|
|
b.modifyOpInPlace(xferOp, [&]() {
|
|
xferOp->setAttr(xferOp.getInBoundsAttrName(), inBoundsAttr);
|
|
});
|
|
|
|
return success();
|
|
}
|
|
|
|
auto xferWriteOp = cast<vector::TransferWriteOp>(xferOp.getOperation());
|
|
|
|
// Decide which location to write the entire vector to.
|
|
auto memrefAndIndices = getLocationToWriteFullVec(
|
|
b, xferWriteOp, returnTypes, inBoundsCond, compatibleMemRefType, alloc);
|
|
|
|
// Do an in bounds write to either the output or the extra allocated buffer.
|
|
// The operation is cloned to prevent deleting information needed for the
|
|
// later IR creation.
|
|
IRMapping mapping;
|
|
mapping.map(xferWriteOp.getBase(), memrefAndIndices.front());
|
|
mapping.map(xferWriteOp.getIndices(), memrefAndIndices.drop_front());
|
|
auto *clone = b.clone(*xferWriteOp, mapping);
|
|
clone->setAttr(xferWriteOp.getInBoundsAttrName(), inBoundsAttr);
|
|
|
|
// Create a potential copy from the allocated buffer to the final output in
|
|
// the slow path case.
|
|
if (options.vectorTransferSplit == VectorTransferSplit::VectorTransfer)
|
|
createFullPartialVectorTransferWrite(b, xferWriteOp, inBoundsCond, alloc);
|
|
else
|
|
createFullPartialLinalgCopy(b, xferWriteOp, inBoundsCond, alloc);
|
|
|
|
b.eraseOp(xferOp);
|
|
|
|
return success();
|
|
}
|
|
|
|
namespace {
|
|
/// Apply `splitFullAndPartialTransfer` selectively via a pattern. This pattern
|
|
/// may take an extra filter to perform selection at a finer granularity.
|
|
struct VectorTransferFullPartialRewriter : public RewritePattern {
|
|
using FilterConstraintType =
|
|
std::function<LogicalResult(VectorTransferOpInterface op)>;
|
|
|
|
explicit VectorTransferFullPartialRewriter(
|
|
MLIRContext *context,
|
|
VectorTransformsOptions options = VectorTransformsOptions(),
|
|
FilterConstraintType filter =
|
|
[](VectorTransferOpInterface op) { return success(); },
|
|
PatternBenefit benefit = 1)
|
|
: RewritePattern(MatchAnyOpTypeTag(), benefit, context), options(options),
|
|
filter(std::move(filter)) {}
|
|
|
|
/// Performs the rewrite.
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override;
|
|
|
|
private:
|
|
VectorTransformsOptions options;
|
|
FilterConstraintType filter;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
LogicalResult VectorTransferFullPartialRewriter::matchAndRewrite(
|
|
Operation *op, PatternRewriter &rewriter) const {
|
|
auto xferOp = dyn_cast<VectorTransferOpInterface>(op);
|
|
if (!xferOp || failed(splitFullAndPartialTransferPrecondition(xferOp)) ||
|
|
failed(filter(xferOp)))
|
|
return failure();
|
|
return splitFullAndPartialTransfer(rewriter, xferOp, options);
|
|
}
|
|
|
|
void mlir::vector::populateVectorTransferFullPartialPatterns(
|
|
RewritePatternSet &patterns, const VectorTransformsOptions &options) {
|
|
patterns.add<VectorTransferFullPartialRewriter>(patterns.getContext(),
|
|
options);
|
|
}
|