
The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
232 lines
7.6 KiB
C++
232 lines
7.6 KiB
C++
//===- AlgebraicSimplification.cpp - Simplify algebraic expressions -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements rewrites based on the basic rules of algebra
|
|
// (Commutativity, associativity, etc...) and strength reductions for math
|
|
// operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Math/IR/Math.h"
|
|
#include "mlir/Dialect/Math/Transforms/Passes.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
#include <climits>
|
|
|
|
using namespace mlir;
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// PowFOp strength reduction.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
struct PowFStrengthReduction : public OpRewritePattern<math::PowFOp> {
|
|
public:
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(math::PowFOp op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
PowFStrengthReduction::matchAndRewrite(math::PowFOp op,
|
|
PatternRewriter &rewriter) const {
|
|
Location loc = op.getLoc();
|
|
Value x = op.getLhs();
|
|
|
|
FloatAttr scalarExponent;
|
|
DenseFPElementsAttr vectorExponent;
|
|
|
|
bool isScalar = matchPattern(op.getRhs(), m_Constant(&scalarExponent));
|
|
bool isVector = matchPattern(op.getRhs(), m_Constant(&vectorExponent));
|
|
|
|
// Returns true if exponent is a constant equal to `value`.
|
|
auto isExponentValue = [&](double value) -> bool {
|
|
if (isScalar)
|
|
return scalarExponent.getValue().isExactlyValue(value);
|
|
|
|
if (isVector && vectorExponent.isSplat())
|
|
return vectorExponent.getSplatValue<FloatAttr>()
|
|
.getValue()
|
|
.isExactlyValue(value);
|
|
|
|
return false;
|
|
};
|
|
|
|
// Maybe broadcasts scalar value into vector type compatible with `op`.
|
|
auto bcast = [&](Value value) -> Value {
|
|
if (auto vec = dyn_cast<VectorType>(op.getType()))
|
|
return rewriter.create<vector::BroadcastOp>(op.getLoc(), vec, value);
|
|
return value;
|
|
};
|
|
|
|
// Replace `pow(x, 1.0)` with `x`.
|
|
if (isExponentValue(1.0)) {
|
|
rewriter.replaceOp(op, x);
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, 2.0)` with `x * x`.
|
|
if (isExponentValue(2.0)) {
|
|
rewriter.replaceOpWithNewOp<arith::MulFOp>(op, ValueRange({x, x}));
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, 3.0)` with `x * x * x`.
|
|
if (isExponentValue(3.0)) {
|
|
Value square =
|
|
rewriter.create<arith::MulFOp>(op.getLoc(), ValueRange({x, x}));
|
|
rewriter.replaceOpWithNewOp<arith::MulFOp>(op, ValueRange({x, square}));
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, -1.0)` with `1.0 / x`.
|
|
if (isExponentValue(-1.0)) {
|
|
Value one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getFloatAttr(getElementTypeOrSelf(op.getType()), 1.0));
|
|
rewriter.replaceOpWithNewOp<arith::DivFOp>(op, ValueRange({bcast(one), x}));
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, 0.5)` with `sqrt(x)`.
|
|
if (isExponentValue(0.5)) {
|
|
rewriter.replaceOpWithNewOp<math::SqrtOp>(op, x);
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, -0.5)` with `rsqrt(x)`.
|
|
if (isExponentValue(-0.5)) {
|
|
rewriter.replaceOpWithNewOp<math::RsqrtOp>(op, x);
|
|
return success();
|
|
}
|
|
|
|
// Replace `pow(x, 0.75)` with `sqrt(sqrt(x)) * sqrt(x)`.
|
|
if (isExponentValue(0.75)) {
|
|
Value powHalf = rewriter.create<math::SqrtOp>(op.getLoc(), x);
|
|
Value powQuarter = rewriter.create<math::SqrtOp>(op.getLoc(), powHalf);
|
|
rewriter.replaceOpWithNewOp<arith::MulFOp>(op,
|
|
ValueRange{powHalf, powQuarter});
|
|
return success();
|
|
}
|
|
|
|
return failure();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
// FPowIOp/IPowIOp strength reduction.
|
|
//----------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
template <typename PowIOpTy, typename DivOpTy, typename MulOpTy>
|
|
struct PowIStrengthReduction : public OpRewritePattern<PowIOpTy> {
|
|
|
|
unsigned exponentThreshold;
|
|
|
|
public:
|
|
PowIStrengthReduction(MLIRContext *context, unsigned exponentThreshold = 3,
|
|
PatternBenefit benefit = 1,
|
|
ArrayRef<StringRef> generatedNames = {})
|
|
: OpRewritePattern<PowIOpTy>(context, benefit, generatedNames),
|
|
exponentThreshold(exponentThreshold) {}
|
|
|
|
LogicalResult matchAndRewrite(PowIOpTy op,
|
|
PatternRewriter &rewriter) const final;
|
|
};
|
|
} // namespace
|
|
|
|
template <typename PowIOpTy, typename DivOpTy, typename MulOpTy>
|
|
LogicalResult
|
|
PowIStrengthReduction<PowIOpTy, DivOpTy, MulOpTy>::matchAndRewrite(
|
|
PowIOpTy op, PatternRewriter &rewriter) const {
|
|
Location loc = op.getLoc();
|
|
Value base = op.getLhs();
|
|
|
|
IntegerAttr scalarExponent;
|
|
DenseIntElementsAttr vectorExponent;
|
|
|
|
bool isScalar = matchPattern(op.getRhs(), m_Constant(&scalarExponent));
|
|
bool isVector = matchPattern(op.getRhs(), m_Constant(&vectorExponent));
|
|
|
|
// Simplify cases with known exponent value.
|
|
int64_t exponentValue = 0;
|
|
if (isScalar)
|
|
exponentValue = scalarExponent.getInt();
|
|
else if (isVector && vectorExponent.isSplat())
|
|
exponentValue = vectorExponent.getSplatValue<IntegerAttr>().getInt();
|
|
else
|
|
return failure();
|
|
|
|
// Maybe broadcasts scalar value into vector type compatible with `op`.
|
|
auto bcast = [&loc, &op, &rewriter](Value value) -> Value {
|
|
if (auto vec = dyn_cast<VectorType>(op.getType()))
|
|
return rewriter.create<vector::BroadcastOp>(loc, vec, value);
|
|
return value;
|
|
};
|
|
|
|
Value one;
|
|
Type opType = getElementTypeOrSelf(op.getType());
|
|
if constexpr (std::is_same_v<PowIOpTy, math::FPowIOp>)
|
|
one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getFloatAttr(opType, 1.0));
|
|
else
|
|
one = rewriter.create<arith::ConstantOp>(
|
|
loc, rewriter.getIntegerAttr(opType, 1));
|
|
|
|
// Replace `[fi]powi(x, 0)` with `1`.
|
|
if (exponentValue == 0) {
|
|
rewriter.replaceOp(op, bcast(one));
|
|
return success();
|
|
}
|
|
|
|
bool exponentIsNegative = false;
|
|
if (exponentValue < 0) {
|
|
exponentIsNegative = true;
|
|
exponentValue *= -1;
|
|
}
|
|
|
|
// Bail out if `abs(exponent)` exceeds the threshold.
|
|
if (exponentValue > exponentThreshold)
|
|
return failure();
|
|
|
|
// Inverse the base for negative exponent, i.e. for
|
|
// `[fi]powi(x, negative_exponent)` set `x` to `1 / x`.
|
|
if (exponentIsNegative)
|
|
base = rewriter.create<DivOpTy>(loc, bcast(one), base);
|
|
|
|
Value result = base;
|
|
// Transform to naive sequence of multiplications:
|
|
// * For positive exponent case replace:
|
|
// `[fi]powi(x, positive_exponent)`
|
|
// with:
|
|
// x * x * x * ...
|
|
// * For negative exponent case replace:
|
|
// `[fi]powi(x, negative_exponent)`
|
|
// with:
|
|
// (1 / x) * (1 / x) * (1 / x) * ...
|
|
for (unsigned i = 1; i < exponentValue; ++i)
|
|
result = rewriter.create<MulOpTy>(loc, result, base);
|
|
|
|
rewriter.replaceOp(op, result);
|
|
return success();
|
|
}
|
|
|
|
//----------------------------------------------------------------------------//
|
|
|
|
void mlir::populateMathAlgebraicSimplificationPatterns(
|
|
RewritePatternSet &patterns) {
|
|
patterns
|
|
.add<PowFStrengthReduction,
|
|
PowIStrengthReduction<math::IPowIOp, arith::DivSIOp, arith::MulIOp>,
|
|
PowIStrengthReduction<math::FPowIOp, arith::DivFOp, arith::MulFOp>>(
|
|
patterns.getContext());
|
|
}
|