975 lines
36 KiB
C++
975 lines
36 KiB
C++
//===------- X86ExpandPseudo.cpp - Expand pseudo instructions -------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file contains a pass that expands pseudo instructions into target
|
||
// instructions to allow proper scheduling, if-conversion, other late
|
||
// optimizations, or simply the encoding of the instructions.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "X86.h"
|
||
#include "X86FrameLowering.h"
|
||
#include "X86InstrBuilder.h"
|
||
#include "X86InstrInfo.h"
|
||
#include "X86MachineFunctionInfo.h"
|
||
#include "X86Subtarget.h"
|
||
#include "llvm/CodeGen/LivePhysRegs.h"
|
||
#include "llvm/CodeGen/MachineFunctionPass.h"
|
||
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
||
#include "llvm/CodeGen/Passes.h" // For IDs of passes that are preserved.
|
||
#include "llvm/IR/EHPersonalities.h"
|
||
#include "llvm/IR/GlobalValue.h"
|
||
#include "llvm/Target/TargetMachine.h"
|
||
using namespace llvm;
|
||
|
||
#define DEBUG_TYPE "x86-pseudo"
|
||
#define X86_EXPAND_PSEUDO_NAME "X86 pseudo instruction expansion pass"
|
||
|
||
namespace {
|
||
class X86ExpandPseudo : public MachineFunctionPass {
|
||
public:
|
||
static char ID;
|
||
X86ExpandPseudo() : MachineFunctionPass(ID) {}
|
||
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||
AU.setPreservesCFG();
|
||
AU.addPreservedID(MachineLoopInfoID);
|
||
AU.addPreservedID(MachineDominatorsID);
|
||
MachineFunctionPass::getAnalysisUsage(AU);
|
||
}
|
||
|
||
const X86Subtarget *STI = nullptr;
|
||
const X86InstrInfo *TII = nullptr;
|
||
const X86RegisterInfo *TRI = nullptr;
|
||
const X86MachineFunctionInfo *X86FI = nullptr;
|
||
const X86FrameLowering *X86FL = nullptr;
|
||
|
||
bool runOnMachineFunction(MachineFunction &MF) override;
|
||
|
||
MachineFunctionProperties getRequiredProperties() const override {
|
||
return MachineFunctionProperties().set(
|
||
MachineFunctionProperties::Property::NoVRegs);
|
||
}
|
||
|
||
StringRef getPassName() const override {
|
||
return "X86 pseudo instruction expansion pass";
|
||
}
|
||
|
||
private:
|
||
void expandICallBranchFunnel(MachineBasicBlock *MBB,
|
||
MachineBasicBlock::iterator MBBI);
|
||
void expandCALL_RVMARKER(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI);
|
||
bool expandMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI);
|
||
bool expandMBB(MachineBasicBlock &MBB);
|
||
|
||
/// This function expands pseudos which affects control flow.
|
||
/// It is done in separate pass to simplify blocks navigation in main
|
||
/// pass(calling expandMBB).
|
||
bool expandPseudosWhichAffectControlFlow(MachineFunction &MF);
|
||
|
||
/// Expand X86::VASTART_SAVE_XMM_REGS into set of xmm copying instructions,
|
||
/// placed into separate block guarded by check for al register(for SystemV
|
||
/// abi).
|
||
void expandVastartSaveXmmRegs(
|
||
MachineBasicBlock *EntryBlk,
|
||
MachineBasicBlock::iterator VAStartPseudoInstr) const;
|
||
};
|
||
char X86ExpandPseudo::ID = 0;
|
||
|
||
} // End anonymous namespace.
|
||
|
||
INITIALIZE_PASS(X86ExpandPseudo, DEBUG_TYPE, X86_EXPAND_PSEUDO_NAME, false,
|
||
false)
|
||
|
||
void X86ExpandPseudo::expandICallBranchFunnel(
|
||
MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI) {
|
||
MachineBasicBlock *JTMBB = MBB;
|
||
MachineInstr *JTInst = &*MBBI;
|
||
MachineFunction *MF = MBB->getParent();
|
||
const BasicBlock *BB = MBB->getBasicBlock();
|
||
auto InsPt = MachineFunction::iterator(MBB);
|
||
++InsPt;
|
||
|
||
std::vector<std::pair<MachineBasicBlock *, unsigned>> TargetMBBs;
|
||
const DebugLoc &DL = JTInst->getDebugLoc();
|
||
MachineOperand Selector = JTInst->getOperand(0);
|
||
const GlobalValue *CombinedGlobal = JTInst->getOperand(1).getGlobal();
|
||
|
||
auto CmpTarget = [&](unsigned Target) {
|
||
if (Selector.isReg())
|
||
MBB->addLiveIn(Selector.getReg());
|
||
BuildMI(*MBB, MBBI, DL, TII->get(X86::LEA64r), X86::R11)
|
||
.addReg(X86::RIP)
|
||
.addImm(1)
|
||
.addReg(0)
|
||
.addGlobalAddress(CombinedGlobal,
|
||
JTInst->getOperand(2 + 2 * Target).getImm())
|
||
.addReg(0);
|
||
BuildMI(*MBB, MBBI, DL, TII->get(X86::CMP64rr))
|
||
.add(Selector)
|
||
.addReg(X86::R11);
|
||
};
|
||
|
||
auto CreateMBB = [&]() {
|
||
auto *NewMBB = MF->CreateMachineBasicBlock(BB);
|
||
MBB->addSuccessor(NewMBB);
|
||
if (!MBB->isLiveIn(X86::EFLAGS))
|
||
MBB->addLiveIn(X86::EFLAGS);
|
||
return NewMBB;
|
||
};
|
||
|
||
auto EmitCondJump = [&](unsigned CC, MachineBasicBlock *ThenMBB) {
|
||
BuildMI(*MBB, MBBI, DL, TII->get(X86::JCC_1)).addMBB(ThenMBB).addImm(CC);
|
||
|
||
auto *ElseMBB = CreateMBB();
|
||
MF->insert(InsPt, ElseMBB);
|
||
MBB = ElseMBB;
|
||
MBBI = MBB->end();
|
||
};
|
||
|
||
auto EmitCondJumpTarget = [&](unsigned CC, unsigned Target) {
|
||
auto *ThenMBB = CreateMBB();
|
||
TargetMBBs.push_back({ThenMBB, Target});
|
||
EmitCondJump(CC, ThenMBB);
|
||
};
|
||
|
||
auto EmitTailCall = [&](unsigned Target) {
|
||
BuildMI(*MBB, MBBI, DL, TII->get(X86::TAILJMPd64))
|
||
.add(JTInst->getOperand(3 + 2 * Target));
|
||
};
|
||
|
||
std::function<void(unsigned, unsigned)> EmitBranchFunnel =
|
||
[&](unsigned FirstTarget, unsigned NumTargets) {
|
||
if (NumTargets == 1) {
|
||
EmitTailCall(FirstTarget);
|
||
return;
|
||
}
|
||
|
||
if (NumTargets == 2) {
|
||
CmpTarget(FirstTarget + 1);
|
||
EmitCondJumpTarget(X86::COND_B, FirstTarget);
|
||
EmitTailCall(FirstTarget + 1);
|
||
return;
|
||
}
|
||
|
||
if (NumTargets < 6) {
|
||
CmpTarget(FirstTarget + 1);
|
||
EmitCondJumpTarget(X86::COND_B, FirstTarget);
|
||
EmitCondJumpTarget(X86::COND_E, FirstTarget + 1);
|
||
EmitBranchFunnel(FirstTarget + 2, NumTargets - 2);
|
||
return;
|
||
}
|
||
|
||
auto *ThenMBB = CreateMBB();
|
||
CmpTarget(FirstTarget + (NumTargets / 2));
|
||
EmitCondJump(X86::COND_B, ThenMBB);
|
||
EmitCondJumpTarget(X86::COND_E, FirstTarget + (NumTargets / 2));
|
||
EmitBranchFunnel(FirstTarget + (NumTargets / 2) + 1,
|
||
NumTargets - (NumTargets / 2) - 1);
|
||
|
||
MF->insert(InsPt, ThenMBB);
|
||
MBB = ThenMBB;
|
||
MBBI = MBB->end();
|
||
EmitBranchFunnel(FirstTarget, NumTargets / 2);
|
||
};
|
||
|
||
EmitBranchFunnel(0, (JTInst->getNumOperands() - 2) / 2);
|
||
for (auto P : TargetMBBs) {
|
||
MF->insert(InsPt, P.first);
|
||
BuildMI(P.first, DL, TII->get(X86::TAILJMPd64))
|
||
.add(JTInst->getOperand(3 + 2 * P.second));
|
||
}
|
||
JTMBB->erase(JTInst);
|
||
}
|
||
|
||
void X86ExpandPseudo::expandCALL_RVMARKER(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI) {
|
||
// Expand CALL_RVMARKER pseudo to call instruction, followed by the special
|
||
//"movq %rax, %rdi" marker.
|
||
MachineInstr &MI = *MBBI;
|
||
|
||
MachineInstr *OriginalCall;
|
||
assert((MI.getOperand(1).isGlobal() || MI.getOperand(1).isReg()) &&
|
||
"invalid operand for regular call");
|
||
unsigned Opc = -1;
|
||
if (MI.getOpcode() == X86::CALL64m_RVMARKER)
|
||
Opc = X86::CALL64m;
|
||
else if (MI.getOpcode() == X86::CALL64r_RVMARKER)
|
||
Opc = X86::CALL64r;
|
||
else if (MI.getOpcode() == X86::CALL64pcrel32_RVMARKER)
|
||
Opc = X86::CALL64pcrel32;
|
||
else
|
||
llvm_unreachable("unexpected opcode");
|
||
|
||
OriginalCall = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc)).getInstr();
|
||
bool RAXImplicitDead = false;
|
||
for (MachineOperand &Op : llvm::drop_begin(MI.operands())) {
|
||
// RAX may be 'implicit dead', if there are no other users of the return
|
||
// value. We introduce a new use, so change it to 'implicit def'.
|
||
if (Op.isReg() && Op.isImplicit() && Op.isDead() &&
|
||
TRI->regsOverlap(Op.getReg(), X86::RAX)) {
|
||
Op.setIsDead(false);
|
||
Op.setIsDef(true);
|
||
RAXImplicitDead = true;
|
||
}
|
||
OriginalCall->addOperand(Op);
|
||
}
|
||
|
||
// Emit marker "movq %rax, %rdi". %rdi is not callee-saved, so it cannot be
|
||
// live across the earlier call. The call to the ObjC runtime function returns
|
||
// the first argument, so the value of %rax is unchanged after the ObjC
|
||
// runtime call. On Windows targets, the runtime call follows the regular
|
||
// x64 calling convention and expects the first argument in %rcx.
|
||
auto TargetReg = STI->getTargetTriple().isOSWindows() ? X86::RCX : X86::RDI;
|
||
auto *Marker = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::MOV64rr))
|
||
.addReg(TargetReg, RegState::Define)
|
||
.addReg(X86::RAX)
|
||
.getInstr();
|
||
if (MI.shouldUpdateCallSiteInfo())
|
||
MBB.getParent()->moveCallSiteInfo(&MI, Marker);
|
||
|
||
// Emit call to ObjC runtime.
|
||
const uint32_t *RegMask =
|
||
TRI->getCallPreservedMask(*MBB.getParent(), CallingConv::C);
|
||
MachineInstr *RtCall =
|
||
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(X86::CALL64pcrel32))
|
||
.addGlobalAddress(MI.getOperand(0).getGlobal(), 0, 0)
|
||
.addRegMask(RegMask)
|
||
.addReg(X86::RAX,
|
||
RegState::Implicit |
|
||
(RAXImplicitDead ? (RegState::Dead | RegState::Define)
|
||
: RegState::Define))
|
||
.getInstr();
|
||
MI.eraseFromParent();
|
||
|
||
auto &TM = MBB.getParent()->getTarget();
|
||
// On Darwin platforms, wrap the expanded sequence in a bundle to prevent
|
||
// later optimizations from breaking up the sequence.
|
||
if (TM.getTargetTriple().isOSDarwin())
|
||
finalizeBundle(MBB, OriginalCall->getIterator(),
|
||
std::next(RtCall->getIterator()));
|
||
}
|
||
|
||
/// If \p MBBI is a pseudo instruction, this method expands
|
||
/// it to the corresponding (sequence of) actual instruction(s).
|
||
/// \returns true if \p MBBI has been expanded.
|
||
bool X86ExpandPseudo::expandMI(MachineBasicBlock &MBB,
|
||
MachineBasicBlock::iterator MBBI) {
|
||
MachineInstr &MI = *MBBI;
|
||
unsigned Opcode = MI.getOpcode();
|
||
const DebugLoc &DL = MBBI->getDebugLoc();
|
||
#define GET_EGPR_IF_ENABLED(OPC) (STI->hasEGPR() ? OPC##_EVEX : OPC)
|
||
switch (Opcode) {
|
||
default:
|
||
return false;
|
||
case X86::TCRETURNdi:
|
||
case X86::TCRETURNdicc:
|
||
case X86::TCRETURNri:
|
||
case X86::TCRETURNmi:
|
||
case X86::TCRETURNdi64:
|
||
case X86::TCRETURNdi64cc:
|
||
case X86::TCRETURNri64:
|
||
case X86::TCRETURNmi64: {
|
||
bool isMem = Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64;
|
||
MachineOperand &JumpTarget = MBBI->getOperand(0);
|
||
MachineOperand &StackAdjust = MBBI->getOperand(isMem ? X86::AddrNumOperands
|
||
: 1);
|
||
assert(StackAdjust.isImm() && "Expecting immediate value.");
|
||
|
||
// Adjust stack pointer.
|
||
int StackAdj = StackAdjust.getImm();
|
||
int MaxTCDelta = X86FI->getTCReturnAddrDelta();
|
||
int Offset = 0;
|
||
assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
|
||
|
||
// Incoporate the retaddr area.
|
||
Offset = StackAdj - MaxTCDelta;
|
||
assert(Offset >= 0 && "Offset should never be negative");
|
||
|
||
if (Opcode == X86::TCRETURNdicc || Opcode == X86::TCRETURNdi64cc) {
|
||
assert(Offset == 0 && "Conditional tail call cannot adjust the stack.");
|
||
}
|
||
|
||
if (Offset) {
|
||
// Check for possible merge with preceding ADD instruction.
|
||
Offset += X86FL->mergeSPUpdates(MBB, MBBI, true);
|
||
X86FL->emitSPUpdate(MBB, MBBI, DL, Offset, /*InEpilogue=*/true);
|
||
}
|
||
|
||
// Jump to label or value in register.
|
||
bool IsWin64 = STI->isTargetWin64();
|
||
if (Opcode == X86::TCRETURNdi || Opcode == X86::TCRETURNdicc ||
|
||
Opcode == X86::TCRETURNdi64 || Opcode == X86::TCRETURNdi64cc) {
|
||
unsigned Op;
|
||
switch (Opcode) {
|
||
case X86::TCRETURNdi:
|
||
Op = X86::TAILJMPd;
|
||
break;
|
||
case X86::TCRETURNdicc:
|
||
Op = X86::TAILJMPd_CC;
|
||
break;
|
||
case X86::TCRETURNdi64cc:
|
||
assert(!MBB.getParent()->hasWinCFI() &&
|
||
"Conditional tail calls confuse "
|
||
"the Win64 unwinder.");
|
||
Op = X86::TAILJMPd64_CC;
|
||
break;
|
||
default:
|
||
// Note: Win64 uses REX prefixes indirect jumps out of functions, but
|
||
// not direct ones.
|
||
Op = X86::TAILJMPd64;
|
||
break;
|
||
}
|
||
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
|
||
if (JumpTarget.isGlobal()) {
|
||
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
|
||
JumpTarget.getTargetFlags());
|
||
} else {
|
||
assert(JumpTarget.isSymbol());
|
||
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
|
||
JumpTarget.getTargetFlags());
|
||
}
|
||
if (Op == X86::TAILJMPd_CC || Op == X86::TAILJMPd64_CC) {
|
||
MIB.addImm(MBBI->getOperand(2).getImm());
|
||
}
|
||
|
||
} else if (Opcode == X86::TCRETURNmi || Opcode == X86::TCRETURNmi64) {
|
||
unsigned Op = (Opcode == X86::TCRETURNmi)
|
||
? X86::TAILJMPm
|
||
: (IsWin64 ? X86::TAILJMPm64_REX : X86::TAILJMPm64);
|
||
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(Op));
|
||
for (unsigned i = 0; i != X86::AddrNumOperands; ++i)
|
||
MIB.add(MBBI->getOperand(i));
|
||
} else if (Opcode == X86::TCRETURNri64) {
|
||
JumpTarget.setIsKill();
|
||
BuildMI(MBB, MBBI, DL,
|
||
TII->get(IsWin64 ? X86::TAILJMPr64_REX : X86::TAILJMPr64))
|
||
.add(JumpTarget);
|
||
} else {
|
||
JumpTarget.setIsKill();
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::TAILJMPr))
|
||
.add(JumpTarget);
|
||
}
|
||
|
||
MachineInstr &NewMI = *std::prev(MBBI);
|
||
NewMI.copyImplicitOps(*MBBI->getParent()->getParent(), *MBBI);
|
||
NewMI.setCFIType(*MBB.getParent(), MI.getCFIType());
|
||
|
||
// Update the call site info.
|
||
if (MBBI->isCandidateForCallSiteEntry())
|
||
MBB.getParent()->moveCallSiteInfo(&*MBBI, &NewMI);
|
||
|
||
// Delete the pseudo instruction TCRETURN.
|
||
MBB.erase(MBBI);
|
||
|
||
return true;
|
||
}
|
||
case X86::EH_RETURN:
|
||
case X86::EH_RETURN64: {
|
||
MachineOperand &DestAddr = MBBI->getOperand(0);
|
||
assert(DestAddr.isReg() && "Offset should be in register!");
|
||
const bool Uses64BitFramePtr =
|
||
STI->isTarget64BitLP64() || STI->isTargetNaCl64();
|
||
Register StackPtr = TRI->getStackRegister();
|
||
BuildMI(MBB, MBBI, DL,
|
||
TII->get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr), StackPtr)
|
||
.addReg(DestAddr.getReg());
|
||
// The EH_RETURN pseudo is really removed during the MC Lowering.
|
||
return true;
|
||
}
|
||
case X86::IRET: {
|
||
// Adjust stack to erase error code
|
||
int64_t StackAdj = MBBI->getOperand(0).getImm();
|
||
X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, true);
|
||
// Replace pseudo with machine iret
|
||
unsigned RetOp = STI->is64Bit() ? X86::IRET64 : X86::IRET32;
|
||
// Use UIRET if UINTR is present (except for building kernel)
|
||
if (STI->is64Bit() && STI->hasUINTR() &&
|
||
MBB.getParent()->getTarget().getCodeModel() != CodeModel::Kernel)
|
||
RetOp = X86::UIRET;
|
||
BuildMI(MBB, MBBI, DL, TII->get(RetOp));
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
case X86::RET: {
|
||
// Adjust stack to erase error code
|
||
int64_t StackAdj = MBBI->getOperand(0).getImm();
|
||
MachineInstrBuilder MIB;
|
||
if (StackAdj == 0) {
|
||
MIB = BuildMI(MBB, MBBI, DL,
|
||
TII->get(STI->is64Bit() ? X86::RET64 : X86::RET32));
|
||
} else if (isUInt<16>(StackAdj)) {
|
||
MIB = BuildMI(MBB, MBBI, DL,
|
||
TII->get(STI->is64Bit() ? X86::RETI64 : X86::RETI32))
|
||
.addImm(StackAdj);
|
||
} else {
|
||
assert(!STI->is64Bit() &&
|
||
"shouldn't need to do this for x86_64 targets!");
|
||
// A ret can only handle immediates as big as 2**16-1. If we need to pop
|
||
// off bytes before the return address, we must do it manually.
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::POP32r)).addReg(X86::ECX, RegState::Define);
|
||
X86FL->emitSPUpdate(MBB, MBBI, DL, StackAdj, /*InEpilogue=*/true);
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::PUSH32r)).addReg(X86::ECX);
|
||
MIB = BuildMI(MBB, MBBI, DL, TII->get(X86::RET32));
|
||
}
|
||
for (unsigned I = 1, E = MBBI->getNumOperands(); I != E; ++I)
|
||
MIB.add(MBBI->getOperand(I));
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
case X86::LCMPXCHG16B_SAVE_RBX: {
|
||
// Perform the following transformation.
|
||
// SaveRbx = pseudocmpxchg Addr, <4 opds for the address>, InArg, SaveRbx
|
||
// =>
|
||
// RBX = InArg
|
||
// actualcmpxchg Addr
|
||
// RBX = SaveRbx
|
||
const MachineOperand &InArg = MBBI->getOperand(6);
|
||
Register SaveRbx = MBBI->getOperand(7).getReg();
|
||
|
||
// Copy the input argument of the pseudo into the argument of the
|
||
// actual instruction.
|
||
// NOTE: We don't copy the kill flag since the input might be the same reg
|
||
// as one of the other operands of LCMPXCHG16B.
|
||
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, InArg.getReg(), false);
|
||
// Create the actual instruction.
|
||
MachineInstr *NewInstr = BuildMI(MBB, MBBI, DL, TII->get(X86::LCMPXCHG16B));
|
||
// Copy the operands related to the address.
|
||
for (unsigned Idx = 1; Idx < 6; ++Idx)
|
||
NewInstr->addOperand(MBBI->getOperand(Idx));
|
||
// Finally, restore the value of RBX.
|
||
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx,
|
||
/*SrcIsKill*/ true);
|
||
|
||
// Delete the pseudo.
|
||
MBBI->eraseFromParent();
|
||
return true;
|
||
}
|
||
// Loading/storing mask pairs requires two kmov operations. The second one of
|
||
// these needs a 2 byte displacement relative to the specified address (with
|
||
// 32 bit spill size). The pairs of 1bit masks up to 16 bit masks all use the
|
||
// same spill size, they all are stored using MASKPAIR16STORE, loaded using
|
||
// MASKPAIR16LOAD.
|
||
//
|
||
// The displacement value might wrap around in theory, thus the asserts in
|
||
// both cases.
|
||
case X86::MASKPAIR16LOAD: {
|
||
int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
|
||
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
|
||
Register Reg = MBBI->getOperand(0).getReg();
|
||
bool DstIsDead = MBBI->getOperand(0).isDead();
|
||
Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
|
||
Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
|
||
|
||
auto MIBLo =
|
||
BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
|
||
.addReg(Reg0, RegState::Define | getDeadRegState(DstIsDead));
|
||
auto MIBHi =
|
||
BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWkm)))
|
||
.addReg(Reg1, RegState::Define | getDeadRegState(DstIsDead));
|
||
|
||
for (int i = 0; i < X86::AddrNumOperands; ++i) {
|
||
MIBLo.add(MBBI->getOperand(1 + i));
|
||
if (i == X86::AddrDisp)
|
||
MIBHi.addImm(Disp + 2);
|
||
else
|
||
MIBHi.add(MBBI->getOperand(1 + i));
|
||
}
|
||
|
||
// Split the memory operand, adjusting the offset and size for the halves.
|
||
MachineMemOperand *OldMMO = MBBI->memoperands().front();
|
||
MachineFunction *MF = MBB.getParent();
|
||
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
|
||
MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
|
||
|
||
MIBLo.setMemRefs(MMOLo);
|
||
MIBHi.setMemRefs(MMOHi);
|
||
|
||
// Delete the pseudo.
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
case X86::MASKPAIR16STORE: {
|
||
int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
|
||
assert(Disp >= 0 && Disp <= INT32_MAX - 2 && "Unexpected displacement");
|
||
Register Reg = MBBI->getOperand(X86::AddrNumOperands).getReg();
|
||
bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
|
||
Register Reg0 = TRI->getSubReg(Reg, X86::sub_mask_0);
|
||
Register Reg1 = TRI->getSubReg(Reg, X86::sub_mask_1);
|
||
|
||
auto MIBLo =
|
||
BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
|
||
auto MIBHi =
|
||
BuildMI(MBB, MBBI, DL, TII->get(GET_EGPR_IF_ENABLED(X86::KMOVWmk)));
|
||
|
||
for (int i = 0; i < X86::AddrNumOperands; ++i) {
|
||
MIBLo.add(MBBI->getOperand(i));
|
||
if (i == X86::AddrDisp)
|
||
MIBHi.addImm(Disp + 2);
|
||
else
|
||
MIBHi.add(MBBI->getOperand(i));
|
||
}
|
||
MIBLo.addReg(Reg0, getKillRegState(SrcIsKill));
|
||
MIBHi.addReg(Reg1, getKillRegState(SrcIsKill));
|
||
|
||
// Split the memory operand, adjusting the offset and size for the halves.
|
||
MachineMemOperand *OldMMO = MBBI->memoperands().front();
|
||
MachineFunction *MF = MBB.getParent();
|
||
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, 2);
|
||
MachineMemOperand *MMOHi = MF->getMachineMemOperand(OldMMO, 2, 2);
|
||
|
||
MIBLo.setMemRefs(MMOLo);
|
||
MIBHi.setMemRefs(MMOHi);
|
||
|
||
// Delete the pseudo.
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
case X86::MWAITX_SAVE_RBX: {
|
||
// Perform the following transformation.
|
||
// SaveRbx = pseudomwaitx InArg, SaveRbx
|
||
// =>
|
||
// [E|R]BX = InArg
|
||
// actualmwaitx
|
||
// [E|R]BX = SaveRbx
|
||
const MachineOperand &InArg = MBBI->getOperand(1);
|
||
// Copy the input argument of the pseudo into the argument of the
|
||
// actual instruction.
|
||
TII->copyPhysReg(MBB, MBBI, DL, X86::EBX, InArg.getReg(), InArg.isKill());
|
||
// Create the actual instruction.
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::MWAITXrrr));
|
||
// Finally, restore the value of RBX.
|
||
Register SaveRbx = MBBI->getOperand(2).getReg();
|
||
TII->copyPhysReg(MBB, MBBI, DL, X86::RBX, SaveRbx, /*SrcIsKill*/ true);
|
||
// Delete the pseudo.
|
||
MBBI->eraseFromParent();
|
||
return true;
|
||
}
|
||
case TargetOpcode::ICALL_BRANCH_FUNNEL:
|
||
expandICallBranchFunnel(&MBB, MBBI);
|
||
return true;
|
||
case X86::PLDTILECFGV: {
|
||
MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::LDTILECFG)));
|
||
return true;
|
||
}
|
||
case X86::PTILELOADDV:
|
||
case X86::PTILELOADDT1V: {
|
||
for (unsigned i = 2; i > 0; --i)
|
||
MI.removeOperand(i);
|
||
unsigned Opc = Opcode == X86::PTILELOADDV
|
||
? GET_EGPR_IF_ENABLED(X86::TILELOADD)
|
||
: GET_EGPR_IF_ENABLED(X86::TILELOADDT1);
|
||
MI.setDesc(TII->get(Opc));
|
||
return true;
|
||
}
|
||
// TILEPAIRLOAD is just for TILEPair spill, we don't have corresponding
|
||
// AMX instruction to support it. So, split it to 2 load instructions:
|
||
// "TILEPAIRLOAD TMM0:TMM1, Base, Scale, Index, Offset, Segment" -->
|
||
// "TILELOAD TMM0, Base, Scale, Index, Offset, Segment" +
|
||
// "TILELOAD TMM1, Base, Scale, Index, Offset + TMM_SIZE, Segment"
|
||
case X86::PTILEPAIRLOAD: {
|
||
int64_t Disp = MBBI->getOperand(1 + X86::AddrDisp).getImm();
|
||
Register TReg = MBBI->getOperand(0).getReg();
|
||
bool DstIsDead = MBBI->getOperand(0).isDead();
|
||
Register TReg0 = TRI->getSubReg(TReg, X86::sub_t0);
|
||
Register TReg1 = TRI->getSubReg(TReg, X86::sub_t1);
|
||
unsigned TmmSize = TRI->getRegSizeInBits(X86::TILERegClass) / 8;
|
||
|
||
MachineInstrBuilder MIBLo =
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::TILELOADD))
|
||
.addReg(TReg0, RegState::Define | getDeadRegState(DstIsDead));
|
||
MachineInstrBuilder MIBHi =
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::TILELOADD))
|
||
.addReg(TReg1, RegState::Define | getDeadRegState(DstIsDead));
|
||
|
||
for (int i = 0; i < X86::AddrNumOperands; ++i) {
|
||
MIBLo.add(MBBI->getOperand(1 + i));
|
||
if (i == X86::AddrDisp)
|
||
MIBHi.addImm(Disp + TmmSize);
|
||
else
|
||
MIBHi.add(MBBI->getOperand(1 + i));
|
||
}
|
||
|
||
// Make sure the first stride reg used in first tileload is alive.
|
||
MachineOperand &Stride =
|
||
MIBLo.getInstr()->getOperand(1 + X86::AddrIndexReg);
|
||
Stride.setIsKill(false);
|
||
|
||
// Split the memory operand, adjusting the offset and size for the halves.
|
||
MachineMemOperand *OldMMO = MBBI->memoperands().front();
|
||
MachineFunction *MF = MBB.getParent();
|
||
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, TmmSize);
|
||
MachineMemOperand *MMOHi =
|
||
MF->getMachineMemOperand(OldMMO, TmmSize, TmmSize);
|
||
|
||
MIBLo.setMemRefs(MMOLo);
|
||
MIBHi.setMemRefs(MMOHi);
|
||
|
||
// Delete the pseudo.
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
// Similar with TILEPAIRLOAD, TILEPAIRSTORE is just for TILEPair spill, no
|
||
// corresponding AMX instruction to support it. So, split it too:
|
||
// "TILEPAIRSTORE Base, Scale, Index, Offset, Segment, TMM0:TMM1" -->
|
||
// "TILESTORE Base, Scale, Index, Offset, Segment, TMM0" +
|
||
// "TILESTORE Base, Scale, Index, Offset + TMM_SIZE, Segment, TMM1"
|
||
case X86::PTILEPAIRSTORE: {
|
||
int64_t Disp = MBBI->getOperand(X86::AddrDisp).getImm();
|
||
Register TReg = MBBI->getOperand(X86::AddrNumOperands).getReg();
|
||
bool SrcIsKill = MBBI->getOperand(X86::AddrNumOperands).isKill();
|
||
Register TReg0 = TRI->getSubReg(TReg, X86::sub_t0);
|
||
Register TReg1 = TRI->getSubReg(TReg, X86::sub_t1);
|
||
unsigned TmmSize = TRI->getRegSizeInBits(X86::TILERegClass) / 8;
|
||
|
||
MachineInstrBuilder MIBLo =
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::TILESTORED));
|
||
MachineInstrBuilder MIBHi =
|
||
BuildMI(MBB, MBBI, DL, TII->get(X86::TILESTORED));
|
||
|
||
for (int i = 0; i < X86::AddrNumOperands; ++i) {
|
||
MIBLo.add(MBBI->getOperand(i));
|
||
if (i == X86::AddrDisp)
|
||
MIBHi.addImm(Disp + TmmSize);
|
||
else
|
||
MIBHi.add(MBBI->getOperand(i));
|
||
}
|
||
MIBLo.addReg(TReg0, getKillRegState(SrcIsKill));
|
||
MIBHi.addReg(TReg1, getKillRegState(SrcIsKill));
|
||
|
||
// Make sure the first stride reg used in first tilestore is alive.
|
||
MachineOperand &Stride = MIBLo.getInstr()->getOperand(X86::AddrIndexReg);
|
||
Stride.setIsKill(false);
|
||
|
||
// Split the memory operand, adjusting the offset and size for the halves.
|
||
MachineMemOperand *OldMMO = MBBI->memoperands().front();
|
||
MachineFunction *MF = MBB.getParent();
|
||
MachineMemOperand *MMOLo = MF->getMachineMemOperand(OldMMO, 0, TmmSize);
|
||
MachineMemOperand *MMOHi =
|
||
MF->getMachineMemOperand(OldMMO, TmmSize, TmmSize);
|
||
|
||
MIBLo.setMemRefs(MMOLo);
|
||
MIBHi.setMemRefs(MMOHi);
|
||
|
||
// Delete the pseudo.
|
||
MBB.erase(MBBI);
|
||
return true;
|
||
}
|
||
case X86::PT2RPNTLVWZ0V:
|
||
case X86::PT2RPNTLVWZ0T1V:
|
||
case X86::PT2RPNTLVWZ1V:
|
||
case X86::PT2RPNTLVWZ1T1V: {
|
||
for (unsigned i = 3; i > 0; --i)
|
||
MI.removeOperand(i);
|
||
unsigned Opc;
|
||
switch (Opcode) {
|
||
case X86::PT2RPNTLVWZ0V:
|
||
Opc = X86::T2RPNTLVWZ0;
|
||
break;
|
||
case X86::PT2RPNTLVWZ0T1V:
|
||
Opc = X86::T2RPNTLVWZ0T1;
|
||
break;
|
||
case X86::PT2RPNTLVWZ1V:
|
||
Opc = X86::T2RPNTLVWZ1;
|
||
break;
|
||
case X86::PT2RPNTLVWZ1T1V:
|
||
Opc = X86::T2RPNTLVWZ1T1;
|
||
break;
|
||
default:
|
||
llvm_unreachable("Impossible Opcode!");
|
||
}
|
||
MI.setDesc(TII->get(Opc));
|
||
return true;
|
||
}
|
||
case X86::PTTRANSPOSEDV: {
|
||
for (int i = 2; i > 0; --i)
|
||
MI.removeOperand(i);
|
||
MI.setDesc(TII->get(X86::TTRANSPOSED));
|
||
return true;
|
||
}
|
||
case X86::PTCMMIMFP16PSV:
|
||
case X86::PTCMMRLFP16PSV:
|
||
case X86::PTDPBSSDV:
|
||
case X86::PTDPBSUDV:
|
||
case X86::PTDPBUSDV:
|
||
case X86::PTDPBUUDV:
|
||
case X86::PTDPBF16PSV:
|
||
case X86::PTDPFP16PSV: {
|
||
MI.untieRegOperand(4);
|
||
for (unsigned i = 3; i > 0; --i)
|
||
MI.removeOperand(i);
|
||
unsigned Opc;
|
||
switch (Opcode) {
|
||
case X86::PTCMMIMFP16PSV: Opc = X86::TCMMIMFP16PS; break;
|
||
case X86::PTCMMRLFP16PSV: Opc = X86::TCMMRLFP16PS; break;
|
||
case X86::PTDPBSSDV: Opc = X86::TDPBSSD; break;
|
||
case X86::PTDPBSUDV: Opc = X86::TDPBSUD; break;
|
||
case X86::PTDPBUSDV: Opc = X86::TDPBUSD; break;
|
||
case X86::PTDPBUUDV: Opc = X86::TDPBUUD; break;
|
||
case X86::PTDPBF16PSV: Opc = X86::TDPBF16PS; break;
|
||
case X86::PTDPFP16PSV: Opc = X86::TDPFP16PS; break;
|
||
default: llvm_unreachable("Impossible Opcode!");
|
||
}
|
||
MI.setDesc(TII->get(Opc));
|
||
MI.tieOperands(0, 1);
|
||
return true;
|
||
}
|
||
case X86::PTILESTOREDV: {
|
||
for (int i = 1; i >= 0; --i)
|
||
MI.removeOperand(i);
|
||
MI.setDesc(TII->get(GET_EGPR_IF_ENABLED(X86::TILESTORED)));
|
||
return true;
|
||
}
|
||
#undef GET_EGPR_IF_ENABLED
|
||
case X86::PTILEZEROV: {
|
||
for (int i = 2; i > 0; --i) // Remove row, col
|
||
MI.removeOperand(i);
|
||
MI.setDesc(TII->get(X86::TILEZERO));
|
||
return true;
|
||
}
|
||
case X86::CALL64pcrel32_RVMARKER:
|
||
case X86::CALL64r_RVMARKER:
|
||
case X86::CALL64m_RVMARKER:
|
||
expandCALL_RVMARKER(MBB, MBBI);
|
||
return true;
|
||
case X86::ADD32mi_ND:
|
||
case X86::ADD64mi32_ND:
|
||
case X86::SUB32mi_ND:
|
||
case X86::SUB64mi32_ND:
|
||
case X86::AND32mi_ND:
|
||
case X86::AND64mi32_ND:
|
||
case X86::OR32mi_ND:
|
||
case X86::OR64mi32_ND:
|
||
case X86::XOR32mi_ND:
|
||
case X86::XOR64mi32_ND:
|
||
case X86::ADC32mi_ND:
|
||
case X86::ADC64mi32_ND:
|
||
case X86::SBB32mi_ND:
|
||
case X86::SBB64mi32_ND: {
|
||
// It's possible for an EVEX-encoded legacy instruction to reach the 15-byte
|
||
// instruction length limit: 4 bytes of EVEX prefix + 1 byte of opcode + 1
|
||
// byte of ModRM + 1 byte of SIB + 4 bytes of displacement + 4 bytes of
|
||
// immediate = 15 bytes in total, e.g.
|
||
//
|
||
// subq $184, %fs:257(%rbx, %rcx), %rax
|
||
//
|
||
// In such a case, no additional (ADSIZE or segment override) prefix can be
|
||
// used. To resolve the issue, we split the “long” instruction into 2
|
||
// instructions:
|
||
//
|
||
// movq %fs:257(%rbx, %rcx),%rax
|
||
// subq $184, %rax
|
||
//
|
||
// Therefore we consider the OPmi_ND to be a pseudo instruction to some
|
||
// extent.
|
||
const MachineOperand &ImmOp =
|
||
MI.getOperand(MI.getNumExplicitOperands() - 1);
|
||
// If the immediate is a expr, conservatively estimate 4 bytes.
|
||
if (ImmOp.isImm() && isInt<8>(ImmOp.getImm()))
|
||
return false;
|
||
int MemOpNo = X86::getFirstAddrOperandIdx(MI);
|
||
const MachineOperand &DispOp = MI.getOperand(MemOpNo + X86::AddrDisp);
|
||
Register Base = MI.getOperand(MemOpNo + X86::AddrBaseReg).getReg();
|
||
// If the displacement is a expr, conservatively estimate 4 bytes.
|
||
if (Base && DispOp.isImm() && isInt<8>(DispOp.getImm()))
|
||
return false;
|
||
// There can only be one of three: SIB, segment override register, ADSIZE
|
||
Register Index = MI.getOperand(MemOpNo + X86::AddrIndexReg).getReg();
|
||
unsigned Count = !!MI.getOperand(MemOpNo + X86::AddrSegmentReg).getReg();
|
||
if (X86II::needSIB(Base, Index, /*In64BitMode=*/true))
|
||
++Count;
|
||
if (X86MCRegisterClasses[X86::GR32RegClassID].contains(Base) ||
|
||
X86MCRegisterClasses[X86::GR32RegClassID].contains(Index))
|
||
++Count;
|
||
if (Count < 2)
|
||
return false;
|
||
unsigned Opc, LoadOpc;
|
||
switch (Opcode) {
|
||
#define MI_TO_RI(OP) \
|
||
case X86::OP##32mi_ND: \
|
||
Opc = X86::OP##32ri; \
|
||
LoadOpc = X86::MOV32rm; \
|
||
break; \
|
||
case X86::OP##64mi32_ND: \
|
||
Opc = X86::OP##64ri32; \
|
||
LoadOpc = X86::MOV64rm; \
|
||
break;
|
||
|
||
default:
|
||
llvm_unreachable("Unexpected Opcode");
|
||
MI_TO_RI(ADD);
|
||
MI_TO_RI(SUB);
|
||
MI_TO_RI(AND);
|
||
MI_TO_RI(OR);
|
||
MI_TO_RI(XOR);
|
||
MI_TO_RI(ADC);
|
||
MI_TO_RI(SBB);
|
||
#undef MI_TO_RI
|
||
}
|
||
// Insert OPri.
|
||
Register DestReg = MI.getOperand(0).getReg();
|
||
BuildMI(MBB, std::next(MBBI), DL, TII->get(Opc), DestReg)
|
||
.addReg(DestReg)
|
||
.add(ImmOp);
|
||
// Change OPmi_ND to MOVrm.
|
||
for (unsigned I = MI.getNumImplicitOperands() + 1; I != 0; --I)
|
||
MI.removeOperand(MI.getNumOperands() - 1);
|
||
MI.setDesc(TII->get(LoadOpc));
|
||
return true;
|
||
}
|
||
}
|
||
llvm_unreachable("Previous switch has a fallthrough?");
|
||
}
|
||
|
||
// This function creates additional block for storing varargs guarded
|
||
// registers. It adds check for %al into entry block, to skip
|
||
// GuardedRegsBlk if xmm registers should not be stored.
|
||
//
|
||
// EntryBlk[VAStartPseudoInstr] EntryBlk
|
||
// | | .
|
||
// | | .
|
||
// | | GuardedRegsBlk
|
||
// | => | .
|
||
// | | .
|
||
// | TailBlk
|
||
// | |
|
||
// | |
|
||
//
|
||
void X86ExpandPseudo::expandVastartSaveXmmRegs(
|
||
MachineBasicBlock *EntryBlk,
|
||
MachineBasicBlock::iterator VAStartPseudoInstr) const {
|
||
assert(VAStartPseudoInstr->getOpcode() == X86::VASTART_SAVE_XMM_REGS);
|
||
|
||
MachineFunction *Func = EntryBlk->getParent();
|
||
const TargetInstrInfo *TII = STI->getInstrInfo();
|
||
const DebugLoc &DL = VAStartPseudoInstr->getDebugLoc();
|
||
Register CountReg = VAStartPseudoInstr->getOperand(0).getReg();
|
||
|
||
// Calculate liveins for newly created blocks.
|
||
LivePhysRegs LiveRegs(*STI->getRegisterInfo());
|
||
SmallVector<std::pair<MCPhysReg, const MachineOperand *>, 8> Clobbers;
|
||
|
||
LiveRegs.addLiveIns(*EntryBlk);
|
||
for (MachineInstr &MI : EntryBlk->instrs()) {
|
||
if (MI.getOpcode() == VAStartPseudoInstr->getOpcode())
|
||
break;
|
||
|
||
LiveRegs.stepForward(MI, Clobbers);
|
||
}
|
||
|
||
// Create the new basic blocks. One block contains all the XMM stores,
|
||
// and another block is the final destination regardless of whether any
|
||
// stores were performed.
|
||
const BasicBlock *LLVMBlk = EntryBlk->getBasicBlock();
|
||
MachineFunction::iterator EntryBlkIter = ++EntryBlk->getIterator();
|
||
MachineBasicBlock *GuardedRegsBlk = Func->CreateMachineBasicBlock(LLVMBlk);
|
||
MachineBasicBlock *TailBlk = Func->CreateMachineBasicBlock(LLVMBlk);
|
||
Func->insert(EntryBlkIter, GuardedRegsBlk);
|
||
Func->insert(EntryBlkIter, TailBlk);
|
||
|
||
// Transfer the remainder of EntryBlk and its successor edges to TailBlk.
|
||
TailBlk->splice(TailBlk->begin(), EntryBlk,
|
||
std::next(MachineBasicBlock::iterator(VAStartPseudoInstr)),
|
||
EntryBlk->end());
|
||
TailBlk->transferSuccessorsAndUpdatePHIs(EntryBlk);
|
||
|
||
uint64_t FrameOffset = VAStartPseudoInstr->getOperand(4).getImm();
|
||
uint64_t VarArgsRegsOffset = VAStartPseudoInstr->getOperand(6).getImm();
|
||
|
||
// TODO: add support for YMM and ZMM here.
|
||
unsigned MOVOpc = STI->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
|
||
|
||
// In the XMM save block, save all the XMM argument registers.
|
||
for (int64_t OpndIdx = 7, RegIdx = 0;
|
||
OpndIdx < VAStartPseudoInstr->getNumOperands() - 1;
|
||
OpndIdx++, RegIdx++) {
|
||
auto NewMI = BuildMI(GuardedRegsBlk, DL, TII->get(MOVOpc));
|
||
for (int i = 0; i < X86::AddrNumOperands; ++i) {
|
||
if (i == X86::AddrDisp)
|
||
NewMI.addImm(FrameOffset + VarArgsRegsOffset + RegIdx * 16);
|
||
else
|
||
NewMI.add(VAStartPseudoInstr->getOperand(i + 1));
|
||
}
|
||
NewMI.addReg(VAStartPseudoInstr->getOperand(OpndIdx).getReg());
|
||
assert(VAStartPseudoInstr->getOperand(OpndIdx).getReg().isPhysical());
|
||
}
|
||
|
||
// The original block will now fall through to the GuardedRegsBlk.
|
||
EntryBlk->addSuccessor(GuardedRegsBlk);
|
||
// The GuardedRegsBlk will fall through to the TailBlk.
|
||
GuardedRegsBlk->addSuccessor(TailBlk);
|
||
|
||
if (!STI->isCallingConvWin64(Func->getFunction().getCallingConv())) {
|
||
// If %al is 0, branch around the XMM save block.
|
||
BuildMI(EntryBlk, DL, TII->get(X86::TEST8rr))
|
||
.addReg(CountReg)
|
||
.addReg(CountReg);
|
||
BuildMI(EntryBlk, DL, TII->get(X86::JCC_1))
|
||
.addMBB(TailBlk)
|
||
.addImm(X86::COND_E);
|
||
EntryBlk->addSuccessor(TailBlk);
|
||
}
|
||
|
||
// Add liveins to the created block.
|
||
addLiveIns(*GuardedRegsBlk, LiveRegs);
|
||
addLiveIns(*TailBlk, LiveRegs);
|
||
|
||
// Delete the pseudo.
|
||
VAStartPseudoInstr->eraseFromParent();
|
||
}
|
||
|
||
/// Expand all pseudo instructions contained in \p MBB.
|
||
/// \returns true if any expansion occurred for \p MBB.
|
||
bool X86ExpandPseudo::expandMBB(MachineBasicBlock &MBB) {
|
||
bool Modified = false;
|
||
|
||
// MBBI may be invalidated by the expansion.
|
||
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
|
||
while (MBBI != E) {
|
||
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
|
||
Modified |= expandMI(MBB, MBBI);
|
||
MBBI = NMBBI;
|
||
}
|
||
|
||
return Modified;
|
||
}
|
||
|
||
bool X86ExpandPseudo::expandPseudosWhichAffectControlFlow(MachineFunction &MF) {
|
||
// Currently pseudo which affects control flow is only
|
||
// X86::VASTART_SAVE_XMM_REGS which is located in Entry block.
|
||
// So we do not need to evaluate other blocks.
|
||
for (MachineInstr &Instr : MF.front().instrs()) {
|
||
if (Instr.getOpcode() == X86::VASTART_SAVE_XMM_REGS) {
|
||
expandVastartSaveXmmRegs(&(MF.front()), Instr);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool X86ExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
|
||
STI = &MF.getSubtarget<X86Subtarget>();
|
||
TII = STI->getInstrInfo();
|
||
TRI = STI->getRegisterInfo();
|
||
X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
||
X86FL = STI->getFrameLowering();
|
||
|
||
bool Modified = expandPseudosWhichAffectControlFlow(MF);
|
||
|
||
for (MachineBasicBlock &MBB : MF)
|
||
Modified |= expandMBB(MBB);
|
||
return Modified;
|
||
}
|
||
|
||
/// Returns an instance of the pseudo instruction expansion pass.
|
||
FunctionPass *llvm::createX86ExpandPseudoPass() {
|
||
return new X86ExpandPseudo();
|
||
}
|