llvm-project/llvm/lib/CodeGen/GlobalMergeFunctions.cpp
Andrew Rogers ad0fba211c
[llvm] annotate remaining CodeGen and CodeGenTypes library interfaces for DLL export (#145361)
## Purpose

This patch is one in a series of code-mods that annotate LLVM’s public
interface for export. This patch annotates the remaining LLVM CodeGen
and CodeGenTypes library interfaces that were missed in, or modified
since, previous patches. The annotations currently have no meaningful
impact on the LLVM build; however, they are a prerequisite to support an
LLVM Windows DLL (shared library) build.

## Background

This effort is tracked in #109483. Additional context is provided in
[this
discourse](https://discourse.llvm.org/t/psa-annotating-llvm-public-interface/85307),
and documentation for `LLVM_ABI` and related annotations is found in the
LLVM repo
[here](https://github.com/llvm/llvm-project/blob/main/llvm/docs/InterfaceExportAnnotations.rst).

## Overview

The bulk of these changes were generated automatically using the
[Interface Definition Scanner (IDS)](https://github.com/compnerd/ids)
tool, followed formatting with `git clang-format`.

The following manual adjustments were also applied after running IDS:
- Explicitly instantiate `CallLowering::setArgFlags` template method
instances in `CodeGen/GlobalISel/CallLowering.h` and annotate them with
`LLVM_ABI`. These methods are already explicitly instantiated in
`lib/CodeGen/GlobalISel/CallLowering.cpp` but were not `extern` declared
in the header.
- Annotate several explicit template instantiations with
`LLVM_EXPORT_TEMPLATE`.
- Include `llvm/CodeGen/Passes.h` from
`llvm/lib/CodeGen/GlobalMergeFunctions.cpp` to pick up the declaration
of `llvm::createGlobalMergeFuncPass` with the `LLVM_ABI` annotation
(instead of adding `LLVM_ABI` to the function definition in this file)

## Validation

Local builds and tests to validate cross-platform compatibility. This
included llvm, clang, and lldb on the following configurations:

- Windows with MSVC
- Windows with Clang
- Linux with GCC
- Linux with Clang
- Darwin with Clang
2025-06-25 13:00:59 -07:00

618 lines
22 KiB
C++

//===---- GlobalMergeFunctions.cpp - Global merge functions -------*- C++ -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements the global merge function pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalMergeFunctions.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/CGData/CodeGenData.h"
#include "llvm/CGData/CodeGenDataWriter.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/StructuralHash.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#define DEBUG_TYPE "global-merge-func"
using namespace llvm;
using namespace llvm::support;
static cl::opt<bool> DisableCGDataForMerging(
"disable-cgdata-for-merging", cl::Hidden,
cl::desc("Disable codegen data for function merging. Local "
"merging is still enabled within a module."),
cl::init(false));
STATISTIC(NumMergedFunctions,
"Number of functions that are actually merged using function hash");
STATISTIC(NumAnalyzedModues, "Number of modules that are analyzed");
STATISTIC(NumAnalyzedFunctions, "Number of functions that are analyzed");
STATISTIC(NumEligibleFunctions, "Number of functions that are eligible");
/// Returns true if the \OpIdx operand of \p CI is the callee operand.
static bool isCalleeOperand(const CallBase *CI, unsigned OpIdx) {
return &CI->getCalledOperandUse() == &CI->getOperandUse(OpIdx);
}
static bool canParameterizeCallOperand(const CallBase *CI, unsigned OpIdx) {
if (CI->isInlineAsm())
return false;
Function *Callee = CI->getCalledOperand()
? dyn_cast_or_null<Function>(
CI->getCalledOperand()->stripPointerCasts())
: nullptr;
if (Callee) {
if (Callee->isIntrinsic())
return false;
auto Name = Callee->getName();
// objc_msgSend stubs must be called, and can't have their address taken.
if (Name.starts_with("objc_msgSend$"))
return false;
// Calls to dtrace probes must generate unique patchpoints.
if (Name.starts_with("__dtrace"))
return false;
}
if (isCalleeOperand(CI, OpIdx)) {
// The operand is the callee and it has already been signed. Ignore this
// because we cannot add another ptrauth bundle to the call instruction.
if (CI->getOperandBundle(LLVMContext::OB_ptrauth).has_value())
return false;
} else {
// The target of the arc-attached call must be a constant and cannot be
// parameterized.
if (CI->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
OpIdx))
return false;
}
return true;
}
/// Returns true if function \p F is eligible for merging.
bool isEligibleFunction(Function *F) {
if (F->isDeclaration())
return false;
if (F->hasFnAttribute(llvm::Attribute::NoMerge) ||
F->hasFnAttribute(llvm::Attribute::AlwaysInline))
return false;
if (F->hasAvailableExternallyLinkage())
return false;
if (F->getFunctionType()->isVarArg())
return false;
if (F->getCallingConv() == CallingConv::SwiftTail)
return false;
// If function contains callsites with musttail, if we merge
// it, the merged function will have the musttail callsite, but
// the number of parameters can change, thus the parameter count
// of the callsite will mismatch with the function itself.
for (const BasicBlock &BB : *F) {
for (const Instruction &I : BB) {
const auto *CB = dyn_cast<CallBase>(&I);
if (CB && CB->isMustTailCall())
return false;
}
}
return true;
}
static bool isEligibleInstructionForConstantSharing(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Load:
case Instruction::Store:
case Instruction::Call:
case Instruction::Invoke:
return true;
default:
return false;
}
}
// This function takes an instruction, \p I, and an operand index, \p OpIdx.
// It returns true if the operand should be ignored in the hash computation.
// If \p OpIdx is out of range based on the other instruction context, it cannot
// be ignored.
static bool ignoreOp(const Instruction *I, unsigned OpIdx) {
if (OpIdx >= I->getNumOperands())
return false;
if (!isEligibleInstructionForConstantSharing(I))
return false;
if (!isa<Constant>(I->getOperand(OpIdx)))
return false;
if (const auto *CI = dyn_cast<CallBase>(I))
return canParameterizeCallOperand(CI, OpIdx);
return true;
}
void GlobalMergeFunc::analyze(Module &M) {
++NumAnalyzedModues;
for (Function &Func : M) {
++NumAnalyzedFunctions;
if (isEligibleFunction(&Func)) {
++NumEligibleFunctions;
auto FI = llvm::StructuralHashWithDifferences(Func, ignoreOp);
// Convert the operand map to a vector for a serialization-friendly
// format.
IndexOperandHashVecType IndexOperandHashes;
for (auto &Pair : *FI.IndexOperandHashMap)
IndexOperandHashes.emplace_back(Pair);
StableFunction SF(FI.FunctionHash, get_stable_name(Func.getName()).str(),
M.getModuleIdentifier(), FI.IndexInstruction->size(),
std::move(IndexOperandHashes));
LocalFunctionMap->insert(SF);
}
}
}
/// Tuple to hold function info to process merging.
struct FuncMergeInfo {
StableFunctionMap::StableFunctionEntry *SF;
Function *F;
IndexInstrMap *IndexInstruction;
FuncMergeInfo(StableFunctionMap::StableFunctionEntry *SF, Function *F,
IndexInstrMap *IndexInstruction)
: SF(SF), F(F), IndexInstruction(std::move(IndexInstruction)) {}
};
// Given the func info, and the parameterized locations, create and return
// a new merged function by replacing the original constants with the new
// parameters.
static Function *createMergedFunction(FuncMergeInfo &FI,
ArrayRef<Type *> ConstParamTypes,
const ParamLocsVecTy &ParamLocsVec) {
// Synthesize a new merged function name by appending ".Tgm" to the root
// function's name.
auto *MergedFunc = FI.F;
std::string NewFunctionName =
MergedFunc->getName().str() + GlobalMergeFunc::MergingInstanceSuffix;
auto *M = MergedFunc->getParent();
assert(!M->getFunction(NewFunctionName));
FunctionType *OrigTy = MergedFunc->getFunctionType();
// Get the original params' types.
SmallVector<Type *> ParamTypes(OrigTy->param_begin(), OrigTy->param_end());
// Append const parameter types that are passed in.
ParamTypes.append(ConstParamTypes.begin(), ConstParamTypes.end());
FunctionType *FuncType = FunctionType::get(OrigTy->getReturnType(),
ParamTypes, /*isVarArg=*/false);
// Declare a new function
Function *NewFunction =
Function::Create(FuncType, MergedFunc->getLinkage(), NewFunctionName);
if (auto *SP = MergedFunc->getSubprogram())
NewFunction->setSubprogram(SP);
NewFunction->copyAttributesFrom(MergedFunc);
NewFunction->setDLLStorageClass(GlobalValue::DefaultStorageClass);
NewFunction->setLinkage(GlobalValue::InternalLinkage);
NewFunction->addFnAttr(Attribute::NoInline);
// Add the new function before the root function.
M->getFunctionList().insert(MergedFunc->getIterator(), NewFunction);
// Move the body of MergedFunc into the NewFunction.
NewFunction->splice(NewFunction->begin(), MergedFunc);
// Update the original args by the new args.
auto NewArgIter = NewFunction->arg_begin();
for (Argument &OrigArg : MergedFunc->args()) {
Argument &NewArg = *NewArgIter++;
OrigArg.replaceAllUsesWith(&NewArg);
}
// Replace the original Constants by the new args.
unsigned NumOrigArgs = MergedFunc->arg_size();
for (unsigned ParamIdx = 0; ParamIdx < ParamLocsVec.size(); ++ParamIdx) {
Argument *NewArg = NewFunction->getArg(NumOrigArgs + ParamIdx);
for (auto [InstIndex, OpndIndex] : ParamLocsVec[ParamIdx]) {
auto *Inst = FI.IndexInstruction->lookup(InstIndex);
auto *OrigC = Inst->getOperand(OpndIndex);
if (OrigC->getType() != NewArg->getType()) {
IRBuilder<> Builder(Inst->getParent(), Inst->getIterator());
Inst->setOperand(OpndIndex,
Builder.CreateAggregateCast(NewArg, OrigC->getType()));
} else {
Inst->setOperand(OpndIndex, NewArg);
}
}
}
return NewFunction;
}
// Given the original function (Thunk) and the merged function (ToFunc), create
// a thunk to the merged function.
static void createThunk(FuncMergeInfo &FI, ArrayRef<Constant *> Params,
Function *ToFunc) {
auto *Thunk = FI.F;
assert(Thunk->arg_size() + Params.size() ==
ToFunc->getFunctionType()->getNumParams());
Thunk->dropAllReferences();
BasicBlock *BB = BasicBlock::Create(Thunk->getContext(), "", Thunk);
IRBuilder<> Builder(BB);
SmallVector<Value *> Args;
unsigned ParamIdx = 0;
FunctionType *ToFuncTy = ToFunc->getFunctionType();
// Add arguments which are passed through Thunk.
for (Argument &AI : Thunk->args()) {
Args.push_back(
Builder.CreateAggregateCast(&AI, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
// Add new arguments defined by Params.
for (auto *Param : Params) {
assert(ParamIdx < ToFuncTy->getNumParams());
Args.push_back(
Builder.CreateAggregateCast(Param, ToFuncTy->getParamType(ParamIdx)));
++ParamIdx;
}
CallInst *CI = Builder.CreateCall(ToFunc, Args);
bool isSwiftTailCall = ToFunc->getCallingConv() == CallingConv::SwiftTail &&
Thunk->getCallingConv() == CallingConv::SwiftTail;
CI->setTailCallKind(isSwiftTailCall ? llvm::CallInst::TCK_MustTail
: llvm::CallInst::TCK_Tail);
CI->setCallingConv(ToFunc->getCallingConv());
CI->setAttributes(ToFunc->getAttributes());
if (Thunk->getReturnType()->isVoidTy())
Builder.CreateRetVoid();
else
Builder.CreateRet(Builder.CreateAggregateCast(CI, Thunk->getReturnType()));
}
// Check if the old merged/optimized IndexOperandHashMap is compatible with
// the current IndexOperandHashMap. An operand hash may not be stable across
// different builds due to varying modules combined. To address this, we relax
// the hash check condition by comparing Const hash patterns instead of absolute
// hash values. For example, let's assume we have three Consts located at idx1,
// idx3, and idx6, where their corresponding hashes are hash1, hash2, and hash1
// in the old merged map below:
// Old (Merged): [(idx1, hash1), (idx3, hash2), (idx6, hash1)]
// Current: [(idx1, hash1'), (idx3, hash2'), (idx6, hash1')]
// If the current function also has three Consts in the same locations,
// with hash sequences hash1', hash2', and hash1' where the first and third
// are the same as the old hash sequences, we consider them matched.
static bool checkConstHashCompatible(
const DenseMap<IndexPair, stable_hash> &OldInstOpndIndexToConstHash,
const DenseMap<IndexPair, stable_hash> &CurrInstOpndIndexToConstHash) {
DenseMap<stable_hash, stable_hash> OldHashToCurrHash;
for (const auto &[Index, OldHash] : OldInstOpndIndexToConstHash) {
auto It = CurrInstOpndIndexToConstHash.find(Index);
if (It == CurrInstOpndIndexToConstHash.end())
return false;
auto CurrHash = It->second;
auto J = OldHashToCurrHash.find(OldHash);
if (J == OldHashToCurrHash.end())
OldHashToCurrHash.insert({OldHash, CurrHash});
else if (J->second != CurrHash)
return false;
}
return true;
}
// Validate the locations pointed by a param has the same hash and Constant.
static bool
checkConstLocationCompatible(const StableFunctionMap::StableFunctionEntry &SF,
const IndexInstrMap &IndexInstruction,
const ParamLocsVecTy &ParamLocsVec) {
for (auto &ParamLocs : ParamLocsVec) {
std::optional<stable_hash> OldHash;
std::optional<Constant *> OldConst;
for (auto &Loc : ParamLocs) {
assert(SF.IndexOperandHashMap->count(Loc));
auto CurrHash = SF.IndexOperandHashMap->at(Loc);
auto [InstIndex, OpndIndex] = Loc;
assert(InstIndex < IndexInstruction.size());
const auto *Inst = IndexInstruction.lookup(InstIndex);
auto *CurrConst = cast<Constant>(Inst->getOperand(OpndIndex));
if (!OldHash) {
OldHash = CurrHash;
OldConst = CurrConst;
} else if (CurrConst != *OldConst || CurrHash != *OldHash) {
return false;
}
}
}
return true;
}
static ParamLocsVecTy computeParamInfo(
const SmallVector<std::unique_ptr<StableFunctionMap::StableFunctionEntry>>
&SFS) {
std::map<std::vector<stable_hash>, ParamLocs> HashSeqToLocs;
auto &RSF = *SFS[0];
unsigned StableFunctionCount = SFS.size();
for (auto &[IndexPair, Hash] : *RSF.IndexOperandHashMap) {
// Const hash sequence across stable functions.
// We will allocate a parameter per unique hash squence.
// can't use SmallVector as key
std::vector<stable_hash> ConstHashSeq;
ConstHashSeq.push_back(Hash);
bool Identical = true;
for (unsigned J = 1; J < StableFunctionCount; ++J) {
auto &SF = SFS[J];
auto SHash = SF->IndexOperandHashMap->at(IndexPair);
if (Hash != SHash)
Identical = false;
ConstHashSeq.push_back(SHash);
}
if (Identical)
continue;
// For each unique Const hash sequence (parameter), add the locations.
HashSeqToLocs[ConstHashSeq].push_back(IndexPair);
}
ParamLocsVecTy ParamLocsVec;
for (auto &[HashSeq, Locs] : HashSeqToLocs)
ParamLocsVec.push_back(std::move(Locs));
llvm::sort(ParamLocsVec, [&](const ParamLocs &L, const ParamLocs &R) {
return L[0] < R[0];
});
return ParamLocsVec;
}
bool GlobalMergeFunc::merge(Module &M, const StableFunctionMap *FunctionMap) {
bool Changed = false;
// Collect stable functions related to the current module.
DenseMap<stable_hash, SmallVector<std::pair<Function *, FunctionHashInfo>>>
HashToFuncs;
auto &Maps = FunctionMap->getFunctionMap();
for (auto &F : M) {
if (!isEligibleFunction(&F))
continue;
auto FI = llvm::StructuralHashWithDifferences(F, ignoreOp);
if (Maps.contains(FI.FunctionHash))
HashToFuncs[FI.FunctionHash].emplace_back(&F, std::move(FI));
}
for (auto &[Hash, Funcs] : HashToFuncs) {
std::optional<ParamLocsVecTy> ParamLocsVec;
SmallVector<FuncMergeInfo> FuncMergeInfos;
auto &SFS = Maps.at(Hash);
assert(!SFS.empty());
auto &RFS = SFS[0];
// Iterate functions with the same hash.
for (auto &[F, FI] : Funcs) {
// Check if the function is compatible with any stable function
// in terms of the number of instructions and ignored operands.
if (RFS->InstCount != FI.IndexInstruction->size())
continue;
auto hasValidSharedConst = [&](StableFunctionMap::StableFunctionEntry *SF,
FunctionHashInfo &FHI) {
for (auto &[Index, Hash] : *SF->IndexOperandHashMap) {
auto [InstIndex, OpndIndex] = Index;
assert(InstIndex < FHI.IndexInstruction->size());
auto *Inst = FHI.IndexInstruction->lookup(InstIndex);
if (!ignoreOp(Inst, OpndIndex))
return false;
}
return true;
};
if (!hasValidSharedConst(RFS.get(), FI))
continue;
for (auto &SF : SFS) {
assert(SF->InstCount == FI.IndexInstruction->size());
assert(hasValidSharedConst(SF.get(), FI));
// Check if there is any stable function that is compatiable with the
// current one.
if (!checkConstHashCompatible(*SF->IndexOperandHashMap,
*FI.IndexOperandHashMap))
continue;
if (!ParamLocsVec.has_value()) {
ParamLocsVec = computeParamInfo(SFS);
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging hash: " << Hash
<< " with Params " << ParamLocsVec->size() << "\n");
}
if (!checkConstLocationCompatible(*SF, *FI.IndexInstruction,
*ParamLocsVec))
continue;
// If a stable function matching the current one is found,
// create a candidate for merging and proceed to the next function.
FuncMergeInfos.emplace_back(SF.get(), F, FI.IndexInstruction.get());
break;
}
}
unsigned FuncMergeInfoSize = FuncMergeInfos.size();
if (FuncMergeInfoSize == 0)
continue;
LLVM_DEBUG(dbgs() << "[GlobalMergeFunc] Merging function count "
<< FuncMergeInfoSize << " for hash: " << Hash << "\n");
for (auto &FMI : FuncMergeInfos) {
Changed = true;
// We've already validated all locations of constant operands pointed by
// the parameters. Populate parameters pointing to the original constants.
SmallVector<Constant *> Params;
SmallVector<Type *> ParamTypes;
for (auto &ParamLocs : *ParamLocsVec) {
assert(!ParamLocs.empty());
auto &[InstIndex, OpndIndex] = ParamLocs[0];
auto *Inst = FMI.IndexInstruction->lookup(InstIndex);
auto *Opnd = cast<Constant>(Inst->getOperand(OpndIndex));
Params.push_back(Opnd);
ParamTypes.push_back(Opnd->getType());
}
// Create a merged function derived from the current function.
Function *MergedFunc =
createMergedFunction(FMI, ParamTypes, *ParamLocsVec);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Merged function (hash:" << FMI.SF->Hash
<< ") " << MergedFunc->getName() << " generated from "
<< FMI.F->getName() << ":\n";
MergedFunc->dump();
});
// Transform the current function into a thunk that calls the merged
// function.
createThunk(FMI, Params, MergedFunc);
LLVM_DEBUG({
dbgs() << "[GlobalMergeFunc] Thunk generated: \n";
FMI.F->dump();
});
++NumMergedFunctions;
}
}
return Changed;
}
void GlobalMergeFunc::initializeMergerMode(const Module &M) {
// Initialize the local function map regardless of the merger mode.
LocalFunctionMap = std::make_unique<StableFunctionMap>();
// Disable codegen data for merging. The local merge is still enabled.
if (DisableCGDataForMerging)
return;
// (Full)LTO module does not have functions added to the index.
// In this case, we run a local merger without using codegen data.
if (Index && !Index->hasExportedFunctions(M))
return;
if (cgdata::emitCGData())
MergerMode = HashFunctionMode::BuildingHashFuncion;
else if (cgdata::hasStableFunctionMap())
MergerMode = HashFunctionMode::UsingHashFunction;
}
void GlobalMergeFunc::emitFunctionMap(Module &M) {
LLVM_DEBUG(dbgs() << "Emit function map. Size: " << LocalFunctionMap->size()
<< "\n");
// No need to emit the function map if it is empty.
if (LocalFunctionMap->empty())
return;
SmallVector<char> Buf;
raw_svector_ostream OS(Buf);
std::vector<CGDataPatchItem> PatchItems;
StableFunctionMapRecord::serialize(OS, LocalFunctionMap.get(), PatchItems);
CGDataOStream COS(OS);
COS.patch(PatchItems);
std::unique_ptr<MemoryBuffer> Buffer = MemoryBuffer::getMemBuffer(
OS.str(), "in-memory stable function map", false);
Triple TT(M.getTargetTriple());
embedBufferInModule(M, *Buffer,
getCodeGenDataSectionName(CG_merge, TT.getObjectFormat()),
Align(4));
}
bool GlobalMergeFunc::run(Module &M) {
initializeMergerMode(M);
const StableFunctionMap *FuncMap;
if (MergerMode == HashFunctionMode::UsingHashFunction) {
// Use the prior CG data to optimistically create global merge candidates.
FuncMap = cgdata::getStableFunctionMap();
} else {
analyze(M);
// Emit the local function map to the custom section, __llvm_merge before
// finalizing it.
if (MergerMode == HashFunctionMode::BuildingHashFuncion)
emitFunctionMap(M);
LocalFunctionMap->finalize();
FuncMap = LocalFunctionMap.get();
}
return merge(M, FuncMap);
}
namespace {
class GlobalMergeFuncPassWrapper : public ModulePass {
public:
static char ID;
GlobalMergeFuncPassWrapper();
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addUsedIfAvailable<ImmutableModuleSummaryIndexWrapperPass>();
AU.setPreservesAll();
ModulePass::getAnalysisUsage(AU);
}
StringRef getPassName() const override { return "Global Merge Functions"; }
bool runOnModule(Module &M) override;
};
} // namespace
char GlobalMergeFuncPassWrapper::ID = 0;
INITIALIZE_PASS_BEGIN(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
INITIALIZE_PASS_END(GlobalMergeFuncPassWrapper, "global-merge-func",
"Global merge function pass", false, false)
namespace llvm {
ModulePass *createGlobalMergeFuncPass() {
return new GlobalMergeFuncPassWrapper();
}
} // namespace llvm
GlobalMergeFuncPassWrapper::GlobalMergeFuncPassWrapper() : ModulePass(ID) {
initializeGlobalMergeFuncPassWrapperPass(
*llvm::PassRegistry::getPassRegistry());
}
bool GlobalMergeFuncPassWrapper::runOnModule(Module &M) {
const ModuleSummaryIndex *Index = nullptr;
if (auto *IndexWrapperPass =
getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
Index = IndexWrapperPass->getIndex();
return GlobalMergeFunc(Index).run(M);
}
PreservedAnalyses GlobalMergeFuncPass::run(Module &M,
AnalysisManager<Module> &AM) {
bool Changed = GlobalMergeFunc(ImportSummary).run(M);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}