llvm-project/mlir/lib/Dialect/Vector/Transforms/LowerVectorShapeCast.cpp
Cullen Rhodes 9816edc9f3
[mlir][vector] add result type to vector.extract assembly format (#66499)
The vector.extract assembly format currently only contains the source
type, for example:

  %1 = vector.extract %0[1] : vector<3x7x8xf32>

it's not immediately obvious if this is the source or result type. This
patch improves the assembly format to make this clearer, so the above
becomes:

  %1 = vector.extract %0[1] : vector<7x8xf32> from vector<3x7x8xf32>
2023-09-28 11:11:16 +01:00

361 lines
14 KiB
C++

//===- LowerVectorShapeCast.cpp - Lower 'vector.shape_cast' operation -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.shape_cast' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/VectorInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#define DEBUG_TYPE "vector-shape-cast-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// ShapeOp 2D -> 1D downcast serves the purpose of flattening 2-D to 1-D
/// vectors progressively on the way to target llvm.matrix intrinsics.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract from 2-D + vector.insert_strided_slice offset into 1-D
class ShapeCastOp2DDownCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
if (sourceVectorType.getRank() != 2 || resultVectorType.getRank() != 1)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = sourceVectorType.getShape()[1];
for (int64_t i = 0, e = sourceVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractOp>(loc, op.getSource(), i);
desc = rewriter.create<vector::InsertStridedSliceOp>(
loc, vec, desc,
/*offsets=*/i * mostMinorVectorSize, /*strides=*/1);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// ShapeOp 1D -> 2D upcast serves the purpose of unflattening 2-D from 1-D
/// vectors progressively.
/// This iterates over the most major dimension of the 2-D vector and performs
/// rewrites into:
/// vector.extract_strided_slice from 1-D + vector.insert into 2-D
/// Note that 1-D extract_strided_slice are lowered to efficient vector.shuffle.
class ShapeCastOp2DUpCastRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
if (sourceVectorType.getRank() != 1 || resultVectorType.getRank() != 2)
return failure();
auto loc = op.getLoc();
Value desc = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
unsigned mostMinorVectorSize = resultVectorType.getShape()[1];
for (int64_t i = 0, e = resultVectorType.getShape().front(); i != e; ++i) {
Value vec = rewriter.create<vector::ExtractStridedSliceOp>(
loc, op.getSource(), /*offsets=*/i * mostMinorVectorSize,
/*sizes=*/mostMinorVectorSize,
/*strides=*/1);
desc = rewriter.create<vector::InsertOp>(loc, vec, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
static void incIdx(llvm::MutableArrayRef<int64_t> idx, VectorType tp,
int dimIdx, int initialStep = 1) {
int step = initialStep;
for (int d = dimIdx; d >= 0; d--) {
idx[d] += step;
if (idx[d] >= tp.getDimSize(d)) {
idx[d] = 0;
step = 1;
} else {
break;
}
}
}
// We typically should not lower general shape cast operations into data
// movement instructions, since the assumption is that these casts are
// optimized away during progressive lowering. For completeness, however,
// we fall back to a reference implementation that moves all elements
// into the right place if we get here.
class ShapeCastOpRewritePattern : public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
if (sourceVectorType.isScalable() || resultVectorType.isScalable())
return failure();
// Special case 2D / 1D lowerings with better implementations.
// TODO: make is ND / 1D to allow generic ND -> 1D -> MD.
int64_t srcRank = sourceVectorType.getRank();
int64_t resRank = resultVectorType.getRank();
if ((srcRank == 2 && resRank == 1) || (srcRank == 1 && resRank == 2))
return failure();
// Generic ShapeCast lowering path goes all the way down to unrolled scalar
// extract/insert chains.
// TODO: consider evolving the semantics to only allow 1D source or dest and
// drop this potentially very expensive lowering.
// Compute number of elements involved in the reshape.
int64_t numElts = 1;
for (int64_t r = 0; r < srcRank; r++)
numElts *= sourceVectorType.getDimSize(r);
// Replace with data movement operations:
// x[0,0,0] = y[0,0]
// x[0,0,1] = y[0,1]
// x[0,1,0] = y[0,2]
// etc., incrementing the two index vectors "row-major"
// within the source and result shape.
SmallVector<int64_t> srcIdx(srcRank);
SmallVector<int64_t> resIdx(resRank);
Value result = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
for (int64_t i = 0; i < numElts; i++) {
if (i != 0) {
incIdx(srcIdx, sourceVectorType, srcRank - 1);
incIdx(resIdx, resultVectorType, resRank - 1);
}
Value extract;
if (srcRank == 0) {
// 0-D vector special case
assert(srcIdx.empty() && "Unexpected indices for 0-D vector");
extract = rewriter.create<vector::ExtractElementOp>(
loc, op.getSourceVectorType().getElementType(), op.getSource());
} else {
extract =
rewriter.create<vector::ExtractOp>(loc, op.getSource(), srcIdx);
}
if (resRank == 0) {
// 0-D vector special case
assert(resIdx.empty() && "Unexpected indices for 0-D vector");
result = rewriter.create<vector::InsertElementOp>(loc, extract, result);
} else {
result =
rewriter.create<vector::InsertOp>(loc, extract, result, resIdx);
}
}
rewriter.replaceOp(op, result);
return success();
}
};
/// A shape_cast lowering for scalable vectors with a single trailing scalable
/// dimension. This is similar to the general shape_cast lowering but makes use
/// of vector.scalable.insert and vector.scalable.extract to move elements a
/// subvector at a time.
///
/// E.g.:
/// ```
/// // Flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<2x1x[4]xi32> to vector<[8]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Flatten scalable vector
/// %c = arith.constant dense<0> : vector<[8]xi32>
/// %0 = vector.extract %arg0[0, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %1 = vector.scalable.insert %0, %c[0] : vector<[4]xi32> into vector<[8]xi32>
/// %2 = vector.extract %arg0[1, 0] : vector<[4]xi32> from vector<2x1x[4]xi32>
/// %3 = vector.scalable.insert %2, %1[4] : vector<[4]xi32> into vector<[8]xi32>
/// ```
/// or:
/// ```
/// // Un-flatten scalable vector
/// %0 = vector.shape_cast %arg0 : vector<[8]xi32> to vector<2x1x[4]xi32>
/// ```
/// is rewritten to:
/// ```
/// // Un-flatten scalable vector
/// %c = arith.constant dense<0> : vector<2x1x[4]xi32>
/// %0 = vector.scalable.extract %arg0[0] : vector<[4]xi32> from vector<[8]xi32>
/// %1 = vector.insert %0, %c [0, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// %2 = vector.scalable.extract %arg0[4] : vector<[4]xi32> from vector<[8]xi32>
/// %3 = vector.insert %2, %1 [1, 0] : vector<[4]xi32> into vector<2x1x[4]xi32>
/// ```
class ScalableShapeCastOpRewritePattern
: public OpRewritePattern<vector::ShapeCastOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ShapeCastOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
auto sourceVectorType = op.getSourceVectorType();
auto resultVectorType = op.getResultVectorType();
auto srcRank = sourceVectorType.getRank();
auto resRank = resultVectorType.getRank();
// This can only lower shape_casts where both the source and result types
// have a single trailing scalable dimension. This is because there are no
// legal representation of other scalable types in LLVM (and likely won't be
// soon). There are also (currently) no operations that can index or extract
// from >= 2D scalable vectors or scalable vectors of fixed vectors.
if (!isTrailingDimScalable(sourceVectorType) ||
!isTrailingDimScalable(resultVectorType)) {
return failure();
}
// The sizes of the trailing dimension of the source and result vectors, the
// size of subvector to move, and the number of elements in the vectors.
// These are "min" sizes as they are the size when vscale == 1.
auto minSourceTrailingSize = sourceVectorType.getShape().back();
auto minResultTrailingSize = resultVectorType.getShape().back();
auto minExtractionSize =
std::min(minSourceTrailingSize, minResultTrailingSize);
int64_t minNumElts = 1;
for (auto size : sourceVectorType.getShape())
minNumElts *= size;
// The subvector type to move from the source to the result. Note that this
// is a scalable vector. This rewrite will generate code in terms of the
// "min" size (vscale == 1 case), that scales to any vscale.
auto extractionVectorType = VectorType::get(
{minExtractionSize}, sourceVectorType.getElementType(), {true});
Value result = rewriter.create<arith::ConstantOp>(
loc, resultVectorType, rewriter.getZeroAttr(resultVectorType));
SmallVector<int64_t> srcIdx(srcRank);
SmallVector<int64_t> resIdx(resRank);
// TODO: Try rewriting this with StaticTileOffsetRange (from IndexingUtils)
// once D150000 lands.
Value currentResultScalableVector;
Value currentSourceScalableVector;
for (int64_t i = 0; i < minNumElts; i += minExtractionSize) {
// 1. Extract a scalable subvector from the source vector.
if (!currentSourceScalableVector) {
if (srcRank != 1) {
currentSourceScalableVector = rewriter.create<vector::ExtractOp>(
loc, op.getSource(), llvm::ArrayRef(srcIdx).drop_back());
} else {
currentSourceScalableVector = op.getSource();
}
}
Value sourceSubVector = currentSourceScalableVector;
if (minExtractionSize < minSourceTrailingSize) {
sourceSubVector = rewriter.create<vector::ScalableExtractOp>(
loc, extractionVectorType, sourceSubVector, srcIdx.back());
}
// 2. Insert the scalable subvector into the result vector.
if (!currentResultScalableVector) {
if (minExtractionSize == minResultTrailingSize) {
currentResultScalableVector = sourceSubVector;
} else if (resRank != 1) {
currentResultScalableVector = rewriter.create<vector::ExtractOp>(
loc, result, llvm::ArrayRef(resIdx).drop_back());
} else {
currentResultScalableVector = result;
}
}
if (minExtractionSize < minResultTrailingSize) {
currentResultScalableVector = rewriter.create<vector::ScalableInsertOp>(
loc, sourceSubVector, currentResultScalableVector, resIdx.back());
}
// 3. Update the source and result scalable vectors if needed.
if (resIdx.back() + minExtractionSize >= minResultTrailingSize &&
currentResultScalableVector != result) {
// Finished row of result. Insert complete scalable vector into result
// (n-D) vector.
result = rewriter.create<vector::InsertOp>(
loc, currentResultScalableVector, result,
llvm::ArrayRef(resIdx).drop_back());
currentResultScalableVector = {};
}
if (srcIdx.back() + minExtractionSize >= minSourceTrailingSize) {
// Finished row of source.
currentSourceScalableVector = {};
}
// 4. Increment the insert/extract indices, stepping by minExtractionSize
// for the trailing dimensions.
incIdx(srcIdx, sourceVectorType, srcRank - 1, minExtractionSize);
incIdx(resIdx, resultVectorType, resRank - 1, minExtractionSize);
}
rewriter.replaceOp(op, result);
return success();
}
static bool isTrailingDimScalable(VectorType type) {
return type.getRank() >= 1 && type.getScalableDims().back() &&
!llvm::is_contained(type.getScalableDims().drop_back(), true);
}
};
} // namespace
void mlir::vector::populateVectorShapeCastLoweringPatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<ShapeCastOp2DDownCastRewritePattern,
ShapeCastOp2DUpCastRewritePattern, ShapeCastOpRewritePattern,
ScalableShapeCastOpRewritePattern>(patterns.getContext(),
benefit);
}