
The Scalar implementation and a few other places in LLDB directly access the internal implementation of APInt values using the getRawData method. Unfortunately, pretty much all of these places do not handle big-endian systems correctly. While on little-endian machines, the pointer returned by getRawData can simply be used as a pointer to the integer value in its natural format, no matter what size, this is not true on big-endian systems: getRawData actually points to an array of type uint64_t, with the first element of the array always containing the least-significant word of the integer. This means that if the bitsize of that integer is smaller than 64, we need to add an offset to the pointer returned by getRawData in order to access the value in its natural type, and if the bitsize is *larger* than 64, we actually have to swap the constituent words before we can access the value in its natural type. This patch fixes every incorrect use of getRawData in the code base. For the most part, this is done by simply removing uses of getRawData in the first place, and using other APInt member functions to operate on the integer data. This can be done in many member functions of Scalar itself, as well as in Symbol/Type.h and in IRInterpreter::Interpret. For the latter, I've had to add a Scalar::MakeUnsigned routine to parallel the existing Scalar::MakeSigned, e.g. in order to implement an unsigned divide. The Scalar::RawUInt, Scalar::RawULong, and Scalar::RawULongLong were already unused and can be simply removed. I've also removed the Scalar::GetRawBits64 function and its few users. The one remaining user of getRawData in Scalar.cpp is GetBytes. I've implemented all the cases described above to correctly implement access to the underlying integer data on big-endian systems. GetData now simply calls GetBytes instead of reimplementing its contents. Finally, two places in the clang interface code were also accessing APInt.getRawData in order to actually construct a byte representation of an integer. I've changed those to make use of a Scalar instead, to avoid having to re-implement the logic there. The patch also adds a couple of unit tests verifying correct operation of the GetBytes routine as well as the conversion routines. Those tests actually exposed more problems in the Scalar code: the SetValueFromData routine didn't work correctly for 128- and 256-bit data types, and the SChar routine should have an explicit "signed char" return type to work correctly on platforms where char defaults to unsigned. Differential Revision: http://reviews.llvm.org/D18981 llvm-svn: 266311
1791 lines
64 KiB
C++
1791 lines
64 KiB
C++
//===-- IRInterpreter.cpp ---------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "lldb/Expression/IRInterpreter.h"
|
|
#include "lldb/Core/ConstString.h"
|
|
#include "lldb/Core/DataExtractor.h"
|
|
#include "lldb/Core/Error.h"
|
|
#include "lldb/Core/Log.h"
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/Core/ModuleSpec.h"
|
|
#include "lldb/Core/Scalar.h"
|
|
#include "lldb/Core/StreamString.h"
|
|
#include "lldb/Core/ValueObject.h"
|
|
#include "lldb/Expression/DiagnosticManager.h"
|
|
#include "lldb/Expression/IRExecutionUnit.h"
|
|
#include "lldb/Expression/IRMemoryMap.h"
|
|
#include "lldb/Host/Endian.h"
|
|
|
|
#include "lldb/Target/ABI.h"
|
|
#include "lldb/Target/ExecutionContext.h"
|
|
#include "lldb/Target/Target.h"
|
|
#include "lldb/Target/Thread.h"
|
|
#include "lldb/Target/ThreadPlan.h"
|
|
#include "lldb/Target/ThreadPlanCallFunctionUsingABI.h"
|
|
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include <map>
|
|
|
|
using namespace llvm;
|
|
|
|
static std::string
|
|
PrintValue(const Value *value, bool truncate = false)
|
|
{
|
|
std::string s;
|
|
raw_string_ostream rso(s);
|
|
value->print(rso);
|
|
rso.flush();
|
|
if (truncate)
|
|
s.resize(s.length() - 1);
|
|
|
|
size_t offset;
|
|
while ((offset = s.find('\n')) != s.npos)
|
|
s.erase(offset, 1);
|
|
while (s[0] == ' ' || s[0] == '\t')
|
|
s.erase(0, 1);
|
|
|
|
return s;
|
|
}
|
|
|
|
static std::string
|
|
PrintType(const Type *type, bool truncate = false)
|
|
{
|
|
std::string s;
|
|
raw_string_ostream rso(s);
|
|
type->print(rso);
|
|
rso.flush();
|
|
if (truncate)
|
|
s.resize(s.length() - 1);
|
|
return s;
|
|
}
|
|
|
|
static bool
|
|
CanIgnoreCall (const CallInst *call)
|
|
{
|
|
const llvm::Function *called_function = call->getCalledFunction();
|
|
|
|
if (!called_function)
|
|
return false;
|
|
|
|
if (called_function->isIntrinsic())
|
|
{
|
|
switch (called_function->getIntrinsicID())
|
|
{
|
|
default:
|
|
break;
|
|
case llvm::Intrinsic::dbg_declare:
|
|
case llvm::Intrinsic::dbg_value:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
class InterpreterStackFrame
|
|
{
|
|
public:
|
|
typedef std::map <const Value*, lldb::addr_t> ValueMap;
|
|
|
|
ValueMap m_values;
|
|
DataLayout &m_target_data;
|
|
lldb_private::IRExecutionUnit &m_execution_unit;
|
|
const BasicBlock *m_bb;
|
|
BasicBlock::const_iterator m_ii;
|
|
BasicBlock::const_iterator m_ie;
|
|
|
|
lldb::addr_t m_frame_process_address;
|
|
size_t m_frame_size;
|
|
lldb::addr_t m_stack_pointer;
|
|
|
|
lldb::ByteOrder m_byte_order;
|
|
size_t m_addr_byte_size;
|
|
|
|
InterpreterStackFrame (DataLayout &target_data,
|
|
lldb_private::IRExecutionUnit &execution_unit,
|
|
lldb::addr_t stack_frame_bottom,
|
|
lldb::addr_t stack_frame_top) :
|
|
m_target_data (target_data),
|
|
m_execution_unit (execution_unit)
|
|
{
|
|
m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle : lldb::eByteOrderBig);
|
|
m_addr_byte_size = (target_data.getPointerSize(0));
|
|
|
|
m_frame_process_address = stack_frame_bottom;
|
|
m_frame_size = stack_frame_top - stack_frame_bottom;
|
|
m_stack_pointer = stack_frame_top;
|
|
}
|
|
|
|
~InterpreterStackFrame ()
|
|
{
|
|
}
|
|
|
|
void Jump (const BasicBlock *bb)
|
|
{
|
|
m_bb = bb;
|
|
m_ii = m_bb->begin();
|
|
m_ie = m_bb->end();
|
|
}
|
|
|
|
std::string SummarizeValue (const Value *value)
|
|
{
|
|
lldb_private::StreamString ss;
|
|
|
|
ss.Printf("%s", PrintValue(value).c_str());
|
|
|
|
ValueMap::iterator i = m_values.find(value);
|
|
|
|
if (i != m_values.end())
|
|
{
|
|
lldb::addr_t addr = i->second;
|
|
|
|
ss.Printf(" 0x%llx", (unsigned long long)addr);
|
|
}
|
|
|
|
return ss.GetString();
|
|
}
|
|
|
|
bool AssignToMatchType (lldb_private::Scalar &scalar, uint64_t u64value, Type *type)
|
|
{
|
|
size_t type_size = m_target_data.getTypeStoreSize(type);
|
|
|
|
switch (type_size)
|
|
{
|
|
case 1:
|
|
scalar = (uint8_t)u64value;
|
|
break;
|
|
case 2:
|
|
scalar = (uint16_t)u64value;
|
|
break;
|
|
case 4:
|
|
scalar = (uint32_t)u64value;
|
|
break;
|
|
case 8:
|
|
scalar = (uint64_t)u64value;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool EvaluateValue (lldb_private::Scalar &scalar, const Value *value, Module &module)
|
|
{
|
|
const Constant *constant = dyn_cast<Constant>(value);
|
|
|
|
if (constant)
|
|
{
|
|
APInt value_apint;
|
|
|
|
if (!ResolveConstantValue(value_apint, constant))
|
|
return false;
|
|
|
|
return AssignToMatchType(scalar, value_apint.getLimitedValue(), value->getType());
|
|
}
|
|
else
|
|
{
|
|
lldb::addr_t process_address = ResolveValue(value, module);
|
|
size_t value_size = m_target_data.getTypeStoreSize(value->getType());
|
|
|
|
lldb_private::DataExtractor value_extractor;
|
|
lldb_private::Error extract_error;
|
|
|
|
m_execution_unit.GetMemoryData(value_extractor, process_address, value_size, extract_error);
|
|
|
|
if (!extract_error.Success())
|
|
return false;
|
|
|
|
lldb::offset_t offset = 0;
|
|
if (value_size == 1 || value_size == 2 || value_size == 4 || value_size == 8)
|
|
{
|
|
uint64_t u64value = value_extractor.GetMaxU64(&offset, value_size);
|
|
return AssignToMatchType(scalar, u64value, value->getType());
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AssignValue (const Value *value, lldb_private::Scalar &scalar, Module &module)
|
|
{
|
|
lldb::addr_t process_address = ResolveValue (value, module);
|
|
|
|
if (process_address == LLDB_INVALID_ADDRESS)
|
|
return false;
|
|
|
|
lldb_private::Scalar cast_scalar;
|
|
|
|
if (!AssignToMatchType(cast_scalar, scalar.ULongLong(), value->getType()))
|
|
return false;
|
|
|
|
size_t value_byte_size = m_target_data.getTypeStoreSize(value->getType());
|
|
|
|
lldb_private::DataBufferHeap buf(value_byte_size, 0);
|
|
|
|
lldb_private::Error get_data_error;
|
|
|
|
if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, get_data_error))
|
|
return false;
|
|
|
|
lldb_private::Error write_error;
|
|
|
|
m_execution_unit.WriteMemory(process_address, buf.GetBytes(), buf.GetByteSize(), write_error);
|
|
|
|
return write_error.Success();
|
|
}
|
|
|
|
bool ResolveConstantValue (APInt &value, const Constant *constant)
|
|
{
|
|
switch (constant->getValueID())
|
|
{
|
|
default:
|
|
break;
|
|
case Value::FunctionVal:
|
|
if (const Function *constant_func = dyn_cast<Function>(constant))
|
|
{
|
|
lldb_private::ConstString name(constant_func->getName());
|
|
lldb::addr_t addr = m_execution_unit.FindSymbol(name);
|
|
if (addr == LLDB_INVALID_ADDRESS)
|
|
return false;
|
|
value = APInt(m_target_data.getPointerSizeInBits(), addr);
|
|
return true;
|
|
}
|
|
break;
|
|
case Value::ConstantIntVal:
|
|
if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant))
|
|
{
|
|
value = constant_int->getValue();
|
|
return true;
|
|
}
|
|
break;
|
|
case Value::ConstantFPVal:
|
|
if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant))
|
|
{
|
|
value = constant_fp->getValueAPF().bitcastToAPInt();
|
|
return true;
|
|
}
|
|
break;
|
|
case Value::ConstantExprVal:
|
|
if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
|
|
{
|
|
switch (constant_expr->getOpcode())
|
|
{
|
|
default:
|
|
return false;
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
return ResolveConstantValue(value, constant_expr->getOperand(0));
|
|
case Instruction::GetElementPtr:
|
|
{
|
|
ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
|
|
ConstantExpr::const_op_iterator op_end = constant_expr->op_end();
|
|
|
|
Constant *base = dyn_cast<Constant>(*op_cursor);
|
|
|
|
if (!base)
|
|
return false;
|
|
|
|
if (!ResolveConstantValue(value, base))
|
|
return false;
|
|
|
|
op_cursor++;
|
|
|
|
if (op_cursor == op_end)
|
|
return true; // no offset to apply!
|
|
|
|
SmallVector <Value *, 8> indices (op_cursor, op_end);
|
|
|
|
Type *src_elem_ty = cast<GEPOperator>(constant_expr)->getSourceElementType();
|
|
uint64_t offset = m_target_data.getIndexedOffsetInType(src_elem_ty, indices);
|
|
|
|
const bool is_signed = true;
|
|
value += APInt(value.getBitWidth(), offset, is_signed);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Value::ConstantPointerNullVal:
|
|
if (isa<ConstantPointerNull>(constant))
|
|
{
|
|
value = APInt(m_target_data.getPointerSizeInBits(), 0);
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool MakeArgument(const Argument *value, uint64_t address)
|
|
{
|
|
lldb::addr_t data_address = Malloc(value->getType());
|
|
|
|
if (data_address == LLDB_INVALID_ADDRESS)
|
|
return false;
|
|
|
|
lldb_private::Error write_error;
|
|
|
|
m_execution_unit.WritePointerToMemory(data_address, address, write_error);
|
|
|
|
if (!write_error.Success())
|
|
{
|
|
lldb_private::Error free_error;
|
|
m_execution_unit.Free(data_address, free_error);
|
|
return false;
|
|
}
|
|
|
|
m_values[value] = data_address;
|
|
|
|
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Made an allocation for argument %s", PrintValue(value).c_str());
|
|
log->Printf(" Data region : %llx", (unsigned long long)address);
|
|
log->Printf(" Ref region : %llx", (unsigned long long)data_address);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ResolveConstant (lldb::addr_t process_address, const Constant *constant)
|
|
{
|
|
APInt resolved_value;
|
|
|
|
if (!ResolveConstantValue(resolved_value, constant))
|
|
return false;
|
|
|
|
size_t constant_size = m_target_data.getTypeStoreSize(constant->getType());
|
|
lldb_private::DataBufferHeap buf(constant_size, 0);
|
|
|
|
lldb_private::Error get_data_error;
|
|
|
|
lldb_private::Scalar resolved_scalar(resolved_value.zextOrTrunc(llvm::NextPowerOf2(constant_size) * 8));
|
|
if (!resolved_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(), m_byte_order, get_data_error))
|
|
return false;
|
|
|
|
lldb_private::Error write_error;
|
|
|
|
m_execution_unit.WriteMemory(process_address, buf.GetBytes(), buf.GetByteSize(), write_error);
|
|
|
|
return write_error.Success();
|
|
}
|
|
|
|
lldb::addr_t Malloc (size_t size, uint8_t byte_alignment)
|
|
{
|
|
lldb::addr_t ret = m_stack_pointer;
|
|
|
|
ret -= size;
|
|
ret -= (ret % byte_alignment);
|
|
|
|
if (ret < m_frame_process_address)
|
|
return LLDB_INVALID_ADDRESS;
|
|
|
|
m_stack_pointer = ret;
|
|
return ret;
|
|
}
|
|
|
|
lldb::addr_t MallocPointer ()
|
|
{
|
|
return Malloc(m_target_data.getPointerSize(), m_target_data.getPointerPrefAlignment());
|
|
}
|
|
|
|
lldb::addr_t Malloc (llvm::Type *type)
|
|
{
|
|
lldb_private::Error alloc_error;
|
|
|
|
return Malloc(m_target_data.getTypeAllocSize(type), m_target_data.getPrefTypeAlignment(type));
|
|
}
|
|
|
|
std::string PrintData (lldb::addr_t addr, llvm::Type *type)
|
|
{
|
|
size_t length = m_target_data.getTypeStoreSize(type);
|
|
|
|
lldb_private::DataBufferHeap buf(length, 0);
|
|
|
|
lldb_private::Error read_error;
|
|
|
|
m_execution_unit.ReadMemory(buf.GetBytes(), addr, length, read_error);
|
|
|
|
if (!read_error.Success())
|
|
return std::string("<couldn't read data>");
|
|
|
|
lldb_private::StreamString ss;
|
|
|
|
for (size_t i = 0; i < length; i++)
|
|
{
|
|
if ((!(i & 0xf)) && i)
|
|
ss.Printf("%02hhx - ", buf.GetBytes()[i]);
|
|
else
|
|
ss.Printf("%02hhx ", buf.GetBytes()[i]);
|
|
}
|
|
|
|
return ss.GetString();
|
|
}
|
|
|
|
lldb::addr_t ResolveValue (const Value *value, Module &module)
|
|
{
|
|
ValueMap::iterator i = m_values.find(value);
|
|
|
|
if (i != m_values.end())
|
|
return i->second;
|
|
|
|
// Fall back and allocate space [allocation type Alloca]
|
|
|
|
lldb::addr_t data_address = Malloc(value->getType());
|
|
|
|
if (const Constant *constant = dyn_cast<Constant>(value))
|
|
{
|
|
if (!ResolveConstant (data_address, constant))
|
|
{
|
|
lldb_private::Error free_error;
|
|
m_execution_unit.Free(data_address, free_error);
|
|
return LLDB_INVALID_ADDRESS;
|
|
}
|
|
}
|
|
|
|
m_values[value] = data_address;
|
|
return data_address;
|
|
}
|
|
};
|
|
|
|
static const char *unsupported_opcode_error = "Interpreter doesn't handle one of the expression's opcodes";
|
|
static const char *unsupported_operand_error = "Interpreter doesn't handle one of the expression's operands";
|
|
//static const char *interpreter_initialization_error = "Interpreter couldn't be initialized";
|
|
static const char *interpreter_internal_error = "Interpreter encountered an internal error";
|
|
static const char *bad_value_error = "Interpreter couldn't resolve a value during execution";
|
|
static const char *memory_allocation_error = "Interpreter couldn't allocate memory";
|
|
static const char *memory_write_error = "Interpreter couldn't write to memory";
|
|
static const char *memory_read_error = "Interpreter couldn't read from memory";
|
|
static const char *infinite_loop_error = "Interpreter ran for too many cycles";
|
|
//static const char *bad_result_error = "Result of expression is in bad memory";
|
|
|
|
static bool
|
|
CanResolveConstant (llvm::Constant *constant)
|
|
{
|
|
switch (constant->getValueID())
|
|
{
|
|
default:
|
|
return false;
|
|
case Value::ConstantIntVal:
|
|
case Value::ConstantFPVal:
|
|
case Value::FunctionVal:
|
|
return true;
|
|
case Value::ConstantExprVal:
|
|
if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
|
|
{
|
|
switch (constant_expr->getOpcode())
|
|
{
|
|
default:
|
|
return false;
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
return CanResolveConstant(constant_expr->getOperand(0));
|
|
case Instruction::GetElementPtr:
|
|
{
|
|
ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
|
|
Constant *base = dyn_cast<Constant>(*op_cursor);
|
|
if (!base)
|
|
return false;
|
|
|
|
return CanResolveConstant(base);
|
|
}
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
case Value::ConstantPointerNullVal:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool
|
|
IRInterpreter::CanInterpret (llvm::Module &module,
|
|
llvm::Function &function,
|
|
lldb_private::Error &error,
|
|
const bool support_function_calls)
|
|
{
|
|
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
bool saw_function_with_body = false;
|
|
|
|
for (Module::iterator fi = module.begin(), fe = module.end();
|
|
fi != fe;
|
|
++fi)
|
|
{
|
|
if (fi->begin() != fi->end())
|
|
{
|
|
if (saw_function_with_body)
|
|
return false;
|
|
saw_function_with_body = true;
|
|
}
|
|
}
|
|
|
|
for (Function::iterator bbi = function.begin(), bbe = function.end();
|
|
bbi != bbe;
|
|
++bbi)
|
|
{
|
|
for (BasicBlock::iterator ii = bbi->begin(), ie = bbi->end();
|
|
ii != ie;
|
|
++ii)
|
|
{
|
|
switch (ii->getOpcode())
|
|
{
|
|
default:
|
|
{
|
|
if (log)
|
|
log->Printf("Unsupported instruction: %s", PrintValue(&*ii).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(unsupported_opcode_error);
|
|
return false;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::Alloca:
|
|
case Instruction::BitCast:
|
|
case Instruction::Br:
|
|
break;
|
|
case Instruction::Call:
|
|
{
|
|
CallInst *call_inst = dyn_cast<CallInst>(ii);
|
|
|
|
if (!call_inst)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
if (!CanIgnoreCall(call_inst) && !support_function_calls)
|
|
{
|
|
if (log)
|
|
log->Printf("Unsupported instruction: %s", PrintValue(&*ii).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(unsupported_opcode_error);
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::GetElementPtr:
|
|
break;
|
|
case Instruction::ICmp:
|
|
{
|
|
ICmpInst *icmp_inst = dyn_cast<ICmpInst>(ii);
|
|
|
|
if (!icmp_inst)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
switch (icmp_inst->getPredicate())
|
|
{
|
|
default:
|
|
{
|
|
if (log)
|
|
log->Printf("Unsupported ICmp predicate: %s", PrintValue(&*ii).c_str());
|
|
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(unsupported_opcode_error);
|
|
return false;
|
|
}
|
|
case CmpInst::ICMP_EQ:
|
|
case CmpInst::ICMP_NE:
|
|
case CmpInst::ICMP_UGT:
|
|
case CmpInst::ICMP_UGE:
|
|
case CmpInst::ICMP_ULT:
|
|
case CmpInst::ICMP_ULE:
|
|
case CmpInst::ICMP_SGT:
|
|
case CmpInst::ICMP_SGE:
|
|
case CmpInst::ICMP_SLT:
|
|
case CmpInst::ICMP_SLE:
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::And:
|
|
case Instruction::AShr:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::Load:
|
|
case Instruction::LShr:
|
|
case Instruction::Mul:
|
|
case Instruction::Or:
|
|
case Instruction::Ret:
|
|
case Instruction::SDiv:
|
|
case Instruction::SExt:
|
|
case Instruction::Shl:
|
|
case Instruction::SRem:
|
|
case Instruction::Store:
|
|
case Instruction::Sub:
|
|
case Instruction::Trunc:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem:
|
|
case Instruction::Xor:
|
|
case Instruction::ZExt:
|
|
break;
|
|
}
|
|
|
|
for (int oi = 0, oe = ii->getNumOperands();
|
|
oi != oe;
|
|
++oi)
|
|
{
|
|
Value *operand = ii->getOperand(oi);
|
|
Type *operand_type = operand->getType();
|
|
|
|
switch (operand_type->getTypeID())
|
|
{
|
|
default:
|
|
break;
|
|
case Type::VectorTyID:
|
|
{
|
|
if (log)
|
|
log->Printf("Unsupported operand type: %s", PrintType(operand_type).c_str());
|
|
error.SetErrorString(unsupported_operand_error);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Constant *constant = llvm::dyn_cast<Constant>(operand))
|
|
{
|
|
if (!CanResolveConstant(constant))
|
|
{
|
|
if (log)
|
|
log->Printf("Unsupported constant: %s", PrintValue(constant).c_str());
|
|
error.SetErrorString(unsupported_operand_error);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
return true;}
|
|
|
|
bool
|
|
IRInterpreter::Interpret (llvm::Module &module,
|
|
llvm::Function &function,
|
|
llvm::ArrayRef<lldb::addr_t> args,
|
|
lldb_private::IRExecutionUnit &execution_unit,
|
|
lldb_private::Error &error,
|
|
lldb::addr_t stack_frame_bottom,
|
|
lldb::addr_t stack_frame_top,
|
|
lldb_private::ExecutionContext &exe_ctx)
|
|
{
|
|
lldb_private::Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS));
|
|
|
|
if (log)
|
|
{
|
|
std::string s;
|
|
raw_string_ostream oss(s);
|
|
|
|
module.print(oss, NULL);
|
|
|
|
oss.flush();
|
|
|
|
log->Printf("Module as passed in to IRInterpreter::Interpret: \n\"%s\"", s.c_str());
|
|
}
|
|
|
|
DataLayout data_layout(&module);
|
|
|
|
InterpreterStackFrame frame(data_layout, execution_unit, stack_frame_bottom, stack_frame_top);
|
|
|
|
if (frame.m_frame_process_address == LLDB_INVALID_ADDRESS)
|
|
{
|
|
error.SetErrorString("Couldn't allocate stack frame");
|
|
}
|
|
|
|
int arg_index = 0;
|
|
|
|
for (llvm::Function::arg_iterator ai = function.arg_begin(), ae = function.arg_end();
|
|
ai != ae;
|
|
++ai, ++arg_index)
|
|
{
|
|
if (args.size() <= static_cast<size_t>(arg_index))
|
|
{
|
|
error.SetErrorString ("Not enough arguments passed in to function");
|
|
return false;
|
|
}
|
|
|
|
lldb::addr_t ptr = args[arg_index];
|
|
|
|
frame.MakeArgument(&*ai, ptr);
|
|
}
|
|
|
|
uint32_t num_insts = 0;
|
|
|
|
frame.Jump(&function.front());
|
|
|
|
while (frame.m_ii != frame.m_ie && (++num_insts < 4096))
|
|
{
|
|
const Instruction *inst = &*frame.m_ii;
|
|
|
|
if (log)
|
|
log->Printf("Interpreting %s", PrintValue(inst).c_str());
|
|
|
|
switch (inst->getOpcode())
|
|
{
|
|
default:
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::SDiv:
|
|
case Instruction::UDiv:
|
|
case Instruction::SRem:
|
|
case Instruction::URem:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
{
|
|
const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst);
|
|
|
|
if (!bin_op)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns %s, but instruction is not a BinaryOperator", inst->getOpcodeName());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *lhs = inst->getOperand(0);
|
|
Value *rhs = inst->getOperand(1);
|
|
|
|
lldb_private::Scalar L;
|
|
lldb_private::Scalar R;
|
|
|
|
if (!frame.EvaluateValue(L, lhs, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (!frame.EvaluateValue(R, rhs, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
lldb_private::Scalar result;
|
|
|
|
switch (inst->getOpcode())
|
|
{
|
|
default:
|
|
break;
|
|
case Instruction::Add:
|
|
result = L + R;
|
|
break;
|
|
case Instruction::Mul:
|
|
result = L * R;
|
|
break;
|
|
case Instruction::Sub:
|
|
result = L - R;
|
|
break;
|
|
case Instruction::SDiv:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = L / R;
|
|
break;
|
|
case Instruction::UDiv:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = L / R;
|
|
break;
|
|
case Instruction::SRem:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = L % R;
|
|
break;
|
|
case Instruction::URem:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = L % R;
|
|
break;
|
|
case Instruction::Shl:
|
|
result = L << R;
|
|
break;
|
|
case Instruction::AShr:
|
|
result = L >> R;
|
|
break;
|
|
case Instruction::LShr:
|
|
result = L;
|
|
result.ShiftRightLogical(R);
|
|
break;
|
|
case Instruction::And:
|
|
result = L & R;
|
|
break;
|
|
case Instruction::Or:
|
|
result = L | R;
|
|
break;
|
|
case Instruction::Xor:
|
|
result = L ^ R;
|
|
break;
|
|
}
|
|
|
|
frame.AssignValue(inst, result, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a %s", inst->getOpcodeName());
|
|
log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
|
|
log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
|
|
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Alloca:
|
|
{
|
|
const AllocaInst *alloca_inst = dyn_cast<AllocaInst>(inst);
|
|
|
|
if (!alloca_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns Alloca, but instruction is not an AllocaInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
if (alloca_inst->isArrayAllocation())
|
|
{
|
|
if (log)
|
|
log->Printf("AllocaInsts are not handled if isArrayAllocation() is true");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(unsupported_opcode_error);
|
|
return false;
|
|
}
|
|
|
|
// The semantics of Alloca are:
|
|
// Create a region R of virtual memory of type T, backed by a data buffer
|
|
// Create a region P of virtual memory of type T*, backed by a data buffer
|
|
// Write the virtual address of R into P
|
|
|
|
Type *T = alloca_inst->getAllocatedType();
|
|
Type *Tptr = alloca_inst->getType();
|
|
|
|
lldb::addr_t R = frame.Malloc(T);
|
|
|
|
if (R == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't allocate memory for an AllocaInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_allocation_error);
|
|
return false;
|
|
}
|
|
|
|
lldb::addr_t P = frame.Malloc(Tptr);
|
|
|
|
if (P == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't allocate the result pointer for an AllocaInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_allocation_error);
|
|
return false;
|
|
}
|
|
|
|
lldb_private::Error write_error;
|
|
|
|
execution_unit.WritePointerToMemory(P, R, write_error);
|
|
|
|
if (!write_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't write the result pointer for an AllocaInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_write_error);
|
|
lldb_private::Error free_error;
|
|
execution_unit.Free(P, free_error);
|
|
execution_unit.Free(R, free_error);
|
|
return false;
|
|
}
|
|
|
|
frame.m_values[alloca_inst] = P;
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted an AllocaInst");
|
|
log->Printf(" R : 0x%" PRIx64, R);
|
|
log->Printf(" P : 0x%" PRIx64, P);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::BitCast:
|
|
case Instruction::ZExt:
|
|
{
|
|
const CastInst *cast_inst = dyn_cast<CastInst>(inst);
|
|
|
|
if (!cast_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *source = cast_inst->getOperand(0);
|
|
|
|
lldb_private::Scalar S;
|
|
|
|
if (!frame.EvaluateValue(S, source, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(source).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
frame.AssignValue(inst, S, module);
|
|
}
|
|
break;
|
|
case Instruction::SExt:
|
|
{
|
|
const CastInst *cast_inst = dyn_cast<CastInst>(inst);
|
|
|
|
if (!cast_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns %s, but instruction is not a BitCastInst", cast_inst->getOpcodeName());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *source = cast_inst->getOperand(0);
|
|
|
|
lldb_private::Scalar S;
|
|
|
|
if (!frame.EvaluateValue(S, source, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(source).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
S.MakeSigned();
|
|
|
|
lldb_private::Scalar S_signextend(S.SLongLong());
|
|
|
|
frame.AssignValue(inst, S_signextend, module);
|
|
}
|
|
break;
|
|
case Instruction::Br:
|
|
{
|
|
const BranchInst *br_inst = dyn_cast<BranchInst>(inst);
|
|
|
|
if (!br_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns Br, but instruction is not a BranchInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
if (br_inst->isConditional())
|
|
{
|
|
Value *condition = br_inst->getCondition();
|
|
|
|
lldb_private::Scalar C;
|
|
|
|
if (!frame.EvaluateValue(C, condition, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(condition).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (!C.IsZero())
|
|
frame.Jump(br_inst->getSuccessor(0));
|
|
else
|
|
frame.Jump(br_inst->getSuccessor(1));
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a BrInst with a condition");
|
|
log->Printf(" cond : %s", frame.SummarizeValue(condition).c_str());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
frame.Jump(br_inst->getSuccessor(0));
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a BrInst with no condition");
|
|
}
|
|
}
|
|
}
|
|
continue;
|
|
case Instruction::GetElementPtr:
|
|
{
|
|
const GetElementPtrInst *gep_inst = dyn_cast<GetElementPtrInst>(inst);
|
|
|
|
if (!gep_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns GetElementPtr, but instruction is not a GetElementPtrInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
const Value *pointer_operand = gep_inst->getPointerOperand();
|
|
Type *src_elem_ty = gep_inst->getSourceElementType();
|
|
|
|
lldb_private::Scalar P;
|
|
|
|
if (!frame.EvaluateValue(P, pointer_operand, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(pointer_operand).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
typedef SmallVector <Value *, 8> IndexVector;
|
|
typedef IndexVector::iterator IndexIterator;
|
|
|
|
SmallVector <Value *, 8> indices (gep_inst->idx_begin(),
|
|
gep_inst->idx_end());
|
|
|
|
SmallVector <Value *, 8> const_indices;
|
|
|
|
for (IndexIterator ii = indices.begin(), ie = indices.end();
|
|
ii != ie;
|
|
++ii)
|
|
{
|
|
ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii);
|
|
|
|
if (!constant_index)
|
|
{
|
|
lldb_private::Scalar I;
|
|
|
|
if (!frame.EvaluateValue(I, *ii, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(*ii).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (log)
|
|
log->Printf("Evaluated constant index %s as %llu", PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS));
|
|
|
|
constant_index = cast<ConstantInt>(ConstantInt::get((*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS)));
|
|
}
|
|
|
|
const_indices.push_back(constant_index);
|
|
}
|
|
|
|
uint64_t offset = data_layout.getIndexedOffsetInType(src_elem_ty, const_indices);
|
|
|
|
lldb_private::Scalar Poffset = P + offset;
|
|
|
|
frame.AssignValue(inst, Poffset, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a GetElementPtrInst");
|
|
log->Printf(" P : %s", frame.SummarizeValue(pointer_operand).c_str());
|
|
log->Printf(" Poffset : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::ICmp:
|
|
{
|
|
const ICmpInst *icmp_inst = dyn_cast<ICmpInst>(inst);
|
|
|
|
if (!icmp_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns ICmp, but instruction is not an ICmpInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
CmpInst::Predicate predicate = icmp_inst->getPredicate();
|
|
|
|
Value *lhs = inst->getOperand(0);
|
|
Value *rhs = inst->getOperand(1);
|
|
|
|
lldb_private::Scalar L;
|
|
lldb_private::Scalar R;
|
|
|
|
if (!frame.EvaluateValue(L, lhs, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(lhs).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (!frame.EvaluateValue(R, rhs, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(rhs).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
lldb_private::Scalar result;
|
|
|
|
switch (predicate)
|
|
{
|
|
default:
|
|
return false;
|
|
case CmpInst::ICMP_EQ:
|
|
result = (L == R);
|
|
break;
|
|
case CmpInst::ICMP_NE:
|
|
result = (L != R);
|
|
break;
|
|
case CmpInst::ICMP_UGT:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = (L > R);
|
|
break;
|
|
case CmpInst::ICMP_UGE:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = (L >= R);
|
|
break;
|
|
case CmpInst::ICMP_ULT:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = (L < R);
|
|
break;
|
|
case CmpInst::ICMP_ULE:
|
|
L.MakeUnsigned();
|
|
R.MakeUnsigned();
|
|
result = (L <= R);
|
|
break;
|
|
case CmpInst::ICMP_SGT:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = (L > R);
|
|
break;
|
|
case CmpInst::ICMP_SGE:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = (L >= R);
|
|
break;
|
|
case CmpInst::ICMP_SLT:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = (L < R);
|
|
break;
|
|
case CmpInst::ICMP_SLE:
|
|
L.MakeSigned();
|
|
R.MakeSigned();
|
|
result = (L <= R);
|
|
break;
|
|
}
|
|
|
|
frame.AssignValue(inst, result, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted an ICmpInst");
|
|
log->Printf(" L : %s", frame.SummarizeValue(lhs).c_str());
|
|
log->Printf(" R : %s", frame.SummarizeValue(rhs).c_str());
|
|
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::IntToPtr:
|
|
{
|
|
const IntToPtrInst *int_to_ptr_inst = dyn_cast<IntToPtrInst>(inst);
|
|
|
|
if (!int_to_ptr_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns IntToPtr, but instruction is not an IntToPtrInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *src_operand = int_to_ptr_inst->getOperand(0);
|
|
|
|
lldb_private::Scalar I;
|
|
|
|
if (!frame.EvaluateValue(I, src_operand, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
frame.AssignValue(inst, I, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted an IntToPtr");
|
|
log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str());
|
|
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::PtrToInt:
|
|
{
|
|
const PtrToIntInst *ptr_to_int_inst = dyn_cast<PtrToIntInst>(inst);
|
|
|
|
if (!ptr_to_int_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns PtrToInt, but instruction is not an PtrToIntInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *src_operand = ptr_to_int_inst->getOperand(0);
|
|
|
|
lldb_private::Scalar I;
|
|
|
|
if (!frame.EvaluateValue(I, src_operand, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
frame.AssignValue(inst, I, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a PtrToInt");
|
|
log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str());
|
|
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Trunc:
|
|
{
|
|
const TruncInst *trunc_inst = dyn_cast<TruncInst>(inst);
|
|
|
|
if (!trunc_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns Trunc, but instruction is not a TruncInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
Value *src_operand = trunc_inst->getOperand(0);
|
|
|
|
lldb_private::Scalar I;
|
|
|
|
if (!frame.EvaluateValue(I, src_operand, module))
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't evaluate %s", PrintValue(src_operand).c_str());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
frame.AssignValue(inst, I, module);
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a Trunc");
|
|
log->Printf(" Src : %s", frame.SummarizeValue(src_operand).c_str());
|
|
log->Printf(" = : %s", frame.SummarizeValue(inst).c_str());
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Load:
|
|
{
|
|
const LoadInst *load_inst = dyn_cast<LoadInst>(inst);
|
|
|
|
if (!load_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns Load, but instruction is not a LoadInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
// The semantics of Load are:
|
|
// Create a region D that will contain the loaded data
|
|
// Resolve the region P containing a pointer
|
|
// Dereference P to get the region R that the data should be loaded from
|
|
// Transfer a unit of type type(D) from R to D
|
|
|
|
const Value *pointer_operand = load_inst->getPointerOperand();
|
|
|
|
Type *pointer_ty = pointer_operand->getType();
|
|
PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
|
|
if (!pointer_ptr_ty)
|
|
{
|
|
if (log)
|
|
log->Printf("getPointerOperand()->getType() is not a PointerType");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
Type *target_ty = pointer_ptr_ty->getElementType();
|
|
|
|
lldb::addr_t D = frame.ResolveValue(load_inst, module);
|
|
lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
|
|
|
|
if (D == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("LoadInst's value doesn't resolve to anything");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (P == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("LoadInst's pointer doesn't resolve to anything");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
lldb::addr_t R;
|
|
lldb_private::Error read_error;
|
|
execution_unit.ReadPointerFromMemory(&R, P, read_error);
|
|
|
|
if (!read_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't read the address to be loaded for a LoadInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_read_error);
|
|
return false;
|
|
}
|
|
|
|
size_t target_size = data_layout.getTypeStoreSize(target_ty);
|
|
lldb_private::DataBufferHeap buffer(target_size, 0);
|
|
|
|
read_error.Clear();
|
|
execution_unit.ReadMemory(buffer.GetBytes(), R, buffer.GetByteSize(), read_error);
|
|
if (!read_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't read from a region on behalf of a LoadInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_read_error);
|
|
return false;
|
|
}
|
|
|
|
lldb_private::Error write_error;
|
|
execution_unit.WriteMemory(D, buffer.GetBytes(), buffer.GetByteSize(), write_error);
|
|
if (!write_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't write to a region on behalf of a LoadInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_read_error);
|
|
return false;
|
|
}
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a LoadInst");
|
|
log->Printf(" P : 0x%" PRIx64, P);
|
|
log->Printf(" R : 0x%" PRIx64, R);
|
|
log->Printf(" D : 0x%" PRIx64, D);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Ret:
|
|
{
|
|
return true;
|
|
}
|
|
case Instruction::Store:
|
|
{
|
|
const StoreInst *store_inst = dyn_cast<StoreInst>(inst);
|
|
|
|
if (!store_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns Store, but instruction is not a StoreInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
// The semantics of Store are:
|
|
// Resolve the region D containing the data to be stored
|
|
// Resolve the region P containing a pointer
|
|
// Dereference P to get the region R that the data should be stored in
|
|
// Transfer a unit of type type(D) from D to R
|
|
|
|
const Value *value_operand = store_inst->getValueOperand();
|
|
const Value *pointer_operand = store_inst->getPointerOperand();
|
|
|
|
Type *pointer_ty = pointer_operand->getType();
|
|
PointerType *pointer_ptr_ty = dyn_cast<PointerType>(pointer_ty);
|
|
if (!pointer_ptr_ty)
|
|
return false;
|
|
Type *target_ty = pointer_ptr_ty->getElementType();
|
|
|
|
lldb::addr_t D = frame.ResolveValue(value_operand, module);
|
|
lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
|
|
|
|
if (D == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("StoreInst's value doesn't resolve to anything");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
if (P == LLDB_INVALID_ADDRESS)
|
|
{
|
|
if (log)
|
|
log->Printf("StoreInst's pointer doesn't resolve to anything");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(bad_value_error);
|
|
return false;
|
|
}
|
|
|
|
lldb::addr_t R;
|
|
lldb_private::Error read_error;
|
|
execution_unit.ReadPointerFromMemory(&R, P, read_error);
|
|
|
|
if (!read_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't read the address to be loaded for a LoadInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_read_error);
|
|
return false;
|
|
}
|
|
|
|
size_t target_size = data_layout.getTypeStoreSize(target_ty);
|
|
lldb_private::DataBufferHeap buffer(target_size, 0);
|
|
|
|
read_error.Clear();
|
|
execution_unit.ReadMemory(buffer.GetBytes(), D, buffer.GetByteSize(), read_error);
|
|
if (!read_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't read from a region on behalf of a StoreInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_read_error);
|
|
return false;
|
|
}
|
|
|
|
lldb_private::Error write_error;
|
|
execution_unit.WriteMemory(R, buffer.GetBytes(), buffer.GetByteSize(), write_error);
|
|
if (!write_error.Success())
|
|
{
|
|
if (log)
|
|
log->Printf("Couldn't write to a region on behalf of a StoreInst");
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(memory_write_error);
|
|
return false;
|
|
}
|
|
|
|
if (log)
|
|
{
|
|
log->Printf("Interpreted a StoreInst");
|
|
log->Printf(" D : 0x%" PRIx64, D);
|
|
log->Printf(" P : 0x%" PRIx64, P);
|
|
log->Printf(" R : 0x%" PRIx64, R);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Call:
|
|
{
|
|
const CallInst *call_inst = dyn_cast<CallInst>(inst);
|
|
|
|
if (!call_inst)
|
|
{
|
|
if (log)
|
|
log->Printf("getOpcode() returns %s, but instruction is not a CallInst", inst->getOpcodeName());
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(interpreter_internal_error);
|
|
return false;
|
|
}
|
|
|
|
if (CanIgnoreCall(call_inst))
|
|
break;
|
|
|
|
// Get the return type
|
|
llvm::Type *returnType = call_inst->getType();
|
|
if (returnType == nullptr)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("unable to access return type");
|
|
return false;
|
|
}
|
|
|
|
// Work with void, integer and pointer return types
|
|
if (!returnType->isVoidTy() &&
|
|
!returnType->isIntegerTy() &&
|
|
!returnType->isPointerTy())
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("return type is not supported");
|
|
return false;
|
|
}
|
|
|
|
// Check we can actually get a thread
|
|
if (exe_ctx.GetThreadPtr() == nullptr)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("unable to acquire thread");
|
|
return false;
|
|
}
|
|
|
|
// Make sure we have a valid process
|
|
if (!exe_ctx.GetProcessPtr())
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("unable to get the process");
|
|
return false;
|
|
}
|
|
|
|
// Find the address of the callee function
|
|
lldb_private::Scalar I;
|
|
const llvm::Value *val = call_inst->getCalledValue();
|
|
|
|
if (!frame.EvaluateValue(I, val, module))
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("unable to get address of function");
|
|
return false;
|
|
}
|
|
lldb_private::Address funcAddr(I.ULongLong(LLDB_INVALID_ADDRESS));
|
|
|
|
lldb_private::DiagnosticManager diagnostics;
|
|
lldb_private::EvaluateExpressionOptions options;
|
|
|
|
// We generally receive a function pointer which we must dereference
|
|
llvm::Type* prototype = val->getType();
|
|
if (!prototype->isPointerTy())
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("call need function pointer");
|
|
return false;
|
|
}
|
|
|
|
// Dereference the function pointer
|
|
prototype = prototype->getPointerElementType();
|
|
if (!(prototype->isFunctionTy() || prototype->isFunctionVarArg()))
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString("call need function pointer");
|
|
return false;
|
|
}
|
|
|
|
// Find number of arguments
|
|
const int numArgs = call_inst->getNumArgOperands();
|
|
|
|
// We work with a fixed array of 16 arguments which is our upper limit
|
|
static lldb_private::ABI::CallArgument rawArgs[16];
|
|
if (numArgs >= 16)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("function takes too many arguments");
|
|
return false;
|
|
}
|
|
|
|
// Push all function arguments to the argument list that will
|
|
// be passed to the call function thread plan
|
|
for (int i = 0; i < numArgs; i++)
|
|
{
|
|
// Get details of this argument
|
|
llvm::Value *arg_op = call_inst->getArgOperand(i);
|
|
llvm::Type *arg_ty = arg_op->getType();
|
|
|
|
// Ensure that this argument is an supported type
|
|
if (!arg_ty->isIntegerTy() && !arg_ty->isPointerTy())
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("argument %d must be integer type", i);
|
|
return false;
|
|
}
|
|
|
|
// Extract the arguments value
|
|
lldb_private::Scalar tmp_op = 0;
|
|
if (!frame.EvaluateValue(tmp_op, arg_op, module))
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("unable to evaluate argument %d", i);
|
|
return false;
|
|
}
|
|
|
|
// Check if this is a string literal or constant string pointer
|
|
if (arg_ty->isPointerTy())
|
|
{
|
|
// Pointer to just one type
|
|
assert(arg_ty->getNumContainedTypes() == 1);
|
|
|
|
lldb::addr_t addr = tmp_op.ULongLong();
|
|
size_t dataSize = 0;
|
|
|
|
if (execution_unit.GetAllocSize(addr, dataSize))
|
|
{
|
|
// Create the required buffer
|
|
rawArgs[i].size = dataSize;
|
|
rawArgs[i].data_ap.reset(new uint8_t[dataSize + 1]);
|
|
|
|
// Read string from host memory
|
|
execution_unit.ReadMemory(rawArgs[i].data_ap.get(), addr, dataSize, error);
|
|
if (error.Fail())
|
|
{
|
|
assert(!"we have failed to read the string from memory");
|
|
return false;
|
|
}
|
|
// Add null terminator
|
|
rawArgs[i].data_ap[dataSize] = '\0';
|
|
rawArgs[i].type = lldb_private::ABI::CallArgument::HostPointer;
|
|
}
|
|
else
|
|
{
|
|
assert(!"unable to locate host data for transfer to device");
|
|
return false;
|
|
}
|
|
}
|
|
else /* if ( arg_ty->isPointerTy() ) */
|
|
{
|
|
rawArgs[i].type = lldb_private::ABI::CallArgument::TargetValue;
|
|
// Get argument size in bytes
|
|
rawArgs[i].size = arg_ty->getIntegerBitWidth() / 8;
|
|
// Push value into argument list for thread plan
|
|
rawArgs[i].value = tmp_op.ULongLong();
|
|
}
|
|
|
|
}
|
|
|
|
// Pack the arguments into an llvm::array
|
|
llvm::ArrayRef<lldb_private::ABI::CallArgument> args(rawArgs, numArgs);
|
|
|
|
// Setup a thread plan to call the target function
|
|
lldb::ThreadPlanSP call_plan_sp(new lldb_private::ThreadPlanCallFunctionUsingABI(
|
|
exe_ctx.GetThreadRef(), funcAddr, *prototype, *returnType, args, options));
|
|
|
|
// Check if the plan is valid
|
|
lldb_private::StreamString ss;
|
|
if (!call_plan_sp || !call_plan_sp->ValidatePlan(&ss))
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("unable to make ThreadPlanCallFunctionUsingABI for 0x%llx",
|
|
I.ULongLong());
|
|
return false;
|
|
}
|
|
|
|
exe_ctx.GetProcessPtr()->SetRunningUserExpression(true);
|
|
|
|
// Execute the actual function call thread plan
|
|
lldb::ExpressionResults res =
|
|
exe_ctx.GetProcessRef().RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
|
|
|
|
// Check that the thread plan completed successfully
|
|
if (res != lldb::ExpressionResults::eExpressionCompleted)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("ThreadPlanCallFunctionUsingABI failed");
|
|
return false;
|
|
}
|
|
|
|
exe_ctx.GetProcessPtr()->SetRunningUserExpression(false);
|
|
|
|
// Void return type
|
|
if (returnType->isVoidTy())
|
|
{
|
|
// Cant assign to void types, so we leave the frame untouched
|
|
}
|
|
else
|
|
// Integer or pointer return type
|
|
if (returnType->isIntegerTy() || returnType->isPointerTy())
|
|
{
|
|
// Get the encapsulated return value
|
|
lldb::ValueObjectSP retVal = call_plan_sp.get()->GetReturnValueObject();
|
|
|
|
lldb_private::Scalar returnVal = -1;
|
|
lldb_private::ValueObject *vobj = retVal.get();
|
|
|
|
// Check if the return value is valid
|
|
if (vobj == nullptr || retVal.empty())
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorStringWithFormat("unable to get the return value");
|
|
return false;
|
|
}
|
|
|
|
// Extract the return value as a integer
|
|
lldb_private::Value & value = vobj->GetValue();
|
|
returnVal = value.GetScalar();
|
|
|
|
// Push the return value as the result
|
|
frame.AssignValue(inst, returnVal, module);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
++frame.m_ii;
|
|
}
|
|
|
|
if (num_insts >= 4096)
|
|
{
|
|
error.SetErrorToGenericError();
|
|
error.SetErrorString(infinite_loop_error);
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|