llvm-project/llvm/lib/CodeGen/PreISelIntrinsicLowering.cpp
Alex Bradbury 6db2594c48
[PreISelIntrinsicLowering] Zext/trunc count parameter as necessary for memset_pattern16 emission (#129239)
This patch cleans up the handling of the count parameter in general,
though was initially motivated by a compiler crash upon a memset.pattern
with a narrow count causing a compiler crash due to different types for
CreateMul when converting the count to the number of bytes.

The logic used to name globals means there is some minor renaming churn
in the output to
test/Transforms/PreISelIntrinsicLowering/X86/memset-pattern.ll
irrelevant to the newly added tests (that would crash before).
2025-03-19 11:16:24 +00:00

643 lines
24 KiB
C++

//===- PreISelIntrinsicLowering.cpp - Pre-ISel intrinsic lowering pass ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements IR lowering for the llvm.memcpy, llvm.memmove,
// llvm.memset, llvm.load.relative and llvm.objc.* intrinsics.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/PreISelIntrinsicLowering.h"
#include "llvm/Analysis/ObjCARCInstKind.h"
#include "llvm/Analysis/ObjCARCUtil.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/ExpandVectorPredication.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Scalar/LowerConstantIntrinsics.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/LowerMemIntrinsics.h"
#include "llvm/Transforms/Utils/LowerVectorIntrinsics.h"
using namespace llvm;
/// Threshold to leave statically sized memory intrinsic calls. Calls of known
/// size larger than this will be expanded by the pass. Calls of unknown or
/// lower size will be left for expansion in codegen.
static cl::opt<int64_t> MemIntrinsicExpandSizeThresholdOpt(
"mem-intrinsic-expand-size",
cl::desc("Set minimum mem intrinsic size to expand in IR"), cl::init(-1),
cl::Hidden);
namespace {
struct PreISelIntrinsicLowering {
const TargetMachine *TM;
const function_ref<TargetTransformInfo &(Function &)> LookupTTI;
const function_ref<TargetLibraryInfo &(Function &)> LookupTLI;
/// If this is true, assume it's preferably to leave memory intrinsic calls
/// for replacement with a library call later. Otherwise this depends on
/// TargetLoweringInfo availability of the corresponding function.
const bool UseMemIntrinsicLibFunc;
explicit PreISelIntrinsicLowering(
const TargetMachine *TM_,
function_ref<TargetTransformInfo &(Function &)> LookupTTI_,
function_ref<TargetLibraryInfo &(Function &)> LookupTLI_,
bool UseMemIntrinsicLibFunc_ = true)
: TM(TM_), LookupTTI(LookupTTI_), LookupTLI(LookupTLI_),
UseMemIntrinsicLibFunc(UseMemIntrinsicLibFunc_) {}
static bool shouldExpandMemIntrinsicWithSize(Value *Size,
const TargetTransformInfo &TTI);
bool expandMemIntrinsicUses(Function &F) const;
bool lowerIntrinsics(Module &M) const;
};
} // namespace
template <class T> static bool forEachCall(Function &Intrin, T Callback) {
// Lowering all intrinsics in a function will delete multiple uses, so we
// can't use an early-inc-range. In case some remain, we don't want to look
// at them again. Unfortunately, Value::UseList is private, so we can't use a
// simple Use**. If LastUse is null, the next use to consider is
// Intrin.use_begin(), otherwise it's LastUse->getNext().
Use *LastUse = nullptr;
bool Changed = false;
while (!Intrin.use_empty() && (!LastUse || LastUse->getNext())) {
Use *U = LastUse ? LastUse->getNext() : &*Intrin.use_begin();
bool Removed = false;
// An intrinsic cannot have its address taken, so it cannot be an argument
// operand. It might be used as operand in debug metadata, though.
if (auto CI = dyn_cast<CallInst>(U->getUser()))
Changed |= Removed = Callback(CI);
if (!Removed)
LastUse = U;
}
return Changed;
}
static bool lowerLoadRelative(Function &F) {
if (F.use_empty())
return false;
bool Changed = false;
Type *Int32Ty = Type::getInt32Ty(F.getContext());
for (Use &U : llvm::make_early_inc_range(F.uses())) {
auto CI = dyn_cast<CallInst>(U.getUser());
if (!CI || CI->getCalledOperand() != &F)
continue;
IRBuilder<> B(CI);
Value *OffsetPtr =
B.CreatePtrAdd(CI->getArgOperand(0), CI->getArgOperand(1));
Value *OffsetI32 = B.CreateAlignedLoad(Int32Ty, OffsetPtr, Align(4));
Value *ResultPtr = B.CreatePtrAdd(CI->getArgOperand(0), OffsetI32);
CI->replaceAllUsesWith(ResultPtr);
CI->eraseFromParent();
Changed = true;
}
return Changed;
}
// ObjCARC has knowledge about whether an obj-c runtime function needs to be
// always tail-called or never tail-called.
static CallInst::TailCallKind getOverridingTailCallKind(const Function &F) {
objcarc::ARCInstKind Kind = objcarc::GetFunctionClass(&F);
if (objcarc::IsAlwaysTail(Kind))
return CallInst::TCK_Tail;
else if (objcarc::IsNeverTail(Kind))
return CallInst::TCK_NoTail;
return CallInst::TCK_None;
}
static bool lowerObjCCall(Function &F, const char *NewFn,
bool setNonLazyBind = false) {
assert(IntrinsicInst::mayLowerToFunctionCall(F.getIntrinsicID()) &&
"Pre-ISel intrinsics do lower into regular function calls");
if (F.use_empty())
return false;
// If we haven't already looked up this function, check to see if the
// program already contains a function with this name.
Module *M = F.getParent();
FunctionCallee FCache = M->getOrInsertFunction(NewFn, F.getFunctionType());
if (Function *Fn = dyn_cast<Function>(FCache.getCallee())) {
Fn->setLinkage(F.getLinkage());
if (setNonLazyBind && !Fn->isWeakForLinker()) {
// If we have Native ARC, set nonlazybind attribute for these APIs for
// performance.
Fn->addFnAttr(Attribute::NonLazyBind);
}
}
CallInst::TailCallKind OverridingTCK = getOverridingTailCallKind(F);
for (Use &U : llvm::make_early_inc_range(F.uses())) {
auto *CB = cast<CallBase>(U.getUser());
if (CB->getCalledFunction() != &F) {
objcarc::ARCInstKind Kind = objcarc::getAttachedARCFunctionKind(CB);
(void)Kind;
assert((Kind == objcarc::ARCInstKind::RetainRV ||
Kind == objcarc::ARCInstKind::UnsafeClaimRV) &&
"use expected to be the argument of operand bundle "
"\"clang.arc.attachedcall\"");
U.set(FCache.getCallee());
continue;
}
auto *CI = cast<CallInst>(CB);
assert(CI->getCalledFunction() && "Cannot lower an indirect call!");
IRBuilder<> Builder(CI->getParent(), CI->getIterator());
SmallVector<Value *, 8> Args(CI->args());
SmallVector<llvm::OperandBundleDef, 1> BundleList;
CI->getOperandBundlesAsDefs(BundleList);
CallInst *NewCI = Builder.CreateCall(FCache, Args, BundleList);
NewCI->setName(CI->getName());
// Try to set the most appropriate TailCallKind based on both the current
// attributes and the ones that we could get from ObjCARC's special
// knowledge of the runtime functions.
//
// std::max respects both requirements of notail and tail here:
// * notail on either the call or from ObjCARC becomes notail
// * tail on either side is stronger than none, but not notail
CallInst::TailCallKind TCK = CI->getTailCallKind();
NewCI->setTailCallKind(std::max(TCK, OverridingTCK));
// Transfer the 'returned' attribute from the intrinsic to the call site.
// By applying this only to intrinsic call sites, we avoid applying it to
// non-ARC explicit calls to things like objc_retain which have not been
// auto-upgraded to use the intrinsics.
unsigned Index;
if (F.getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
Index)
NewCI->addParamAttr(Index - AttributeList::FirstArgIndex,
Attribute::Returned);
if (!CI->use_empty())
CI->replaceAllUsesWith(NewCI);
CI->eraseFromParent();
}
return true;
}
// TODO: Should refine based on estimated number of accesses (e.g. does it
// require splitting based on alignment)
bool PreISelIntrinsicLowering::shouldExpandMemIntrinsicWithSize(
Value *Size, const TargetTransformInfo &TTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(Size);
if (!CI)
return true;
uint64_t Threshold = MemIntrinsicExpandSizeThresholdOpt.getNumOccurrences()
? MemIntrinsicExpandSizeThresholdOpt
: TTI.getMaxMemIntrinsicInlineSizeThreshold();
uint64_t SizeVal = CI->getZExtValue();
// Treat a threshold of 0 as a special case to force expansion of all
// intrinsics, including size 0.
return SizeVal > Threshold || Threshold == 0;
}
static bool canEmitLibcall(const TargetMachine *TM, Function *F,
RTLIB::Libcall LC) {
// TODO: Should this consider the address space of the memcpy?
if (!TM)
return true;
const TargetLowering *TLI = TM->getSubtargetImpl(*F)->getTargetLowering();
return TLI->getLibcallName(LC) != nullptr;
}
// Return a value appropriate for use with the memset_pattern16 libcall, if
// possible and if we know how. (Adapted from equivalent helper in
// LoopIdiomRecognize).
static Constant *getMemSetPattern16Value(MemSetPatternInst *Inst,
const TargetLibraryInfo &TLI) {
// TODO: This could check for UndefValue because it can be merged into any
// other valid pattern.
// Don't emit libcalls if a non-default address space is being used.
if (Inst->getRawDest()->getType()->getPointerAddressSpace() != 0)
return nullptr;
Value *V = Inst->getValue();
Type *VTy = V->getType();
const DataLayout &DL = Inst->getDataLayout();
Module *M = Inst->getModule();
if (!isLibFuncEmittable(M, &TLI, LibFunc_memset_pattern16))
return nullptr;
// If the value isn't a constant, we can't promote it to being in a constant
// array. We could theoretically do a store to an alloca or something, but
// that doesn't seem worthwhile.
Constant *C = dyn_cast<Constant>(V);
if (!C || isa<ConstantExpr>(C))
return nullptr;
// Only handle simple values that are a power of two bytes in size.
uint64_t Size = DL.getTypeSizeInBits(VTy);
if (!DL.typeSizeEqualsStoreSize(VTy) || !isPowerOf2_64(Size))
return nullptr;
// Don't care enough about darwin/ppc to implement this.
if (DL.isBigEndian())
return nullptr;
// Convert to size in bytes.
Size /= 8;
// TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
// if the top and bottom are the same (e.g. for vectors and large integers).
if (Size > 16)
return nullptr;
// If the constant is exactly 16 bytes, just use it.
if (Size == 16)
return C;
// Otherwise, we'll use an array of the constants.
uint64_t ArraySize = 16 / Size;
ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
}
// TODO: Handle atomic memcpy and memcpy.inline
// TODO: Pass ScalarEvolution
bool PreISelIntrinsicLowering::expandMemIntrinsicUses(Function &F) const {
Intrinsic::ID ID = F.getIntrinsicID();
bool Changed = false;
for (User *U : llvm::make_early_inc_range(F.users())) {
Instruction *Inst = cast<Instruction>(U);
switch (ID) {
case Intrinsic::memcpy: {
auto *Memcpy = cast<MemCpyInst>(Inst);
Function *ParentFunc = Memcpy->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memcpy->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMCPY))
break;
// TODO: For optsize, emit the loop into a separate function
expandMemCpyAsLoop(Memcpy, TTI);
Changed = true;
Memcpy->eraseFromParent();
}
break;
}
case Intrinsic::memcpy_inline: {
// Only expand llvm.memcpy.inline with non-constant length in this
// codepath, leaving the current SelectionDAG expansion for constant
// length memcpy intrinsics undisturbed.
auto *Memcpy = cast<MemCpyInlineInst>(Inst);
if (isa<ConstantInt>(Memcpy->getLength()))
break;
Function *ParentFunc = Memcpy->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
expandMemCpyAsLoop(Memcpy, TTI);
Changed = true;
Memcpy->eraseFromParent();
break;
}
case Intrinsic::memmove: {
auto *Memmove = cast<MemMoveInst>(Inst);
Function *ParentFunc = Memmove->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memmove->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMMOVE))
break;
if (expandMemMoveAsLoop(Memmove, TTI)) {
Changed = true;
Memmove->eraseFromParent();
}
}
break;
}
case Intrinsic::memset: {
auto *Memset = cast<MemSetInst>(Inst);
Function *ParentFunc = Memset->getFunction();
const TargetTransformInfo &TTI = LookupTTI(*ParentFunc);
if (shouldExpandMemIntrinsicWithSize(Memset->getLength(), TTI)) {
if (UseMemIntrinsicLibFunc &&
canEmitLibcall(TM, ParentFunc, RTLIB::MEMSET))
break;
expandMemSetAsLoop(Memset);
Changed = true;
Memset->eraseFromParent();
}
break;
}
case Intrinsic::memset_inline: {
// Only expand llvm.memset.inline with non-constant length in this
// codepath, leaving the current SelectionDAG expansion for constant
// length memset intrinsics undisturbed.
auto *Memset = cast<MemSetInlineInst>(Inst);
if (isa<ConstantInt>(Memset->getLength()))
break;
expandMemSetAsLoop(Memset);
Changed = true;
Memset->eraseFromParent();
break;
}
case Intrinsic::experimental_memset_pattern: {
auto *Memset = cast<MemSetPatternInst>(Inst);
const TargetLibraryInfo &TLI = LookupTLI(*Memset->getFunction());
Constant *PatternValue = getMemSetPattern16Value(Memset, TLI);
if (!PatternValue) {
// If it isn't possible to emit a memset_pattern16 libcall, expand to
// a loop instead.
expandMemSetPatternAsLoop(Memset);
Changed = true;
Memset->eraseFromParent();
break;
}
// FIXME: There is currently no profitability calculation for emitting
// the libcall vs expanding the memset.pattern directly.
IRBuilder<> Builder(Inst);
Module *M = Memset->getModule();
const DataLayout &DL = Memset->getDataLayout();
Type *DestPtrTy = Memset->getRawDest()->getType();
Type *SizeTTy = TLI.getSizeTType(*M);
StringRef FuncName = "memset_pattern16";
FunctionCallee MSP = getOrInsertLibFunc(M, TLI, LibFunc_memset_pattern16,
Builder.getVoidTy(), DestPtrTy,
Builder.getPtrTy(), SizeTTy);
inferNonMandatoryLibFuncAttrs(M, FuncName, TLI);
// Otherwise we should form a memset_pattern16. PatternValue is known
// to be an constant array of 16-bytes. Put the value into a mergable
// global.
assert(Memset->getRawDest()->getType()->getPointerAddressSpace() == 0 &&
"Should have skipped if non-zero AS");
GlobalVariable *GV = new GlobalVariable(
*M, PatternValue->getType(), /*isConstant=*/true,
GlobalValue::PrivateLinkage, PatternValue, ".memset_pattern");
GV->setUnnamedAddr(
GlobalValue::UnnamedAddr::Global); // Ok to merge these.
// TODO: Consider relaxing alignment requirement.
GV->setAlignment(Align(16));
Value *PatternPtr = GV;
Value *NumBytes = Builder.CreateMul(
TLI.getAsSizeT(DL.getTypeAllocSize(Memset->getValue()->getType()),
*M),
Builder.CreateZExtOrTrunc(Memset->getLength(), SizeTTy));
CallInst *MemsetPattern16Call =
Builder.CreateCall(MSP, {Memset->getRawDest(), PatternPtr, NumBytes});
MemsetPattern16Call->setAAMetadata(Memset->getAAMetadata());
// Preserve any call site attributes on the destination pointer
// argument (e.g. alignment).
AttrBuilder ArgAttrs(Memset->getContext(),
Memset->getAttributes().getParamAttrs(0));
MemsetPattern16Call->setAttributes(
MemsetPattern16Call->getAttributes().addParamAttributes(
Memset->getContext(), 0, ArgAttrs));
Changed = true;
Memset->eraseFromParent();
break;
}
default:
llvm_unreachable("unhandled intrinsic");
}
}
return Changed;
}
bool PreISelIntrinsicLowering::lowerIntrinsics(Module &M) const {
bool Changed = false;
for (Function &F : M) {
switch (F.getIntrinsicID()) {
default:
break;
case Intrinsic::memcpy:
case Intrinsic::memcpy_inline:
case Intrinsic::memmove:
case Intrinsic::memset:
case Intrinsic::memset_inline:
case Intrinsic::experimental_memset_pattern:
Changed |= expandMemIntrinsicUses(F);
break;
case Intrinsic::load_relative:
Changed |= lowerLoadRelative(F);
break;
case Intrinsic::is_constant:
case Intrinsic::objectsize:
Changed |= forEachCall(F, [&](CallInst *CI) {
Function *Parent = CI->getParent()->getParent();
TargetLibraryInfo &TLI = LookupTLI(*Parent);
// Intrinsics in unreachable code are not lowered.
bool Changed = lowerConstantIntrinsics(*Parent, TLI, /*DT=*/nullptr);
return Changed;
});
break;
#define BEGIN_REGISTER_VP_INTRINSIC(VPID, MASKPOS, VLENPOS) \
case Intrinsic::VPID:
#include "llvm/IR/VPIntrinsics.def"
forEachCall(F, [&](CallInst *CI) {
Function *Parent = CI->getParent()->getParent();
const TargetTransformInfo &TTI = LookupTTI(*Parent);
auto *VPI = cast<VPIntrinsic>(CI);
VPExpansionDetails ED = expandVectorPredicationIntrinsic(*VPI, TTI);
// Expansion of VP intrinsics may change the IR but not actually
// replace the intrinsic, so update Changed for the pass
// and compute Removed for forEachCall.
Changed |= ED != VPExpansionDetails::IntrinsicUnchanged;
bool Removed = ED == VPExpansionDetails::IntrinsicReplaced;
return Removed;
});
break;
case Intrinsic::objc_autorelease:
Changed |= lowerObjCCall(F, "objc_autorelease");
break;
case Intrinsic::objc_autoreleasePoolPop:
Changed |= lowerObjCCall(F, "objc_autoreleasePoolPop");
break;
case Intrinsic::objc_autoreleasePoolPush:
Changed |= lowerObjCCall(F, "objc_autoreleasePoolPush");
break;
case Intrinsic::objc_autoreleaseReturnValue:
Changed |= lowerObjCCall(F, "objc_autoreleaseReturnValue");
break;
case Intrinsic::objc_copyWeak:
Changed |= lowerObjCCall(F, "objc_copyWeak");
break;
case Intrinsic::objc_destroyWeak:
Changed |= lowerObjCCall(F, "objc_destroyWeak");
break;
case Intrinsic::objc_initWeak:
Changed |= lowerObjCCall(F, "objc_initWeak");
break;
case Intrinsic::objc_loadWeak:
Changed |= lowerObjCCall(F, "objc_loadWeak");
break;
case Intrinsic::objc_loadWeakRetained:
Changed |= lowerObjCCall(F, "objc_loadWeakRetained");
break;
case Intrinsic::objc_moveWeak:
Changed |= lowerObjCCall(F, "objc_moveWeak");
break;
case Intrinsic::objc_release:
Changed |= lowerObjCCall(F, "objc_release", true);
break;
case Intrinsic::objc_retain:
Changed |= lowerObjCCall(F, "objc_retain", true);
break;
case Intrinsic::objc_retainAutorelease:
Changed |= lowerObjCCall(F, "objc_retainAutorelease");
break;
case Intrinsic::objc_retainAutoreleaseReturnValue:
Changed |= lowerObjCCall(F, "objc_retainAutoreleaseReturnValue");
break;
case Intrinsic::objc_retainAutoreleasedReturnValue:
Changed |= lowerObjCCall(F, "objc_retainAutoreleasedReturnValue");
break;
case Intrinsic::objc_retainBlock:
Changed |= lowerObjCCall(F, "objc_retainBlock");
break;
case Intrinsic::objc_storeStrong:
Changed |= lowerObjCCall(F, "objc_storeStrong");
break;
case Intrinsic::objc_storeWeak:
Changed |= lowerObjCCall(F, "objc_storeWeak");
break;
case Intrinsic::objc_unsafeClaimAutoreleasedReturnValue:
Changed |= lowerObjCCall(F, "objc_unsafeClaimAutoreleasedReturnValue");
break;
case Intrinsic::objc_retainedObject:
Changed |= lowerObjCCall(F, "objc_retainedObject");
break;
case Intrinsic::objc_unretainedObject:
Changed |= lowerObjCCall(F, "objc_unretainedObject");
break;
case Intrinsic::objc_unretainedPointer:
Changed |= lowerObjCCall(F, "objc_unretainedPointer");
break;
case Intrinsic::objc_retain_autorelease:
Changed |= lowerObjCCall(F, "objc_retain_autorelease");
break;
case Intrinsic::objc_sync_enter:
Changed |= lowerObjCCall(F, "objc_sync_enter");
break;
case Intrinsic::objc_sync_exit:
Changed |= lowerObjCCall(F, "objc_sync_exit");
break;
case Intrinsic::exp:
case Intrinsic::exp2:
Changed |= forEachCall(F, [&](CallInst *CI) {
Type *Ty = CI->getArgOperand(0)->getType();
if (!isa<ScalableVectorType>(Ty))
return false;
const TargetLowering *TL = TM->getSubtargetImpl(F)->getTargetLowering();
unsigned Op = TL->IntrinsicIDToISD(F.getIntrinsicID());
if (!TL->isOperationExpand(Op, EVT::getEVT(Ty)))
return false;
return lowerUnaryVectorIntrinsicAsLoop(M, CI);
});
break;
}
}
return Changed;
}
namespace {
class PreISelIntrinsicLoweringLegacyPass : public ModulePass {
public:
static char ID;
PreISelIntrinsicLoweringLegacyPass() : ModulePass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
bool runOnModule(Module &M) override {
auto LookupTTI = [this](Function &F) -> TargetTransformInfo & {
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
};
auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & {
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
};
const auto *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
PreISelIntrinsicLowering Lowering(TM, LookupTTI, LookupTLI);
return Lowering.lowerIntrinsics(M);
}
};
} // end anonymous namespace
char PreISelIntrinsicLoweringLegacyPass::ID;
INITIALIZE_PASS_BEGIN(PreISelIntrinsicLoweringLegacyPass,
"pre-isel-intrinsic-lowering",
"Pre-ISel Intrinsic Lowering", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(PreISelIntrinsicLoweringLegacyPass,
"pre-isel-intrinsic-lowering",
"Pre-ISel Intrinsic Lowering", false, false)
ModulePass *llvm::createPreISelIntrinsicLoweringPass() {
return new PreISelIntrinsicLoweringLegacyPass();
}
PreservedAnalyses PreISelIntrinsicLoweringPass::run(Module &M,
ModuleAnalysisManager &AM) {
auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto LookupTTI = [&FAM](Function &F) -> TargetTransformInfo & {
return FAM.getResult<TargetIRAnalysis>(F);
};
auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
PreISelIntrinsicLowering Lowering(TM, LookupTTI, LookupTLI);
if (!Lowering.lowerIntrinsics(M))
return PreservedAnalyses::all();
else
return PreservedAnalyses::none();
}