Florian Hahn ccb40b0b7a
[VPlan] Add insertOnEdge to VPBlockUtils (NFC).
Add a new helper to insert a new VPBlockBase on an edge between 2
blocks. Suggested in https://github.com/llvm/llvm-project/pull/114292
and also useful for some existing code.
2024-11-09 21:19:39 +00:00

4336 lines
156 KiB
C++

//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
/// VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Pure virtual VPRecipeBase serving as the base class for recipes contained
/// within VPBasicBlocks;
/// 3. Pure virtual VPSingleDefRecipe serving as a base class for recipes that
/// also inherit from VPValue.
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
/// instruction;
/// 5. The VPlan class holding a candidate for vectorization;
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
/// These are documented in docs/VectorizationPlan.rst.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#include "VPlanAnalysis.h"
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/FMF.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/InstructionCost.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
namespace llvm {
class BasicBlock;
class DominatorTree;
class InnerLoopVectorizer;
class IRBuilderBase;
class LoopInfo;
class raw_ostream;
class RecurrenceDescriptor;
class SCEV;
class Type;
class VPBasicBlock;
class VPRegionBlock;
class VPlan;
class VPReplicateRecipe;
class VPlanSlp;
class Value;
class LoopVectorizationCostModel;
class LoopVersioning;
struct VPCostContext;
namespace Intrinsic {
typedef unsigned ID;
}
/// Returns a calculation for the total number of elements for a given \p VF.
/// For fixed width vectors this value is a constant, whereas for scalable
/// vectors it is an expression determined at runtime.
Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF);
/// Return a value for Step multiplied by VF.
Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF,
int64_t Step);
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
inline unsigned getReciprocalPredBlockProb() { return 2; }
/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 16) = {1, 2, 4, 8}
struct VFRange {
// A power of 2.
const ElementCount Start;
// A power of 2. If End <= Start range is empty.
ElementCount End;
bool isEmpty() const {
return End.getKnownMinValue() <= Start.getKnownMinValue();
}
VFRange(const ElementCount &Start, const ElementCount &End)
: Start(Start), End(End) {
assert(Start.isScalable() == End.isScalable() &&
"Both Start and End should have the same scalable flag");
assert(isPowerOf2_32(Start.getKnownMinValue()) &&
"Expected Start to be a power of 2");
assert(isPowerOf2_32(End.getKnownMinValue()) &&
"Expected End to be a power of 2");
}
/// Iterator to iterate over vectorization factors in a VFRange.
class iterator
: public iterator_facade_base<iterator, std::forward_iterator_tag,
ElementCount> {
ElementCount VF;
public:
iterator(ElementCount VF) : VF(VF) {}
bool operator==(const iterator &Other) const { return VF == Other.VF; }
ElementCount operator*() const { return VF; }
iterator &operator++() {
VF *= 2;
return *this;
}
};
iterator begin() { return iterator(Start); }
iterator end() {
assert(isPowerOf2_32(End.getKnownMinValue()));
return iterator(End);
}
};
using VPlanPtr = std::unique_ptr<VPlan>;
/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.
/// VPLane provides a way to access lanes in both fixed width and scalable
/// vectors, where for the latter the lane index sometimes needs calculating
/// as a runtime expression.
class VPLane {
public:
/// Kind describes how to interpret Lane.
enum class Kind : uint8_t {
/// For First, Lane is the index into the first N elements of a
/// fixed-vector <N x <ElTy>> or a scalable vector <vscale x N x <ElTy>>.
First,
/// For ScalableLast, Lane is the offset from the start of the last
/// N-element subvector in a scalable vector <vscale x N x <ElTy>>. For
/// example, a Lane of 0 corresponds to lane `(vscale - 1) * N`, a Lane of
/// 1 corresponds to `((vscale - 1) * N) + 1`, etc.
ScalableLast
};
private:
/// in [0..VF)
unsigned Lane;
/// Indicates how the Lane should be interpreted, as described above.
Kind LaneKind;
public:
VPLane(unsigned Lane) : Lane(Lane), LaneKind(VPLane::Kind::First) {}
VPLane(unsigned Lane, Kind LaneKind) : Lane(Lane), LaneKind(LaneKind) {}
static VPLane getFirstLane() { return VPLane(0, VPLane::Kind::First); }
static VPLane getLaneFromEnd(const ElementCount &VF, unsigned Offset) {
assert(Offset > 0 && Offset <= VF.getKnownMinValue() &&
"trying to extract with invalid offset");
unsigned LaneOffset = VF.getKnownMinValue() - Offset;
Kind LaneKind;
if (VF.isScalable())
// In this case 'LaneOffset' refers to the offset from the start of the
// last subvector with VF.getKnownMinValue() elements.
LaneKind = VPLane::Kind::ScalableLast;
else
LaneKind = VPLane::Kind::First;
return VPLane(LaneOffset, LaneKind);
}
static VPLane getLastLaneForVF(const ElementCount &VF) {
return getLaneFromEnd(VF, 1);
}
/// Returns a compile-time known value for the lane index and asserts if the
/// lane can only be calculated at runtime.
unsigned getKnownLane() const {
assert(LaneKind == Kind::First);
return Lane;
}
/// Returns an expression describing the lane index that can be used at
/// runtime.
Value *getAsRuntimeExpr(IRBuilderBase &Builder, const ElementCount &VF) const;
/// Returns the Kind of lane offset.
Kind getKind() const { return LaneKind; }
/// Returns true if this is the first lane of the whole vector.
bool isFirstLane() const { return Lane == 0 && LaneKind == Kind::First; }
/// Maps the lane to a cache index based on \p VF.
unsigned mapToCacheIndex(const ElementCount &VF) const {
switch (LaneKind) {
case VPLane::Kind::ScalableLast:
assert(VF.isScalable() && Lane < VF.getKnownMinValue());
return VF.getKnownMinValue() + Lane;
default:
assert(Lane < VF.getKnownMinValue());
return Lane;
}
}
/// Returns the maxmimum number of lanes that we are able to consider
/// caching for \p VF.
static unsigned getNumCachedLanes(const ElementCount &VF) {
return VF.getKnownMinValue() * (VF.isScalable() ? 2 : 1);
}
};
/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
DominatorTree *DT, IRBuilderBase &Builder,
InnerLoopVectorizer *ILV, VPlan *Plan);
/// The chosen Vectorization Factor of the loop being vectorized.
ElementCount VF;
/// Hold the index to generate specific scalar instructions. Null indicates
/// that all instances are to be generated, using either scalar or vector
/// instructions.
std::optional<VPLane> Lane;
struct DataState {
// Each value from the original loop, when vectorized, is represented by a
// vector value in the map.
DenseMap<VPValue *, Value *> VPV2Vector;
DenseMap<VPValue *, SmallVector<Value *, 4>> VPV2Scalars;
} Data;
/// Get the generated vector Value for a given VPValue \p Def if \p IsScalar
/// is false, otherwise return the generated scalar. \See set.
Value *get(VPValue *Def, bool IsScalar = false);
/// Get the generated Value for a given VPValue and given Part and Lane.
Value *get(VPValue *Def, const VPLane &Lane);
bool hasVectorValue(VPValue *Def) { return Data.VPV2Vector.contains(Def); }
bool hasScalarValue(VPValue *Def, VPLane Lane) {
auto I = Data.VPV2Scalars.find(Def);
if (I == Data.VPV2Scalars.end())
return false;
unsigned CacheIdx = Lane.mapToCacheIndex(VF);
return CacheIdx < I->second.size() && I->second[CacheIdx];
}
/// Set the generated vector Value for a given VPValue, if \p
/// IsScalar is false. If \p IsScalar is true, set the scalar in lane 0.
void set(VPValue *Def, Value *V, bool IsScalar = false) {
if (IsScalar) {
set(Def, V, VPLane(0));
return;
}
assert((VF.isScalar() || V->getType()->isVectorTy()) &&
"scalar values must be stored as (0, 0)");
Data.VPV2Vector[Def] = V;
}
/// Reset an existing vector value for \p Def and a given \p Part.
void reset(VPValue *Def, Value *V) {
assert(Data.VPV2Vector.contains(Def) && "need to overwrite existing value");
Data.VPV2Vector[Def] = V;
}
/// Set the generated scalar \p V for \p Def and the given \p Lane.
void set(VPValue *Def, Value *V, const VPLane &Lane) {
auto &Scalars = Data.VPV2Scalars[Def];
unsigned CacheIdx = Lane.mapToCacheIndex(VF);
if (Scalars.size() <= CacheIdx)
Scalars.resize(CacheIdx + 1);
assert(!Scalars[CacheIdx] && "should overwrite existing value");
Scalars[CacheIdx] = V;
}
/// Reset an existing scalar value for \p Def and a given \p Lane.
void reset(VPValue *Def, Value *V, const VPLane &Lane) {
auto Iter = Data.VPV2Scalars.find(Def);
assert(Iter != Data.VPV2Scalars.end() &&
"need to overwrite existing value");
unsigned CacheIdx = Lane.mapToCacheIndex(VF);
assert(CacheIdx < Iter->second.size() &&
"need to overwrite existing value");
Iter->second[CacheIdx] = V;
}
/// Add additional metadata to \p To that was not present on \p Orig.
///
/// Currently this is used to add the noalias annotations based on the
/// inserted memchecks. Use this for instructions that are *cloned* into the
/// vector loop.
void addNewMetadata(Instruction *To, const Instruction *Orig);
/// Add metadata from one instruction to another.
///
/// This includes both the original MDs from \p From and additional ones (\see
/// addNewMetadata). Use this for *newly created* instructions in the vector
/// loop.
void addMetadata(Value *To, Instruction *From);
/// Set the debug location in the builder using the debug location \p DL.
void setDebugLocFrom(DebugLoc DL);
/// Construct the vector value of a scalarized value \p V one lane at a time.
void packScalarIntoVectorValue(VPValue *Def, const VPLane &Lane);
/// Hold state information used when constructing the CFG of the output IR,
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
struct CFGState {
/// The previous VPBasicBlock visited. Initially set to null.
VPBasicBlock *PrevVPBB = nullptr;
/// The previous IR BasicBlock created or used. Initially set to the new
/// header BasicBlock.
BasicBlock *PrevBB = nullptr;
/// The last IR BasicBlock in the output IR. Set to the exit block of the
/// vector loop.
BasicBlock *ExitBB = nullptr;
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
/// of replication, maps the BasicBlock of the last replica created.
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
/// Updater for the DominatorTree.
DomTreeUpdater DTU;
CFGState(DominatorTree *DT)
: DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy) {}
/// Returns the BasicBlock* mapped to the pre-header of the loop region
/// containing \p R.
BasicBlock *getPreheaderBBFor(VPRecipeBase *R);
} CFG;
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
LoopInfo *LI;
/// Hold a reference to the IRBuilder used to generate output IR code.
IRBuilderBase &Builder;
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
InnerLoopVectorizer *ILV;
/// Pointer to the VPlan code is generated for.
VPlan *Plan;
/// The loop object for the current parent region, or nullptr.
Loop *CurrentVectorLoop = nullptr;
/// LoopVersioning. It's only set up (non-null) if memchecks were
/// used.
///
/// This is currently only used to add no-alias metadata based on the
/// memchecks. The actually versioning is performed manually.
LoopVersioning *LVer = nullptr;
/// Map SCEVs to their expanded values. Populated when executing
/// VPExpandSCEVRecipes.
DenseMap<const SCEV *, Value *> ExpandedSCEVs;
/// VPlan-based type analysis.
VPTypeAnalysis TypeAnalysis;
};
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
friend class VPBlockUtils;
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// An optional name for the block.
std::string Name;
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
/// it is a topmost VPBlockBase.
VPRegionBlock *Parent = nullptr;
/// List of predecessor blocks.
SmallVector<VPBlockBase *, 1> Predecessors;
/// List of successor blocks.
SmallVector<VPBlockBase *, 1> Successors;
/// VPlan containing the block. Can only be set on the entry block of the
/// plan.
VPlan *Plan = nullptr;
/// Add \p Successor as the last successor to this block.
void appendSuccessor(VPBlockBase *Successor) {
assert(Successor && "Cannot add nullptr successor!");
Successors.push_back(Successor);
}
/// Add \p Predecessor as the last predecessor to this block.
void appendPredecessor(VPBlockBase *Predecessor) {
assert(Predecessor && "Cannot add nullptr predecessor!");
Predecessors.push_back(Predecessor);
}
/// Remove \p Predecessor from the predecessors of this block.
void removePredecessor(VPBlockBase *Predecessor) {
auto Pos = find(Predecessors, Predecessor);
assert(Pos && "Predecessor does not exist");
Predecessors.erase(Pos);
}
/// Remove \p Successor from the successors of this block.
void removeSuccessor(VPBlockBase *Successor) {
auto Pos = find(Successors, Successor);
assert(Pos && "Successor does not exist");
Successors.erase(Pos);
}
/// This function replaces one predecessor with another, useful when
/// trying to replace an old block in the CFG with a new one.
void replacePredecessor(VPBlockBase *Old, VPBlockBase *New) {
auto I = find(Predecessors, Old);
assert(I != Predecessors.end());
assert(Old->getParent() == New->getParent() &&
"replaced predecessor must have the same parent");
*I = New;
}
/// This function replaces one successor with another, useful when
/// trying to replace an old block in the CFG with a new one.
void replaceSuccessor(VPBlockBase *Old, VPBlockBase *New) {
auto I = find(Successors, Old);
assert(I != Successors.end());
assert(Old->getParent() == New->getParent() &&
"replaced successor must have the same parent");
*I = New;
}
protected:
VPBlockBase(const unsigned char SC, const std::string &N)
: SubclassID(SC), Name(N) {}
public:
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
/// that are actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPBlockBase objects. They are used for concrete
/// type identification.
using VPBlockTy = enum { VPRegionBlockSC, VPBasicBlockSC, VPIRBasicBlockSC };
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
virtual ~VPBlockBase() = default;
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPBlockID() const { return SubclassID; }
VPRegionBlock *getParent() { return Parent; }
const VPRegionBlock *getParent() const { return Parent; }
/// \return A pointer to the plan containing the current block.
VPlan *getPlan();
const VPlan *getPlan() const;
/// Sets the pointer of the plan containing the block. The block must be the
/// entry block into the VPlan.
void setPlan(VPlan *ParentPlan);
void setParent(VPRegionBlock *P) { Parent = P; }
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getEntryBasicBlock() const;
VPBasicBlock *getEntryBasicBlock();
/// \return the VPBasicBlock that is the exiting this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getExitingBasicBlock() const;
VPBasicBlock *getExitingBasicBlock();
const VPBlocksTy &getSuccessors() const { return Successors; }
VPBlocksTy &getSuccessors() { return Successors; }
iterator_range<VPBlockBase **> successors() { return Successors; }
iterator_range<VPBlockBase **> predecessors() { return Predecessors; }
const VPBlocksTy &getPredecessors() const { return Predecessors; }
VPBlocksTy &getPredecessors() { return Predecessors; }
/// \return the successor of this VPBlockBase if it has a single successor.
/// Otherwise return a null pointer.
VPBlockBase *getSingleSuccessor() const {
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
}
/// \return the predecessor of this VPBlockBase if it has a single
/// predecessor. Otherwise return a null pointer.
VPBlockBase *getSinglePredecessor() const {
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
}
size_t getNumSuccessors() const { return Successors.size(); }
size_t getNumPredecessors() const { return Predecessors.size(); }
/// An Enclosing Block of a block B is any block containing B, including B
/// itself. \return the closest enclosing block starting from "this", which
/// has successors. \return the root enclosing block if all enclosing blocks
/// have no successors.
VPBlockBase *getEnclosingBlockWithSuccessors();
/// \return the closest enclosing block starting from "this", which has
/// predecessors. \return the root enclosing block if all enclosing blocks
/// have no predecessors.
VPBlockBase *getEnclosingBlockWithPredecessors();
/// \return the successors either attached directly to this VPBlockBase or, if
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
/// successors of its own, search recursively for the first enclosing
/// VPRegionBlock that has successors and return them. If no such
/// VPRegionBlock exists, return the (empty) successors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalSuccessors() {
return getEnclosingBlockWithSuccessors()->getSuccessors();
}
/// \return the hierarchical successor of this VPBlockBase if it has a single
/// hierarchical successor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalSuccessor() {
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
}
/// \return the predecessors either attached directly to this VPBlockBase or,
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
/// predecessors of its own, search recursively for the first enclosing
/// VPRegionBlock that has predecessors and return them. If no such
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalPredecessors() {
return getEnclosingBlockWithPredecessors()->getPredecessors();
}
/// \return the hierarchical predecessor of this VPBlockBase if it has a
/// single hierarchical predecessor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalPredecessor() {
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
}
/// Set a given VPBlockBase \p Successor as the single successor of this
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
/// This VPBlockBase must have no successors.
void setOneSuccessor(VPBlockBase *Successor) {
assert(Successors.empty() && "Setting one successor when others exist.");
assert(Successor->getParent() == getParent() &&
"connected blocks must have the same parent");
appendSuccessor(Successor);
}
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
/// successors of this VPBlockBase. This VPBlockBase is not added as
/// predecessor of \p IfTrue or \p IfFalse. This VPBlockBase must have no
/// successors.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse) {
assert(Successors.empty() && "Setting two successors when others exist.");
appendSuccessor(IfTrue);
appendSuccessor(IfFalse);
}
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
/// as successor of any VPBasicBlock in \p NewPreds.
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
assert(Predecessors.empty() && "Block predecessors already set.");
for (auto *Pred : NewPreds)
appendPredecessor(Pred);
}
/// Set each VPBasicBlock in \p NewSuccss as successor of this VPBlockBase.
/// This VPBlockBase must have no successors. This VPBlockBase is not added
/// as predecessor of any VPBasicBlock in \p NewSuccs.
void setSuccessors(ArrayRef<VPBlockBase *> NewSuccs) {
assert(Successors.empty() && "Block successors already set.");
for (auto *Succ : NewSuccs)
appendSuccessor(Succ);
}
/// Remove all the predecessor of this block.
void clearPredecessors() { Predecessors.clear(); }
/// Remove all the successors of this block.
void clearSuccessors() { Successors.clear(); }
/// The method which generates the output IR that correspond to this
/// VPBlockBase, thereby "executing" the VPlan.
virtual void execute(VPTransformState *State) = 0;
/// Return the cost of the block.
virtual InstructionCost cost(ElementCount VF, VPCostContext &Ctx) = 0;
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
static void deleteCFG(VPBlockBase *Entry);
/// Return true if it is legal to hoist instructions into this block.
bool isLegalToHoistInto() {
// There are currently no constraints that prevent an instruction to be
// hoisted into a VPBlockBase.
return true;
}
/// Replace all operands of VPUsers in the block with \p NewValue and also
/// replaces all uses of VPValues defined in the block with NewValue.
virtual void dropAllReferences(VPValue *NewValue) = 0;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printAsOperand(raw_ostream &OS, bool PrintType) const {
OS << getName();
}
/// Print plain-text dump of this VPBlockBase to \p O, prefixing all lines
/// with \p Indent. \p SlotTracker is used to print unnamed VPValue's using
/// consequtive numbers.
///
/// Note that the numbering is applied to the whole VPlan, so printing
/// individual blocks is consistent with the whole VPlan printing.
virtual void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const = 0;
/// Print plain-text dump of this VPlan to \p O.
void print(raw_ostream &O) const {
VPSlotTracker SlotTracker(getPlan());
print(O, "", SlotTracker);
}
/// Print the successors of this block to \p O, prefixing all lines with \p
/// Indent.
void printSuccessors(raw_ostream &O, const Twine &Indent) const;
/// Dump this VPBlockBase to dbgs().
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
/// Clone the current block and it's recipes without updating the operands of
/// the cloned recipes, including all blocks in the single-entry single-exit
/// region for VPRegionBlocks.
virtual VPBlockBase *clone() = 0;
};
/// Struct to hold various analysis needed for cost computations.
struct VPCostContext {
const TargetTransformInfo &TTI;
const TargetLibraryInfo &TLI;
VPTypeAnalysis Types;
LLVMContext &LLVMCtx;
LoopVectorizationCostModel &CM;
SmallPtrSet<Instruction *, 8> SkipCostComputation;
VPCostContext(const TargetTransformInfo &TTI, const TargetLibraryInfo &TLI,
Type *CanIVTy, LoopVectorizationCostModel &CM)
: TTI(TTI), TLI(TLI), Types(CanIVTy), LLVMCtx(CanIVTy->getContext()),
CM(CM) {}
/// Return the cost for \p UI with \p VF using the legacy cost model as
/// fallback until computing the cost of all recipes migrates to VPlan.
InstructionCost getLegacyCost(Instruction *UI, ElementCount VF) const;
/// Return true if the cost for \p UI shouldn't be computed, e.g. because it
/// has already been pre-computed.
bool skipCostComputation(Instruction *UI, bool IsVector) const;
/// Returns the OperandInfo for \p V, if it is a live-in.
TargetTransformInfo::OperandValueInfo getOperandInfo(VPValue *V) const;
};
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions. VPRecipeBase owns the VPValues it defines through VPDef
/// and is responsible for deleting its defined values. Single-value
/// recipes must inherit from VPSingleDef instead of inheriting from both
/// VPRecipeBase and VPValue separately.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock>,
public VPDef,
public VPUser {
friend VPBasicBlock;
friend class VPBlockUtils;
/// Each VPRecipe belongs to a single VPBasicBlock.
VPBasicBlock *Parent = nullptr;
/// The debug location for the recipe.
DebugLoc DL;
public:
VPRecipeBase(const unsigned char SC, ArrayRef<VPValue *> Operands,
DebugLoc DL = {})
: VPDef(SC), VPUser(Operands), DL(DL) {}
template <typename IterT>
VPRecipeBase(const unsigned char SC, iterator_range<IterT> Operands,
DebugLoc DL = {})
: VPDef(SC), VPUser(Operands), DL(DL) {}
virtual ~VPRecipeBase() = default;
/// Clone the current recipe.
virtual VPRecipeBase *clone() = 0;
/// \return the VPBasicBlock which this VPRecipe belongs to.
VPBasicBlock *getParent() { return Parent; }
const VPBasicBlock *getParent() const { return Parent; }
/// The method which generates the output IR instructions that correspond to
/// this VPRecipe, thereby "executing" the VPlan.
virtual void execute(VPTransformState &State) = 0;
/// Return the cost of this recipe, taking into account if the cost
/// computation should be skipped and the ForceTargetInstructionCost flag.
/// Also takes care of printing the cost for debugging.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx);
/// Insert an unlinked recipe into a basic block immediately before
/// the specified recipe.
void insertBefore(VPRecipeBase *InsertPos);
/// Insert an unlinked recipe into \p BB immediately before the insertion
/// point \p IP;
void insertBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator IP);
/// Insert an unlinked Recipe into a basic block immediately after
/// the specified Recipe.
void insertAfter(VPRecipeBase *InsertPos);
/// Unlink this recipe from its current VPBasicBlock and insert it into
/// the VPBasicBlock that MovePos lives in, right after MovePos.
void moveAfter(VPRecipeBase *MovePos);
/// Unlink this recipe and insert into BB before I.
///
/// \pre I is a valid iterator into BB.
void moveBefore(VPBasicBlock &BB, iplist<VPRecipeBase>::iterator I);
/// This method unlinks 'this' from the containing basic block, but does not
/// delete it.
void removeFromParent();
/// This method unlinks 'this' from the containing basic block and deletes it.
///
/// \returns an iterator pointing to the element after the erased one
iplist<VPRecipeBase>::iterator eraseFromParent();
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPDef *D) {
// All VPDefs are also VPRecipeBases.
return true;
}
static inline bool classof(const VPUser *U) { return true; }
/// Returns true if the recipe may have side-effects.
bool mayHaveSideEffects() const;
/// Returns true for PHI-like recipes.
bool isPhi() const {
return getVPDefID() >= VPFirstPHISC && getVPDefID() <= VPLastPHISC;
}
/// Returns true if the recipe may read from memory.
bool mayReadFromMemory() const;
/// Returns true if the recipe may write to memory.
bool mayWriteToMemory() const;
/// Returns true if the recipe may read from or write to memory.
bool mayReadOrWriteMemory() const {
return mayReadFromMemory() || mayWriteToMemory();
}
/// Returns the debug location of the recipe.
DebugLoc getDebugLoc() const { return DL; }
protected:
/// Compute the cost of this recipe either using a recipe's specialized
/// implementation or using the legacy cost model and the underlying
/// instructions.
virtual InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const;
};
// Helper macro to define common classof implementations for recipes.
#define VP_CLASSOF_IMPL(VPDefID) \
static inline bool classof(const VPDef *D) { \
return D->getVPDefID() == VPDefID; \
} \
static inline bool classof(const VPValue *V) { \
auto *R = V->getDefiningRecipe(); \
return R && R->getVPDefID() == VPDefID; \
} \
static inline bool classof(const VPUser *U) { \
auto *R = dyn_cast<VPRecipeBase>(U); \
return R && R->getVPDefID() == VPDefID; \
} \
static inline bool classof(const VPRecipeBase *R) { \
return R->getVPDefID() == VPDefID; \
} \
static inline bool classof(const VPSingleDefRecipe *R) { \
return R->getVPDefID() == VPDefID; \
}
/// VPSingleDef is a base class for recipes for modeling a sequence of one or
/// more output IR that define a single result VPValue.
/// Note that VPRecipeBase must be inherited from before VPValue.
class VPSingleDefRecipe : public VPRecipeBase, public VPValue {
public:
template <typename IterT>
VPSingleDefRecipe(const unsigned char SC, IterT Operands, DebugLoc DL = {})
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
VPSingleDefRecipe(const unsigned char SC, ArrayRef<VPValue *> Operands,
DebugLoc DL = {})
: VPRecipeBase(SC, Operands, DL), VPValue(this) {}
template <typename IterT>
VPSingleDefRecipe(const unsigned char SC, IterT Operands, Value *UV,
DebugLoc DL = {})
: VPRecipeBase(SC, Operands, DL), VPValue(this, UV) {}
static inline bool classof(const VPRecipeBase *R) {
switch (R->getVPDefID()) {
case VPRecipeBase::VPDerivedIVSC:
case VPRecipeBase::VPEVLBasedIVPHISC:
case VPRecipeBase::VPExpandSCEVSC:
case VPRecipeBase::VPInstructionSC:
case VPRecipeBase::VPReductionEVLSC:
case VPRecipeBase::VPReductionSC:
case VPRecipeBase::VPReplicateSC:
case VPRecipeBase::VPScalarIVStepsSC:
case VPRecipeBase::VPVectorPointerSC:
case VPRecipeBase::VPReverseVectorPointerSC:
case VPRecipeBase::VPWidenCallSC:
case VPRecipeBase::VPWidenCanonicalIVSC:
case VPRecipeBase::VPWidenCastSC:
case VPRecipeBase::VPWidenGEPSC:
case VPRecipeBase::VPWidenIntrinsicSC:
case VPRecipeBase::VPWidenSC:
case VPRecipeBase::VPWidenEVLSC:
case VPRecipeBase::VPWidenSelectSC:
case VPRecipeBase::VPBlendSC:
case VPRecipeBase::VPPredInstPHISC:
case VPRecipeBase::VPCanonicalIVPHISC:
case VPRecipeBase::VPActiveLaneMaskPHISC:
case VPRecipeBase::VPFirstOrderRecurrencePHISC:
case VPRecipeBase::VPWidenPHISC:
case VPRecipeBase::VPWidenIntOrFpInductionSC:
case VPRecipeBase::VPWidenPointerInductionSC:
case VPRecipeBase::VPReductionPHISC:
case VPRecipeBase::VPScalarCastSC:
return true;
case VPRecipeBase::VPBranchOnMaskSC:
case VPRecipeBase::VPInterleaveSC:
case VPRecipeBase::VPIRInstructionSC:
case VPRecipeBase::VPWidenLoadEVLSC:
case VPRecipeBase::VPWidenLoadSC:
case VPRecipeBase::VPWidenStoreEVLSC:
case VPRecipeBase::VPWidenStoreSC:
case VPRecipeBase::VPHistogramSC:
// TODO: Widened stores don't define a value, but widened loads do. Split
// the recipes to be able to make widened loads VPSingleDefRecipes.
return false;
}
llvm_unreachable("Unhandled VPDefID");
}
static inline bool classof(const VPUser *U) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && classof(R);
}
virtual VPSingleDefRecipe *clone() override = 0;
/// Returns the underlying instruction.
Instruction *getUnderlyingInstr() {
return cast<Instruction>(getUnderlyingValue());
}
const Instruction *getUnderlyingInstr() const {
return cast<Instruction>(getUnderlyingValue());
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print this VPSingleDefRecipe to dbgs() (for debugging).
LLVM_DUMP_METHOD void dump() const;
#endif
};
/// Class to record LLVM IR flag for a recipe along with it.
class VPRecipeWithIRFlags : public VPSingleDefRecipe {
enum class OperationType : unsigned char {
Cmp,
OverflowingBinOp,
DisjointOp,
PossiblyExactOp,
GEPOp,
FPMathOp,
NonNegOp,
Other
};
public:
struct WrapFlagsTy {
char HasNUW : 1;
char HasNSW : 1;
WrapFlagsTy(bool HasNUW, bool HasNSW) : HasNUW(HasNUW), HasNSW(HasNSW) {}
};
struct DisjointFlagsTy {
char IsDisjoint : 1;
DisjointFlagsTy(bool IsDisjoint) : IsDisjoint(IsDisjoint) {}
};
struct GEPFlagsTy {
char IsInBounds : 1;
GEPFlagsTy(bool IsInBounds) : IsInBounds(IsInBounds) {}
};
private:
struct ExactFlagsTy {
char IsExact : 1;
};
struct NonNegFlagsTy {
char NonNeg : 1;
};
struct FastMathFlagsTy {
char AllowReassoc : 1;
char NoNaNs : 1;
char NoInfs : 1;
char NoSignedZeros : 1;
char AllowReciprocal : 1;
char AllowContract : 1;
char ApproxFunc : 1;
FastMathFlagsTy(const FastMathFlags &FMF);
};
OperationType OpType;
union {
CmpInst::Predicate CmpPredicate;
WrapFlagsTy WrapFlags;
DisjointFlagsTy DisjointFlags;
ExactFlagsTy ExactFlags;
GEPFlagsTy GEPFlags;
NonNegFlagsTy NonNegFlags;
FastMathFlagsTy FMFs;
unsigned AllFlags;
};
protected:
void transferFlags(VPRecipeWithIRFlags &Other) {
OpType = Other.OpType;
AllFlags = Other.AllFlags;
}
public:
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL) {
OpType = OperationType::Other;
AllFlags = 0;
}
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands, Instruction &I)
: VPSingleDefRecipe(SC, Operands, &I, I.getDebugLoc()) {
if (auto *Op = dyn_cast<CmpInst>(&I)) {
OpType = OperationType::Cmp;
CmpPredicate = Op->getPredicate();
} else if (auto *Op = dyn_cast<PossiblyDisjointInst>(&I)) {
OpType = OperationType::DisjointOp;
DisjointFlags.IsDisjoint = Op->isDisjoint();
} else if (auto *Op = dyn_cast<OverflowingBinaryOperator>(&I)) {
OpType = OperationType::OverflowingBinOp;
WrapFlags = {Op->hasNoUnsignedWrap(), Op->hasNoSignedWrap()};
} else if (auto *Op = dyn_cast<PossiblyExactOperator>(&I)) {
OpType = OperationType::PossiblyExactOp;
ExactFlags.IsExact = Op->isExact();
} else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
OpType = OperationType::GEPOp;
GEPFlags.IsInBounds = GEP->isInBounds();
} else if (auto *PNNI = dyn_cast<PossiblyNonNegInst>(&I)) {
OpType = OperationType::NonNegOp;
NonNegFlags.NonNeg = PNNI->hasNonNeg();
} else if (auto *Op = dyn_cast<FPMathOperator>(&I)) {
OpType = OperationType::FPMathOp;
FMFs = Op->getFastMathFlags();
} else {
OpType = OperationType::Other;
AllFlags = 0;
}
}
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
CmpInst::Predicate Pred, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::Cmp),
CmpPredicate(Pred) {}
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
WrapFlagsTy WrapFlags, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL),
OpType(OperationType::OverflowingBinOp), WrapFlags(WrapFlags) {}
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
FastMathFlags FMFs, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::FPMathOp),
FMFs(FMFs) {}
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
DisjointFlagsTy DisjointFlags, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::DisjointOp),
DisjointFlags(DisjointFlags) {}
protected:
template <typename IterT>
VPRecipeWithIRFlags(const unsigned char SC, IterT Operands,
GEPFlagsTy GEPFlags, DebugLoc DL = {})
: VPSingleDefRecipe(SC, Operands, DL), OpType(OperationType::GEPOp),
GEPFlags(GEPFlags) {}
public:
static inline bool classof(const VPRecipeBase *R) {
return R->getVPDefID() == VPRecipeBase::VPInstructionSC ||
R->getVPDefID() == VPRecipeBase::VPWidenSC ||
R->getVPDefID() == VPRecipeBase::VPWidenEVLSC ||
R->getVPDefID() == VPRecipeBase::VPWidenGEPSC ||
R->getVPDefID() == VPRecipeBase::VPWidenCastSC ||
R->getVPDefID() == VPRecipeBase::VPReplicateSC ||
R->getVPDefID() == VPRecipeBase::VPReverseVectorPointerSC ||
R->getVPDefID() == VPRecipeBase::VPVectorPointerSC;
}
static inline bool classof(const VPUser *U) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && classof(R);
}
/// Drop all poison-generating flags.
void dropPoisonGeneratingFlags() {
// NOTE: This needs to be kept in-sync with
// Instruction::dropPoisonGeneratingFlags.
switch (OpType) {
case OperationType::OverflowingBinOp:
WrapFlags.HasNUW = false;
WrapFlags.HasNSW = false;
break;
case OperationType::DisjointOp:
DisjointFlags.IsDisjoint = false;
break;
case OperationType::PossiblyExactOp:
ExactFlags.IsExact = false;
break;
case OperationType::GEPOp:
GEPFlags.IsInBounds = false;
break;
case OperationType::FPMathOp:
FMFs.NoNaNs = false;
FMFs.NoInfs = false;
break;
case OperationType::NonNegOp:
NonNegFlags.NonNeg = false;
break;
case OperationType::Cmp:
case OperationType::Other:
break;
}
}
/// Set the IR flags for \p I.
void setFlags(Instruction *I) const {
switch (OpType) {
case OperationType::OverflowingBinOp:
I->setHasNoUnsignedWrap(WrapFlags.HasNUW);
I->setHasNoSignedWrap(WrapFlags.HasNSW);
break;
case OperationType::DisjointOp:
cast<PossiblyDisjointInst>(I)->setIsDisjoint(DisjointFlags.IsDisjoint);
break;
case OperationType::PossiblyExactOp:
I->setIsExact(ExactFlags.IsExact);
break;
case OperationType::GEPOp:
// TODO(gep_nowrap): Track the full GEPNoWrapFlags in VPlan.
cast<GetElementPtrInst>(I)->setNoWrapFlags(
GEPFlags.IsInBounds ? GEPNoWrapFlags::inBounds()
: GEPNoWrapFlags::none());
break;
case OperationType::FPMathOp:
I->setHasAllowReassoc(FMFs.AllowReassoc);
I->setHasNoNaNs(FMFs.NoNaNs);
I->setHasNoInfs(FMFs.NoInfs);
I->setHasNoSignedZeros(FMFs.NoSignedZeros);
I->setHasAllowReciprocal(FMFs.AllowReciprocal);
I->setHasAllowContract(FMFs.AllowContract);
I->setHasApproxFunc(FMFs.ApproxFunc);
break;
case OperationType::NonNegOp:
I->setNonNeg(NonNegFlags.NonNeg);
break;
case OperationType::Cmp:
case OperationType::Other:
break;
}
}
CmpInst::Predicate getPredicate() const {
assert(OpType == OperationType::Cmp &&
"recipe doesn't have a compare predicate");
return CmpPredicate;
}
bool isInBounds() const {
assert(OpType == OperationType::GEPOp &&
"recipe doesn't have inbounds flag");
return GEPFlags.IsInBounds;
}
/// Returns true if the recipe has fast-math flags.
bool hasFastMathFlags() const { return OpType == OperationType::FPMathOp; }
FastMathFlags getFastMathFlags() const;
bool hasNoUnsignedWrap() const {
assert(OpType == OperationType::OverflowingBinOp &&
"recipe doesn't have a NUW flag");
return WrapFlags.HasNUW;
}
bool hasNoSignedWrap() const {
assert(OpType == OperationType::OverflowingBinOp &&
"recipe doesn't have a NSW flag");
return WrapFlags.HasNSW;
}
bool isDisjoint() const {
assert(OpType == OperationType::DisjointOp &&
"recipe cannot have a disjoing flag");
return DisjointFlags.IsDisjoint;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void printFlags(raw_ostream &O) const;
#endif
};
/// Helper to access the operand that contains the unroll part for this recipe
/// after unrolling.
template <unsigned PartOpIdx> class VPUnrollPartAccessor {
protected:
/// Return the VPValue operand containing the unroll part or null if there is
/// no such operand.
VPValue *getUnrollPartOperand(VPUser &U) const;
/// Return the unroll part.
unsigned getUnrollPart(VPUser &U) const;
};
/// This is a concrete Recipe that models a single VPlan-level instruction.
/// While as any Recipe it may generate a sequence of IR instructions when
/// executed, these instructions would always form a single-def expression as
/// the VPInstruction is also a single def-use vertex.
class VPInstruction : public VPRecipeWithIRFlags,
public VPUnrollPartAccessor<1> {
friend class VPlanSlp;
public:
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
enum {
FirstOrderRecurrenceSplice =
Instruction::OtherOpsEnd + 1, // Combines the incoming and previous
// values of a first-order recurrence.
Not,
SLPLoad,
SLPStore,
ActiveLaneMask,
ExplicitVectorLength,
/// Creates a scalar phi in a leaf VPBB with a single predecessor in VPlan.
/// The first operand is the incoming value from the predecessor in VPlan,
/// the second operand is the incoming value for all other predecessors
/// (which are currently not modeled in VPlan).
ResumePhi,
CalculateTripCountMinusVF,
// Increment the canonical IV separately for each unrolled part.
CanonicalIVIncrementForPart,
BranchOnCount,
BranchOnCond,
ComputeReductionResult,
// Takes the VPValue to extract from as first operand and the lane or part
// to extract as second operand, counting from the end starting with 1 for
// last. The second operand must be a positive constant and <= VF.
ExtractFromEnd,
LogicalAnd, // Non-poison propagating logical And.
// Add an offset in bytes (second operand) to a base pointer (first
// operand). Only generates scalar values (either for the first lane only or
// for all lanes, depending on its uses).
PtrAdd,
};
private:
typedef unsigned char OpcodeTy;
OpcodeTy Opcode;
/// An optional name that can be used for the generated IR instruction.
const std::string Name;
/// Returns true if this VPInstruction generates scalar values for all lanes.
/// Most VPInstructions generate a single value per part, either vector or
/// scalar. VPReplicateRecipe takes care of generating multiple (scalar)
/// values per all lanes, stemming from an original ingredient. This method
/// identifies the (rare) cases of VPInstructions that do so as well, w/o an
/// underlying ingredient.
bool doesGeneratePerAllLanes() const;
/// Returns true if we can generate a scalar for the first lane only if
/// needed.
bool canGenerateScalarForFirstLane() const;
/// Utility methods serving execute(): generates a single vector instance of
/// the modeled instruction. \returns the generated value. . In some cases an
/// existing value is returned rather than a generated one.
Value *generate(VPTransformState &State);
/// Utility methods serving execute(): generates a scalar single instance of
/// the modeled instruction for a given lane. \returns the scalar generated
/// value for lane \p Lane.
Value *generatePerLane(VPTransformState &State, const VPLane &Lane);
#if !defined(NDEBUG)
/// Return true if the VPInstruction is a floating point math operation, i.e.
/// has fast-math flags.
bool isFPMathOp() const;
#endif
public:
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands, DebugLoc DL,
const Twine &Name = "")
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DL),
Opcode(Opcode), Name(Name.str()) {}
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
DebugLoc DL = {}, const Twine &Name = "")
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name) {}
VPInstruction(unsigned Opcode, CmpInst::Predicate Pred, VPValue *A,
VPValue *B, DebugLoc DL = {}, const Twine &Name = "");
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
WrapFlagsTy WrapFlags, DebugLoc DL = {}, const Twine &Name = "")
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, WrapFlags, DL),
Opcode(Opcode), Name(Name.str()) {}
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
DisjointFlagsTy DisjointFlag, DebugLoc DL = {},
const Twine &Name = "")
: VPRecipeWithIRFlags(VPDef::VPInstructionSC, Operands, DisjointFlag, DL),
Opcode(Opcode), Name(Name.str()) {
assert(Opcode == Instruction::Or && "only OR opcodes can be disjoint");
}
VPInstruction(VPValue *Ptr, VPValue *Offset, GEPFlagsTy Flags,
DebugLoc DL = {}, const Twine &Name = "")
: VPRecipeWithIRFlags(VPDef::VPInstructionSC,
ArrayRef<VPValue *>({Ptr, Offset}), Flags, DL),
Opcode(VPInstruction::PtrAdd), Name(Name.str()) {}
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands,
FastMathFlags FMFs, DebugLoc DL = {}, const Twine &Name = "");
VP_CLASSOF_IMPL(VPDef::VPInstructionSC)
VPInstruction *clone() override {
SmallVector<VPValue *, 2> Operands(operands());
auto *New = new VPInstruction(Opcode, Operands, getDebugLoc(), Name);
New->transferFlags(*this);
return New;
}
unsigned getOpcode() const { return Opcode; }
/// Generate the instruction.
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
void execute(VPTransformState &State) override;
/// Return the cost of this VPInstruction.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the VPInstruction to \p O.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
/// Print the VPInstruction to dbgs() (for debugging).
LLVM_DUMP_METHOD void dump() const;
#endif
/// Return true if this instruction may modify memory.
bool mayWriteToMemory() const {
// TODO: we can use attributes of the called function to rule out memory
// modifications.
return Opcode == Instruction::Store || Opcode == Instruction::Call ||
Opcode == Instruction::Invoke || Opcode == SLPStore;
}
bool hasResult() const {
// CallInst may or may not have a result, depending on the called function.
// Conservatively return calls have results for now.
switch (getOpcode()) {
case Instruction::Ret:
case Instruction::Br:
case Instruction::Store:
case Instruction::Switch:
case Instruction::IndirectBr:
case Instruction::Resume:
case Instruction::CatchRet:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::AtomicRMW:
case VPInstruction::BranchOnCond:
case VPInstruction::BranchOnCount:
return false;
default:
return true;
}
}
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override;
/// Returns true if the recipe only uses the first part of operand \p Op.
bool onlyFirstPartUsed(const VPValue *Op) const override;
/// Returns true if this VPInstruction produces a scalar value from a vector,
/// e.g. by performing a reduction or extracting a lane.
bool isVectorToScalar() const;
/// Returns true if this VPInstruction's operands are single scalars and the
/// result is also a single scalar.
bool isSingleScalar() const;
/// Returns the symbolic name assigned to the VPInstruction.
StringRef getName() const { return Name; }
};
/// A recipe to wrap on original IR instruction not to be modified during
/// execution, execept for PHIs. For PHIs, a single VPValue operand is allowed,
/// and it is used to add a new incoming value for the single predecessor VPBB.
/// Expect PHIs, VPIRInstructions cannot have any operands.
class VPIRInstruction : public VPRecipeBase {
Instruction &I;
public:
VPIRInstruction(Instruction &I)
: VPRecipeBase(VPDef::VPIRInstructionSC, ArrayRef<VPValue *>()), I(I) {}
~VPIRInstruction() override = default;
VP_CLASSOF_IMPL(VPDef::VPIRInstructionSC)
VPIRInstruction *clone() override {
auto *R = new VPIRInstruction(I);
for (auto *Op : operands())
R->addOperand(Op);
return R;
}
void execute(VPTransformState &State) override;
/// Return the cost of this VPIRInstruction.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
Instruction &getInstruction() { return I; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
bool usesScalars(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
bool onlyFirstPartUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// VPWidenRecipe is a recipe for producing a widened instruction using the
/// opcode and operands of the recipe. This recipe covers most of the
/// traditional vectorization cases where each recipe transforms into a
/// vectorized version of itself.
class VPWidenRecipe : public VPRecipeWithIRFlags {
unsigned Opcode;
protected:
template <typename IterT>
VPWidenRecipe(unsigned VPDefOpcode, Instruction &I,
iterator_range<IterT> Operands)
: VPRecipeWithIRFlags(VPDefOpcode, Operands, I), Opcode(I.getOpcode()) {}
public:
template <typename IterT>
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
: VPWidenRecipe(VPDef::VPWidenSC, I, Operands) {}
~VPWidenRecipe() override = default;
VPWidenRecipe *clone() override {
auto *R = new VPWidenRecipe(*getUnderlyingInstr(), operands());
R->transferFlags(*this);
return R;
}
static inline bool classof(const VPRecipeBase *R) {
return R->getVPDefID() == VPRecipeBase::VPWidenSC ||
R->getVPDefID() == VPRecipeBase::VPWidenEVLSC;
}
static inline bool classof(const VPUser *U) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && classof(R);
}
/// Produce a widened instruction using the opcode and operands of the recipe,
/// processing State.VF elements.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
unsigned getOpcode() const { return Opcode; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for widening operations with vector-predication intrinsics with
/// explicit vector length (EVL).
class VPWidenEVLRecipe : public VPWidenRecipe {
using VPRecipeWithIRFlags::transferFlags;
public:
template <typename IterT>
VPWidenEVLRecipe(Instruction &I, iterator_range<IterT> Operands, VPValue &EVL)
: VPWidenRecipe(VPDef::VPWidenEVLSC, I, Operands) {
addOperand(&EVL);
}
VPWidenEVLRecipe(VPWidenRecipe &W, VPValue &EVL)
: VPWidenEVLRecipe(*W.getUnderlyingInstr(), W.operands(), EVL) {
transferFlags(W);
}
~VPWidenEVLRecipe() override = default;
VPWidenRecipe *clone() override final {
llvm_unreachable("VPWidenEVLRecipe cannot be cloned");
return nullptr;
}
VP_CLASSOF_IMPL(VPDef::VPWidenEVLSC);
VPValue *getEVL() { return getOperand(getNumOperands() - 1); }
const VPValue *getEVL() const { return getOperand(getNumOperands() - 1); }
/// Produce a vp-intrinsic using the opcode and operands of the recipe,
/// processing EVL elements.
void execute(VPTransformState &State) override final;
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
// EVL in that recipe is always the last operand, thus any use before means
// the VPValue should be vectorized.
return getEVL() == Op;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override final;
#endif
};
/// VPWidenCastRecipe is a recipe to create vector cast instructions.
class VPWidenCastRecipe : public VPRecipeWithIRFlags {
/// Cast instruction opcode.
Instruction::CastOps Opcode;
/// Result type for the cast.
Type *ResultTy;
public:
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy,
CastInst &UI)
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op, UI), Opcode(Opcode),
ResultTy(ResultTy) {
assert(UI.getOpcode() == Opcode &&
"opcode of underlying cast doesn't match");
}
VPWidenCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
: VPRecipeWithIRFlags(VPDef::VPWidenCastSC, Op), Opcode(Opcode),
ResultTy(ResultTy) {}
~VPWidenCastRecipe() override = default;
VPWidenCastRecipe *clone() override {
if (auto *UV = getUnderlyingValue())
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy,
*cast<CastInst>(UV));
return new VPWidenCastRecipe(Opcode, getOperand(0), ResultTy);
}
VP_CLASSOF_IMPL(VPDef::VPWidenCastSC)
/// Produce widened copies of the cast.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenCastRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
Instruction::CastOps getOpcode() const { return Opcode; }
/// Returns the result type of the cast.
Type *getResultType() const { return ResultTy; }
};
/// VPScalarCastRecipe is a recipe to create scalar cast instructions.
class VPScalarCastRecipe : public VPSingleDefRecipe {
Instruction::CastOps Opcode;
Type *ResultTy;
Value *generate(VPTransformState &State);
public:
VPScalarCastRecipe(Instruction::CastOps Opcode, VPValue *Op, Type *ResultTy)
: VPSingleDefRecipe(VPDef::VPScalarCastSC, {Op}), Opcode(Opcode),
ResultTy(ResultTy) {}
~VPScalarCastRecipe() override = default;
VPScalarCastRecipe *clone() override {
return new VPScalarCastRecipe(Opcode, getOperand(0), ResultTy);
}
VP_CLASSOF_IMPL(VPDef::VPScalarCastSC)
void execute(VPTransformState &State) override;
/// Return the cost of this VPScalarCastRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns the result type of the cast.
Type *getResultType() const { return ResultTy; }
bool onlyFirstLaneUsed(const VPValue *Op) const override {
// At the moment, only uniform codegen is implemented.
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// A recipe for widening vector intrinsics.
class VPWidenIntrinsicRecipe : public VPRecipeWithIRFlags {
/// ID of the vector intrinsic to widen.
Intrinsic::ID VectorIntrinsicID;
/// Scalar return type of the intrinsic.
Type *ResultTy;
/// True if the intrinsic may read from memory.
bool MayReadFromMemory;
/// True if the intrinsic may read write to memory.
bool MayWriteToMemory;
/// True if the intrinsic may have side-effects.
bool MayHaveSideEffects;
public:
VPWidenIntrinsicRecipe(CallInst &CI, Intrinsic::ID VectorIntrinsicID,
ArrayRef<VPValue *> CallArguments, Type *Ty,
DebugLoc DL = {})
: VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments, CI),
VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty),
MayReadFromMemory(CI.mayReadFromMemory()),
MayWriteToMemory(CI.mayWriteToMemory()),
MayHaveSideEffects(CI.mayHaveSideEffects()) {}
VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID,
ArrayRef<VPValue *> CallArguments, Type *Ty,
DebugLoc DL = {})
: VPRecipeWithIRFlags(VPDef::VPWidenIntrinsicSC, CallArguments),
VectorIntrinsicID(VectorIntrinsicID), ResultTy(Ty) {
LLVMContext &Ctx = Ty->getContext();
AttributeList Attrs = Intrinsic::getAttributes(Ctx, VectorIntrinsicID);
MemoryEffects ME = Attrs.getMemoryEffects();
MayReadFromMemory = ME.onlyWritesMemory();
MayWriteToMemory = ME.onlyReadsMemory();
MayHaveSideEffects = MayWriteToMemory ||
!Attrs.hasFnAttr(Attribute::NoUnwind) ||
!Attrs.hasFnAttr(Attribute::WillReturn);
}
VPWidenIntrinsicRecipe(Intrinsic::ID VectorIntrinsicID,
std::initializer_list<VPValue *> CallArguments,
Type *Ty, DebugLoc DL = {})
: VPWidenIntrinsicRecipe(VectorIntrinsicID,
ArrayRef<VPValue *>(CallArguments), Ty, DL) {}
~VPWidenIntrinsicRecipe() override = default;
VPWidenIntrinsicRecipe *clone() override {
return new VPWidenIntrinsicRecipe(*cast<CallInst>(getUnderlyingValue()),
VectorIntrinsicID, {op_begin(), op_end()},
ResultTy, getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPWidenIntrinsicSC)
/// Produce a widened version of the vector intrinsic.
void execute(VPTransformState &State) override;
/// Return the cost of this vector intrinsic.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
/// Return the scalar return type of the intrinsic.
Type *getResultType() const { return ResultTy; }
/// Return to name of the intrinsic as string.
StringRef getIntrinsicName() const;
/// Returns true if the intrinsic may read from memory.
bool mayReadFromMemory() const { return MayReadFromMemory; }
/// Returns true if the intrinsic may write to memory.
bool mayWriteToMemory() const { return MayWriteToMemory; }
/// Returns true if the intrinsic may have side-effects.
bool mayHaveSideEffects() const { return MayHaveSideEffects; }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
bool onlyFirstLaneUsed(const VPValue *Op) const override;
};
/// A recipe for widening Call instructions using library calls.
class VPWidenCallRecipe : public VPRecipeWithIRFlags {
/// Variant stores a pointer to the chosen function. There is a 1:1 mapping
/// between a given VF and the chosen vectorized variant, so there will be a
/// different VPlan for each VF with a valid variant.
Function *Variant;
public:
VPWidenCallRecipe(Value *UV, Function *Variant,
ArrayRef<VPValue *> CallArguments, DebugLoc DL = {})
: VPRecipeWithIRFlags(VPDef::VPWidenCallSC, CallArguments,
*cast<Instruction>(UV)),
Variant(Variant) {
assert(
isa<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue()) &&
"last operand must be the called function");
}
~VPWidenCallRecipe() override = default;
VPWidenCallRecipe *clone() override {
return new VPWidenCallRecipe(getUnderlyingValue(), Variant,
{op_begin(), op_end()}, getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPWidenCallSC)
/// Produce a widened version of the call instruction.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenCallRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
Function *getCalledScalarFunction() const {
return cast<Function>(getOperand(getNumOperands() - 1)->getLiveInIRValue());
}
operand_range arg_operands() {
return make_range(op_begin(), op_begin() + getNumOperands() - 1);
}
const_operand_range arg_operands() const {
return make_range(op_begin(), op_begin() + getNumOperands() - 1);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe representing a sequence of load -> update -> store as part of
/// a histogram operation. This means there may be aliasing between vector
/// lanes, which is handled by the llvm.experimental.vector.histogram family
/// of intrinsics. The only update operations currently supported are
/// 'add' and 'sub' where the other term is loop-invariant.
class VPHistogramRecipe : public VPRecipeBase {
/// Opcode of the update operation, currently either add or sub.
unsigned Opcode;
public:
template <typename IterT>
VPHistogramRecipe(unsigned Opcode, iterator_range<IterT> Operands,
DebugLoc DL = {})
: VPRecipeBase(VPDef::VPHistogramSC, Operands, DL), Opcode(Opcode) {}
~VPHistogramRecipe() override = default;
VPHistogramRecipe *clone() override {
return new VPHistogramRecipe(Opcode, operands(), getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPHistogramSC);
/// Produce a vectorized histogram operation.
void execute(VPTransformState &State) override;
/// Return the cost of this VPHistogramRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
unsigned getOpcode() const { return Opcode; }
/// Return the mask operand if one was provided, or a null pointer if all
/// lanes should be executed unconditionally.
VPValue *getMask() const {
return getNumOperands() == 3 ? getOperand(2) : nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for widening select instructions.
struct VPWidenSelectRecipe : public VPSingleDefRecipe {
template <typename IterT>
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands)
: VPSingleDefRecipe(VPDef::VPWidenSelectSC, Operands, &I,
I.getDebugLoc()) {}
~VPWidenSelectRecipe() override = default;
VPWidenSelectRecipe *clone() override {
return new VPWidenSelectRecipe(*cast<SelectInst>(getUnderlyingInstr()),
operands());
}
VP_CLASSOF_IMPL(VPDef::VPWidenSelectSC)
/// Produce a widened version of the select instruction.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenSelectRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
VPValue *getCond() const {
return getOperand(0);
}
bool isInvariantCond() const {
return getCond()->isDefinedOutsideLoopRegions();
}
};
/// A recipe for handling GEP instructions.
class VPWidenGEPRecipe : public VPRecipeWithIRFlags {
bool isPointerLoopInvariant() const {
return getOperand(0)->isDefinedOutsideLoopRegions();
}
bool isIndexLoopInvariant(unsigned I) const {
return getOperand(I + 1)->isDefinedOutsideLoopRegions();
}
bool areAllOperandsInvariant() const {
return all_of(operands(), [](VPValue *Op) {
return Op->isDefinedOutsideLoopRegions();
});
}
public:
template <typename IterT>
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
: VPRecipeWithIRFlags(VPDef::VPWidenGEPSC, Operands, *GEP) {}
~VPWidenGEPRecipe() override = default;
VPWidenGEPRecipe *clone() override {
return new VPWidenGEPRecipe(cast<GetElementPtrInst>(getUnderlyingInstr()),
operands());
}
VP_CLASSOF_IMPL(VPDef::VPWidenGEPSC)
/// Generate the gep nodes.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenGEPRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe to compute the pointers for widened memory accesses of IndexTy
/// in reverse order.
class VPReverseVectorPointerRecipe : public VPRecipeWithIRFlags,
public VPUnrollPartAccessor<2> {
Type *IndexedTy;
public:
VPReverseVectorPointerRecipe(VPValue *Ptr, VPValue *VF, Type *IndexedTy,
bool IsInBounds, DebugLoc DL)
: VPRecipeWithIRFlags(VPDef::VPReverseVectorPointerSC,
ArrayRef<VPValue *>({Ptr, VF}),
GEPFlagsTy(IsInBounds), DL),
IndexedTy(IndexedTy) {}
VP_CLASSOF_IMPL(VPDef::VPReverseVectorPointerSC)
VPValue *getVFValue() { return getOperand(1); }
const VPValue *getVFValue() const { return getOperand(1); }
void execute(VPTransformState &State) override;
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
/// Return the cost of this VPVectorPointerRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
/// Returns true if the recipe only uses the first part of operand \p Op.
bool onlyFirstPartUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
assert(getNumOperands() <= 2 && "must have at most two operands");
return true;
}
VPReverseVectorPointerRecipe *clone() override {
return new VPReverseVectorPointerRecipe(
getOperand(0), getVFValue(), IndexedTy, isInBounds(), getDebugLoc());
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe to compute the pointers for widened memory accesses of IndexTy.
class VPVectorPointerRecipe : public VPRecipeWithIRFlags,
public VPUnrollPartAccessor<1> {
Type *IndexedTy;
public:
VPVectorPointerRecipe(VPValue *Ptr, Type *IndexedTy, bool IsInBounds,
DebugLoc DL)
: VPRecipeWithIRFlags(VPDef::VPVectorPointerSC, ArrayRef<VPValue *>(Ptr),
GEPFlagsTy(IsInBounds), DL),
IndexedTy(IndexedTy) {}
VP_CLASSOF_IMPL(VPDef::VPVectorPointerSC)
void execute(VPTransformState &State) override;
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
/// Returns true if the recipe only uses the first part of operand \p Op.
bool onlyFirstPartUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
assert(getNumOperands() <= 2 && "must have at most two operands");
return true;
}
VPVectorPointerRecipe *clone() override {
return new VPVectorPointerRecipe(getOperand(0), IndexedTy, isInBounds(),
getDebugLoc());
}
/// Return the cost of this VPHeaderPHIRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A pure virtual base class for all recipes modeling header phis, including
/// phis for first order recurrences, pointer inductions and reductions. The
/// start value is the first operand of the recipe and the incoming value from
/// the backedge is the second operand.
///
/// Inductions are modeled using the following sub-classes:
/// * VPCanonicalIVPHIRecipe: Canonical scalar induction of the vector loop,
/// starting at a specified value (zero for the main vector loop, the resume
/// value for the epilogue vector loop) and stepping by 1. The induction
/// controls exiting of the vector loop by comparing against the vector trip
/// count. Produces a single scalar PHI for the induction value per
/// iteration.
/// * VPWidenIntOrFpInductionRecipe: Generates vector values for integer and
/// floating point inductions with arbitrary start and step values. Produces
/// a vector PHI per-part.
/// * VPDerivedIVRecipe: Converts the canonical IV value to the corresponding
/// value of an IV with different start and step values. Produces a single
/// scalar value per iteration
/// * VPScalarIVStepsRecipe: Generates scalar values per-lane based on a
/// canonical or derived induction.
/// * VPWidenPointerInductionRecipe: Generate vector and scalar values for a
/// pointer induction. Produces either a vector PHI per-part or scalar values
/// per-lane based on the canonical induction.
class VPHeaderPHIRecipe : public VPSingleDefRecipe {
protected:
VPHeaderPHIRecipe(unsigned char VPDefID, Instruction *UnderlyingInstr,
VPValue *Start = nullptr, DebugLoc DL = {})
: VPSingleDefRecipe(VPDefID, ArrayRef<VPValue *>(), UnderlyingInstr, DL) {
if (Start)
addOperand(Start);
}
public:
~VPHeaderPHIRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *B) {
return B->getVPDefID() >= VPDef::VPFirstHeaderPHISC &&
B->getVPDefID() <= VPDef::VPLastHeaderPHISC;
}
static inline bool classof(const VPValue *V) {
auto *B = V->getDefiningRecipe();
return B && B->getVPDefID() >= VPRecipeBase::VPFirstHeaderPHISC &&
B->getVPDefID() <= VPRecipeBase::VPLastHeaderPHISC;
}
/// Generate the phi nodes.
void execute(VPTransformState &State) override = 0;
/// Return the cost of this header phi recipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override = 0;
#endif
/// Returns the start value of the phi, if one is set.
VPValue *getStartValue() {
return getNumOperands() == 0 ? nullptr : getOperand(0);
}
VPValue *getStartValue() const {
return getNumOperands() == 0 ? nullptr : getOperand(0);
}
/// Update the start value of the recipe.
void setStartValue(VPValue *V) { setOperand(0, V); }
/// Returns the incoming value from the loop backedge.
virtual VPValue *getBackedgeValue() {
return getOperand(1);
}
/// Returns the backedge value as a recipe. The backedge value is guaranteed
/// to be a recipe.
virtual VPRecipeBase &getBackedgeRecipe() {
return *getBackedgeValue()->getDefiningRecipe();
}
};
/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector values.
class VPWidenIntOrFpInductionRecipe : public VPHeaderPHIRecipe {
PHINode *IV;
TruncInst *Trunc;
const InductionDescriptor &IndDesc;
public:
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
VPValue *VF, const InductionDescriptor &IndDesc)
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, IV, Start), IV(IV),
Trunc(nullptr), IndDesc(IndDesc) {
addOperand(Step);
addOperand(VF);
}
VPWidenIntOrFpInductionRecipe(PHINode *IV, VPValue *Start, VPValue *Step,
VPValue *VF, const InductionDescriptor &IndDesc,
TruncInst *Trunc)
: VPHeaderPHIRecipe(VPDef::VPWidenIntOrFpInductionSC, Trunc, Start),
IV(IV), Trunc(Trunc), IndDesc(IndDesc) {
addOperand(Step);
addOperand(VF);
}
~VPWidenIntOrFpInductionRecipe() override = default;
VPWidenIntOrFpInductionRecipe *clone() override {
return new VPWidenIntOrFpInductionRecipe(
IV, getStartValue(), getStepValue(), getVFValue(), IndDesc, Trunc);
}
VP_CLASSOF_IMPL(VPDef::VPWidenIntOrFpInductionSC)
/// Generate the vectorized and scalarized versions of the phi node as
/// needed by their users.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
VPValue *getBackedgeValue() override {
// TODO: All operands of base recipe must exist and be at same index in
// derived recipe.
llvm_unreachable(
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
}
VPRecipeBase &getBackedgeRecipe() override {
// TODO: All operands of base recipe must exist and be at same index in
// derived recipe.
llvm_unreachable(
"VPWidenIntOrFpInductionRecipe generates its own backedge value");
}
/// Returns the step value of the induction.
VPValue *getStepValue() { return getOperand(1); }
const VPValue *getStepValue() const { return getOperand(1); }
VPValue *getVFValue() { return getOperand(2); }
const VPValue *getVFValue() const { return getOperand(2); }
VPValue *getSplatVFValue() {
// If the recipe has been unrolled (4 operands), return the VPValue for the
// induction increment.
return getNumOperands() == 5 ? getOperand(3) : nullptr;
}
/// Returns the first defined value as TruncInst, if it is one or nullptr
/// otherwise.
TruncInst *getTruncInst() { return Trunc; }
const TruncInst *getTruncInst() const { return Trunc; }
PHINode *getPHINode() { return IV; }
/// Returns the induction descriptor for the recipe.
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
/// Returns true if the induction is canonical, i.e. starting at 0 and
/// incremented by UF * VF (= the original IV is incremented by 1) and has the
/// same type as the canonical induction.
bool isCanonical() const;
/// Returns the scalar type of the induction.
Type *getScalarType() const {
return Trunc ? Trunc->getType() : IV->getType();
}
/// Returns the VPValue representing the value of this induction at
/// the last unrolled part, if it exists. Returns itself if unrolling did not
/// take place.
VPValue *getLastUnrolledPartOperand() {
return getNumOperands() == 5 ? getOperand(4) : this;
}
};
class VPWidenPointerInductionRecipe : public VPHeaderPHIRecipe,
public VPUnrollPartAccessor<3> {
const InductionDescriptor &IndDesc;
bool IsScalarAfterVectorization;
public:
/// Create a new VPWidenPointerInductionRecipe for \p Phi with start value \p
/// Start.
VPWidenPointerInductionRecipe(PHINode *Phi, VPValue *Start, VPValue *Step,
const InductionDescriptor &IndDesc,
bool IsScalarAfterVectorization)
: VPHeaderPHIRecipe(VPDef::VPWidenPointerInductionSC, Phi),
IndDesc(IndDesc),
IsScalarAfterVectorization(IsScalarAfterVectorization) {
addOperand(Start);
addOperand(Step);
}
~VPWidenPointerInductionRecipe() override = default;
VPWidenPointerInductionRecipe *clone() override {
return new VPWidenPointerInductionRecipe(
cast<PHINode>(getUnderlyingInstr()), getOperand(0), getOperand(1),
IndDesc, IsScalarAfterVectorization);
}
VP_CLASSOF_IMPL(VPDef::VPWidenPointerInductionSC)
/// Generate vector values for the pointer induction.
void execute(VPTransformState &State) override;
/// Returns true if only scalar values will be generated.
bool onlyScalarsGenerated(bool IsScalable);
/// Returns the induction descriptor for the recipe.
const InductionDescriptor &getInductionDescriptor() const { return IndDesc; }
/// Returns the VPValue representing the value of this induction at
/// the first unrolled part, if it exists. Returns itself if unrolling did not
/// take place.
VPValue *getFirstUnrolledPartOperand() {
return getUnrollPart(*this) == 0 ? this : getOperand(2);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for handling phis that are widened in the vector loop.
/// In the VPlan native path, all incoming VPValues & VPBasicBlock pairs are
/// managed in the recipe directly.
class VPWidenPHIRecipe : public VPSingleDefRecipe {
/// List of incoming blocks. Only used in the VPlan native path.
SmallVector<VPBasicBlock *, 2> IncomingBlocks;
public:
/// Create a new VPWidenPHIRecipe for \p Phi with start value \p Start.
VPWidenPHIRecipe(PHINode *Phi, VPValue *Start = nullptr)
: VPSingleDefRecipe(VPDef::VPWidenPHISC, ArrayRef<VPValue *>(), Phi) {
if (Start)
addOperand(Start);
}
VPWidenPHIRecipe *clone() override {
llvm_unreachable("cloning not implemented yet");
}
~VPWidenPHIRecipe() override = default;
VP_CLASSOF_IMPL(VPDef::VPWidenPHISC)
/// Generate the phi/select nodes.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Adds a pair (\p IncomingV, \p IncomingBlock) to the phi.
void addIncoming(VPValue *IncomingV, VPBasicBlock *IncomingBlock) {
addOperand(IncomingV);
IncomingBlocks.push_back(IncomingBlock);
}
/// Returns the \p I th incoming VPBasicBlock.
VPBasicBlock *getIncomingBlock(unsigned I) { return IncomingBlocks[I]; }
/// Returns the \p I th incoming VPValue.
VPValue *getIncomingValue(unsigned I) { return getOperand(I); }
};
/// A recipe for handling first-order recurrence phis. The start value is the
/// first operand of the recipe and the incoming value from the backedge is the
/// second operand.
struct VPFirstOrderRecurrencePHIRecipe : public VPHeaderPHIRecipe {
VPFirstOrderRecurrencePHIRecipe(PHINode *Phi, VPValue &Start)
: VPHeaderPHIRecipe(VPDef::VPFirstOrderRecurrencePHISC, Phi, &Start) {}
VP_CLASSOF_IMPL(VPDef::VPFirstOrderRecurrencePHISC)
static inline bool classof(const VPHeaderPHIRecipe *R) {
return R->getVPDefID() == VPDef::VPFirstOrderRecurrencePHISC;
}
VPFirstOrderRecurrencePHIRecipe *clone() override {
return new VPFirstOrderRecurrencePHIRecipe(
cast<PHINode>(getUnderlyingInstr()), *getOperand(0));
}
void execute(VPTransformState &State) override;
/// Return the cost of this first-order recurrence phi recipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for handling reduction phis. The start value is the first operand
/// of the recipe and the incoming value from the backedge is the second
/// operand.
class VPReductionPHIRecipe : public VPHeaderPHIRecipe,
public VPUnrollPartAccessor<2> {
/// Descriptor for the reduction.
const RecurrenceDescriptor &RdxDesc;
/// The phi is part of an in-loop reduction.
bool IsInLoop;
/// The phi is part of an ordered reduction. Requires IsInLoop to be true.
bool IsOrdered;
public:
/// Create a new VPReductionPHIRecipe for the reduction \p Phi described by \p
/// RdxDesc.
VPReductionPHIRecipe(PHINode *Phi, const RecurrenceDescriptor &RdxDesc,
VPValue &Start, bool IsInLoop = false,
bool IsOrdered = false)
: VPHeaderPHIRecipe(VPDef::VPReductionPHISC, Phi, &Start),
RdxDesc(RdxDesc), IsInLoop(IsInLoop), IsOrdered(IsOrdered) {
assert((!IsOrdered || IsInLoop) && "IsOrdered requires IsInLoop");
}
~VPReductionPHIRecipe() override = default;
VPReductionPHIRecipe *clone() override {
auto *R =
new VPReductionPHIRecipe(cast<PHINode>(getUnderlyingInstr()), RdxDesc,
*getOperand(0), IsInLoop, IsOrdered);
R->addOperand(getBackedgeValue());
return R;
}
VP_CLASSOF_IMPL(VPDef::VPReductionPHISC)
static inline bool classof(const VPHeaderPHIRecipe *R) {
return R->getVPDefID() == VPDef::VPReductionPHISC;
}
/// Generate the phi/select nodes.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
const RecurrenceDescriptor &getRecurrenceDescriptor() const {
return RdxDesc;
}
/// Returns true, if the phi is part of an ordered reduction.
bool isOrdered() const { return IsOrdered; }
/// Returns true, if the phi is part of an in-loop reduction.
bool isInLoop() const { return IsInLoop; }
};
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
/// instructions.
class VPBlendRecipe : public VPSingleDefRecipe {
public:
/// The blend operation is a User of the incoming values and of their
/// respective masks, ordered [I0, M0, I1, M1, I2, M2, ...]. Note that M0 can
/// be omitted (implied by passing an odd number of operands) in which case
/// all other incoming values are merged into it.
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
: VPSingleDefRecipe(VPDef::VPBlendSC, Operands, Phi, Phi->getDebugLoc()) {
assert(Operands.size() > 0 && "Expected at least one operand!");
}
VPBlendRecipe *clone() override {
SmallVector<VPValue *> Ops(operands());
return new VPBlendRecipe(cast<PHINode>(getUnderlyingValue()), Ops);
}
VP_CLASSOF_IMPL(VPDef::VPBlendSC)
/// A normalized blend is one that has an odd number of operands, whereby the
/// first operand does not have an associated mask.
bool isNormalized() const { return getNumOperands() % 2; }
/// Return the number of incoming values, taking into account when normalized
/// the first incoming value will have no mask.
unsigned getNumIncomingValues() const {
return (getNumOperands() + isNormalized()) / 2;
}
/// Return incoming value number \p Idx.
VPValue *getIncomingValue(unsigned Idx) const {
return Idx == 0 ? getOperand(0) : getOperand(Idx * 2 - isNormalized());
}
/// Return mask number \p Idx.
VPValue *getMask(unsigned Idx) const {
assert((Idx > 0 || !isNormalized()) && "First index has no mask!");
return Idx == 0 ? getOperand(1) : getOperand(Idx * 2 + !isNormalized());
}
/// Generate the phi/select nodes.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenMemoryRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
// Recursing through Blend recipes only, must terminate at header phi's the
// latest.
return all_of(users(),
[this](VPUser *U) { return U->onlyFirstLaneUsed(this); });
}
};
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles. The first operand of a
/// VPInterleave recipe is the address, followed by the stored values, followed
/// by an optional mask.
class VPInterleaveRecipe : public VPRecipeBase {
const InterleaveGroup<Instruction> *IG;
/// Indicates if the interleave group is in a conditional block and requires a
/// mask.
bool HasMask = false;
/// Indicates if gaps between members of the group need to be masked out or if
/// unusued gaps can be loaded speculatively.
bool NeedsMaskForGaps = false;
public:
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
ArrayRef<VPValue *> StoredValues, VPValue *Mask,
bool NeedsMaskForGaps)
: VPRecipeBase(VPDef::VPInterleaveSC, {Addr}), IG(IG),
NeedsMaskForGaps(NeedsMaskForGaps) {
for (unsigned i = 0; i < IG->getFactor(); ++i)
if (Instruction *I = IG->getMember(i)) {
if (I->getType()->isVoidTy())
continue;
new VPValue(I, this);
}
for (auto *SV : StoredValues)
addOperand(SV);
if (Mask) {
HasMask = true;
addOperand(Mask);
}
}
~VPInterleaveRecipe() override = default;
VPInterleaveRecipe *clone() override {
return new VPInterleaveRecipe(IG, getAddr(), getStoredValues(), getMask(),
NeedsMaskForGaps);
}
VP_CLASSOF_IMPL(VPDef::VPInterleaveSC)
/// Return the address accessed by this recipe.
VPValue *getAddr() const {
return getOperand(0); // Address is the 1st, mandatory operand.
}
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
// Mask is optional and therefore the last, currently 2nd operand.
return HasMask ? getOperand(getNumOperands() - 1) : nullptr;
}
/// Return the VPValues stored by this interleave group. If it is a load
/// interleave group, return an empty ArrayRef.
ArrayRef<VPValue *> getStoredValues() const {
// The first operand is the address, followed by the stored values, followed
// by an optional mask.
return ArrayRef<VPValue *>(op_begin(), getNumOperands())
.slice(1, getNumStoreOperands());
}
/// Generate the wide load or store, and shuffles.
void execute(VPTransformState &State) override;
/// Return the cost of this VPInterleaveRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
/// Returns the number of stored operands of this interleave group. Returns 0
/// for load interleave groups.
unsigned getNumStoreOperands() const {
return getNumOperands() - (HasMask ? 2 : 1);
}
/// The recipe only uses the first lane of the address.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return Op == getAddr() && !llvm::is_contained(getStoredValues(), Op);
}
Instruction *getInsertPos() const { return IG->getInsertPos(); }
};
/// A recipe to represent inloop reduction operations, performing a reduction on
/// a vector operand into a scalar value, and adding the result to a chain.
/// The Operands are {ChainOp, VecOp, [Condition]}.
class VPReductionRecipe : public VPSingleDefRecipe {
/// The recurrence decriptor for the reduction in question.
const RecurrenceDescriptor &RdxDesc;
bool IsOrdered;
/// Whether the reduction is conditional.
bool IsConditional = false;
protected:
VPReductionRecipe(const unsigned char SC, const RecurrenceDescriptor &R,
Instruction *I, ArrayRef<VPValue *> Operands,
VPValue *CondOp, bool IsOrdered)
: VPSingleDefRecipe(SC, Operands, I), RdxDesc(R), IsOrdered(IsOrdered) {
if (CondOp) {
IsConditional = true;
addOperand(CondOp);
}
}
public:
VPReductionRecipe(const RecurrenceDescriptor &R, Instruction *I,
VPValue *ChainOp, VPValue *VecOp, VPValue *CondOp,
bool IsOrdered)
: VPReductionRecipe(VPDef::VPReductionSC, R, I,
ArrayRef<VPValue *>({ChainOp, VecOp}), CondOp,
IsOrdered) {}
~VPReductionRecipe() override = default;
VPReductionRecipe *clone() override {
return new VPReductionRecipe(RdxDesc, getUnderlyingInstr(), getChainOp(),
getVecOp(), getCondOp(), IsOrdered);
}
static inline bool classof(const VPRecipeBase *R) {
return R->getVPDefID() == VPRecipeBase::VPReductionSC ||
R->getVPDefID() == VPRecipeBase::VPReductionEVLSC;
}
static inline bool classof(const VPUser *U) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && classof(R);
}
/// Generate the reduction in the loop
void execute(VPTransformState &State) override;
/// Return the cost of VPReductionRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Return the recurrence decriptor for the in-loop reduction.
const RecurrenceDescriptor &getRecurrenceDescriptor() const {
return RdxDesc;
}
/// Return true if the in-loop reduction is ordered.
bool isOrdered() const { return IsOrdered; };
/// Return true if the in-loop reduction is conditional.
bool isConditional() const { return IsConditional; };
/// The VPValue of the scalar Chain being accumulated.
VPValue *getChainOp() const { return getOperand(0); }
/// The VPValue of the vector value to be reduced.
VPValue *getVecOp() const { return getOperand(1); }
/// The VPValue of the condition for the block.
VPValue *getCondOp() const {
return isConditional() ? getOperand(getNumOperands() - 1) : nullptr;
}
};
/// A recipe to represent inloop reduction operations with vector-predication
/// intrinsics, performing a reduction on a vector operand with the explicit
/// vector length (EVL) into a scalar value, and adding the result to a chain.
/// The Operands are {ChainOp, VecOp, EVL, [Condition]}.
class VPReductionEVLRecipe : public VPReductionRecipe {
public:
VPReductionEVLRecipe(VPReductionRecipe &R, VPValue &EVL, VPValue *CondOp)
: VPReductionRecipe(
VPDef::VPReductionEVLSC, R.getRecurrenceDescriptor(),
cast_or_null<Instruction>(R.getUnderlyingValue()),
ArrayRef<VPValue *>({R.getChainOp(), R.getVecOp(), &EVL}), CondOp,
R.isOrdered()) {}
~VPReductionEVLRecipe() override = default;
VPReductionEVLRecipe *clone() override {
llvm_unreachable("cloning not implemented yet");
}
VP_CLASSOF_IMPL(VPDef::VPReductionEVLSC)
/// Generate the reduction in the loop
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// The VPValue of the explicit vector length.
VPValue *getEVL() const { return getOperand(2); }
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return Op == getEVL();
}
};
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeWithIRFlags {
/// Indicator if only a single replica per lane is needed.
bool IsUniform;
/// Indicator if the replicas are also predicated.
bool IsPredicated;
public:
template <typename IterT>
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
bool IsUniform, VPValue *Mask = nullptr)
: VPRecipeWithIRFlags(VPDef::VPReplicateSC, Operands, *I),
IsUniform(IsUniform), IsPredicated(Mask) {
if (Mask)
addOperand(Mask);
}
~VPReplicateRecipe() override = default;
VPReplicateRecipe *clone() override {
auto *Copy =
new VPReplicateRecipe(getUnderlyingInstr(), operands(), IsUniform,
isPredicated() ? getMask() : nullptr);
Copy->transferFlags(*this);
return Copy;
}
VP_CLASSOF_IMPL(VPDef::VPReplicateSC)
/// Generate replicas of the desired Ingredient. Replicas will be generated
/// for all parts and lanes unless a specific part and lane are specified in
/// the \p State.
void execute(VPTransformState &State) override;
/// Return the cost of this VPReplicateRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
bool isUniform() const { return IsUniform; }
bool isPredicated() const { return IsPredicated; }
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return isUniform();
}
/// Returns true if the recipe uses scalars of operand \p Op.
bool usesScalars(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
/// Returns true if the recipe is used by a widened recipe via an intervening
/// VPPredInstPHIRecipe. In this case, the scalar values should also be packed
/// in a vector.
bool shouldPack() const;
/// Return the mask of a predicated VPReplicateRecipe.
VPValue *getMask() {
assert(isPredicated() && "Trying to get the mask of a unpredicated recipe");
return getOperand(getNumOperands() - 1);
}
unsigned getOpcode() const { return getUnderlyingInstr()->getOpcode(); }
};
/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase {
public:
VPBranchOnMaskRecipe(VPValue *BlockInMask)
: VPRecipeBase(VPDef::VPBranchOnMaskSC, {}) {
if (BlockInMask) // nullptr means all-one mask.
addOperand(BlockInMask);
}
VPBranchOnMaskRecipe *clone() override {
return new VPBranchOnMaskRecipe(getOperand(0));
}
VP_CLASSOF_IMPL(VPDef::VPBranchOnMaskSC)
/// Generate the extraction of the appropriate bit from the block mask and the
/// conditional branch.
void execute(VPTransformState &State) override;
/// Return the cost of this VPBranchOnMaskRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override {
O << Indent << "BRANCH-ON-MASK ";
if (VPValue *Mask = getMask())
Mask->printAsOperand(O, SlotTracker);
else
O << " All-One";
}
#endif
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
// Mask is optional.
return getNumOperands() == 1 ? getOperand(0) : nullptr;
}
/// Returns true if the recipe uses scalars of operand \p Op.
bool usesScalars(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPSingleDefRecipe {
public:
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
/// nodes after merging back from a Branch-on-Mask.
VPPredInstPHIRecipe(VPValue *PredV)
: VPSingleDefRecipe(VPDef::VPPredInstPHISC, PredV) {}
~VPPredInstPHIRecipe() override = default;
VPPredInstPHIRecipe *clone() override {
return new VPPredInstPHIRecipe(getOperand(0));
}
VP_CLASSOF_IMPL(VPDef::VPPredInstPHISC)
/// Generates phi nodes for live-outs (from a replicate region) as needed to
/// retain SSA form.
void execute(VPTransformState &State) override;
/// Return the cost of this VPPredInstPHIRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe uses scalars of operand \p Op.
bool usesScalars(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// A common base class for widening memory operations. An optional mask can be
/// provided as the last operand.
class VPWidenMemoryRecipe : public VPRecipeBase {
protected:
Instruction &Ingredient;
/// Whether the accessed addresses are consecutive.
bool Consecutive;
/// Whether the consecutive accessed addresses are in reverse order.
bool Reverse;
/// Whether the memory access is masked.
bool IsMasked = false;
void setMask(VPValue *Mask) {
assert(!IsMasked && "cannot re-set mask");
if (!Mask)
return;
addOperand(Mask);
IsMasked = true;
}
VPWidenMemoryRecipe(const char unsigned SC, Instruction &I,
std::initializer_list<VPValue *> Operands,
bool Consecutive, bool Reverse, DebugLoc DL)
: VPRecipeBase(SC, Operands, DL), Ingredient(I), Consecutive(Consecutive),
Reverse(Reverse) {
assert((Consecutive || !Reverse) && "Reverse implies consecutive");
}
public:
VPWidenMemoryRecipe *clone() override {
llvm_unreachable("cloning not supported");
}
static inline bool classof(const VPRecipeBase *R) {
return R->getVPDefID() == VPRecipeBase::VPWidenLoadSC ||
R->getVPDefID() == VPRecipeBase::VPWidenStoreSC ||
R->getVPDefID() == VPRecipeBase::VPWidenLoadEVLSC ||
R->getVPDefID() == VPRecipeBase::VPWidenStoreEVLSC;
}
static inline bool classof(const VPUser *U) {
auto *R = dyn_cast<VPRecipeBase>(U);
return R && classof(R);
}
/// Return whether the loaded-from / stored-to addresses are consecutive.
bool isConsecutive() const { return Consecutive; }
/// Return whether the consecutive loaded/stored addresses are in reverse
/// order.
bool isReverse() const { return Reverse; }
/// Return the address accessed by this recipe.
VPValue *getAddr() const { return getOperand(0); }
/// Returns true if the recipe is masked.
bool isMasked() const { return IsMasked; }
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
// Mask is optional and therefore the last operand.
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
}
/// Generate the wide load/store.
void execute(VPTransformState &State) override {
llvm_unreachable("VPWidenMemoryRecipe should not be instantiated.");
}
/// Return the cost of this VPWidenMemoryRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
Instruction &getIngredient() const { return Ingredient; }
};
/// A recipe for widening load operations, using the address to load from and an
/// optional mask.
struct VPWidenLoadRecipe final : public VPWidenMemoryRecipe, public VPValue {
VPWidenLoadRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask,
bool Consecutive, bool Reverse, DebugLoc DL)
: VPWidenMemoryRecipe(VPDef::VPWidenLoadSC, Load, {Addr}, Consecutive,
Reverse, DL),
VPValue(this, &Load) {
setMask(Mask);
}
VPWidenLoadRecipe *clone() override {
return new VPWidenLoadRecipe(cast<LoadInst>(Ingredient), getAddr(),
getMask(), Consecutive, Reverse,
getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPWidenLoadSC);
/// Generate a wide load or gather.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
// Widened, consecutive loads operations only demand the first lane of
// their address.
return Op == getAddr() && isConsecutive();
}
};
/// A recipe for widening load operations with vector-predication intrinsics,
/// using the address to load from, the explicit vector length and an optional
/// mask.
struct VPWidenLoadEVLRecipe final : public VPWidenMemoryRecipe, public VPValue {
VPWidenLoadEVLRecipe(VPWidenLoadRecipe &L, VPValue &EVL, VPValue *Mask)
: VPWidenMemoryRecipe(VPDef::VPWidenLoadEVLSC, L.getIngredient(),
{L.getAddr(), &EVL}, L.isConsecutive(),
L.isReverse(), L.getDebugLoc()),
VPValue(this, &getIngredient()) {
setMask(Mask);
}
VP_CLASSOF_IMPL(VPDef::VPWidenLoadEVLSC)
/// Return the EVL operand.
VPValue *getEVL() const { return getOperand(1); }
/// Generate the wide load or gather.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenLoadEVLRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
// Widened loads only demand the first lane of EVL and consecutive loads
// only demand the first lane of their address.
return Op == getEVL() || (Op == getAddr() && isConsecutive());
}
};
/// A recipe for widening store operations, using the stored value, the address
/// to store to and an optional mask.
struct VPWidenStoreRecipe final : public VPWidenMemoryRecipe {
VPWidenStoreRecipe(StoreInst &Store, VPValue *Addr, VPValue *StoredVal,
VPValue *Mask, bool Consecutive, bool Reverse, DebugLoc DL)
: VPWidenMemoryRecipe(VPDef::VPWidenStoreSC, Store, {Addr, StoredVal},
Consecutive, Reverse, DL) {
setMask(Mask);
}
VPWidenStoreRecipe *clone() override {
return new VPWidenStoreRecipe(cast<StoreInst>(Ingredient), getAddr(),
getStoredValue(), getMask(), Consecutive,
Reverse, getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPWidenStoreSC);
/// Return the value stored by this recipe.
VPValue *getStoredValue() const { return getOperand(1); }
/// Generate a wide store or scatter.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
// Widened, consecutive stores only demand the first lane of their address,
// unless the same operand is also stored.
return Op == getAddr() && isConsecutive() && Op != getStoredValue();
}
};
/// A recipe for widening store operations with vector-predication intrinsics,
/// using the value to store, the address to store to, the explicit vector
/// length and an optional mask.
struct VPWidenStoreEVLRecipe final : public VPWidenMemoryRecipe {
VPWidenStoreEVLRecipe(VPWidenStoreRecipe &S, VPValue &EVL, VPValue *Mask)
: VPWidenMemoryRecipe(VPDef::VPWidenStoreEVLSC, S.getIngredient(),
{S.getAddr(), S.getStoredValue(), &EVL},
S.isConsecutive(), S.isReverse(), S.getDebugLoc()) {
setMask(Mask);
}
VP_CLASSOF_IMPL(VPDef::VPWidenStoreEVLSC)
/// Return the address accessed by this recipe.
VPValue *getStoredValue() const { return getOperand(1); }
/// Return the EVL operand.
VPValue *getEVL() const { return getOperand(2); }
/// Generate the wide store or scatter.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenStoreEVLRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
if (Op == getEVL()) {
assert(getStoredValue() != Op && "unexpected store of EVL");
return true;
}
// Widened, consecutive memory operations only demand the first lane of
// their address, unless the same operand is also stored. That latter can
// happen with opaque pointers.
return Op == getAddr() && isConsecutive() && Op != getStoredValue();
}
};
/// Recipe to expand a SCEV expression.
class VPExpandSCEVRecipe : public VPSingleDefRecipe {
const SCEV *Expr;
ScalarEvolution &SE;
public:
VPExpandSCEVRecipe(const SCEV *Expr, ScalarEvolution &SE)
: VPSingleDefRecipe(VPDef::VPExpandSCEVSC, {}), Expr(Expr), SE(SE) {}
~VPExpandSCEVRecipe() override = default;
VPExpandSCEVRecipe *clone() override {
return new VPExpandSCEVRecipe(Expr, SE);
}
VP_CLASSOF_IMPL(VPDef::VPExpandSCEVSC)
/// Generate a canonical vector induction variable of the vector loop, with
void execute(VPTransformState &State) override;
/// Return the cost of this VPExpandSCEVRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
const SCEV *getSCEV() const { return Expr; }
};
/// Canonical scalar induction phi of the vector loop. Starting at the specified
/// start value (either 0 or the resume value when vectorizing the epilogue
/// loop). VPWidenCanonicalIVRecipe represents the vector version of the
/// canonical induction variable.
class VPCanonicalIVPHIRecipe : public VPHeaderPHIRecipe {
public:
VPCanonicalIVPHIRecipe(VPValue *StartV, DebugLoc DL)
: VPHeaderPHIRecipe(VPDef::VPCanonicalIVPHISC, nullptr, StartV, DL) {}
~VPCanonicalIVPHIRecipe() override = default;
VPCanonicalIVPHIRecipe *clone() override {
auto *R = new VPCanonicalIVPHIRecipe(getOperand(0), getDebugLoc());
R->addOperand(getBackedgeValue());
return R;
}
VP_CLASSOF_IMPL(VPDef::VPCanonicalIVPHISC)
static inline bool classof(const VPHeaderPHIRecipe *D) {
return D->getVPDefID() == VPDef::VPCanonicalIVPHISC;
}
/// Generate the canonical scalar induction phi of the vector loop.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
/// Returns the scalar type of the induction.
Type *getScalarType() const {
return getStartValue()->getLiveInIRValue()->getType();
}
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
/// Returns true if the recipe only uses the first part of operand \p Op.
bool onlyFirstPartUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
/// Check if the induction described by \p Kind, /p Start and \p Step is
/// canonical, i.e. has the same start and step (of 1) as the canonical IV.
bool isCanonical(InductionDescriptor::InductionKind Kind, VPValue *Start,
VPValue *Step) const;
/// Return the cost of this VPCanonicalIVPHIRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// For now, match the behavior of the legacy cost model.
return 0;
}
};
/// A recipe for generating the active lane mask for the vector loop that is
/// used to predicate the vector operations.
/// TODO: It would be good to use the existing VPWidenPHIRecipe instead and
/// remove VPActiveLaneMaskPHIRecipe.
class VPActiveLaneMaskPHIRecipe : public VPHeaderPHIRecipe {
public:
VPActiveLaneMaskPHIRecipe(VPValue *StartMask, DebugLoc DL)
: VPHeaderPHIRecipe(VPDef::VPActiveLaneMaskPHISC, nullptr, StartMask,
DL) {}
~VPActiveLaneMaskPHIRecipe() override = default;
VPActiveLaneMaskPHIRecipe *clone() override {
auto *R = new VPActiveLaneMaskPHIRecipe(getOperand(0), getDebugLoc());
if (getNumOperands() == 2)
R->addOperand(getOperand(1));
return R;
}
VP_CLASSOF_IMPL(VPDef::VPActiveLaneMaskPHISC)
static inline bool classof(const VPHeaderPHIRecipe *D) {
return D->getVPDefID() == VPDef::VPActiveLaneMaskPHISC;
}
/// Generate the active lane mask phi of the vector loop.
void execute(VPTransformState &State) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for generating the phi node for the current index of elements,
/// adjusted in accordance with EVL value. It starts at the start value of the
/// canonical induction and gets incremented by EVL in each iteration of the
/// vector loop.
class VPEVLBasedIVPHIRecipe : public VPHeaderPHIRecipe {
public:
VPEVLBasedIVPHIRecipe(VPValue *StartIV, DebugLoc DL)
: VPHeaderPHIRecipe(VPDef::VPEVLBasedIVPHISC, nullptr, StartIV, DL) {}
~VPEVLBasedIVPHIRecipe() override = default;
VPEVLBasedIVPHIRecipe *clone() override {
llvm_unreachable("cloning not implemented yet");
}
VP_CLASSOF_IMPL(VPDef::VPEVLBasedIVPHISC)
static inline bool classof(const VPHeaderPHIRecipe *D) {
return D->getVPDefID() == VPDef::VPEVLBasedIVPHISC;
}
/// Generate phi for handling IV based on EVL over iterations correctly.
/// TODO: investigate if it can share the code with VPCanonicalIVPHIRecipe.
void execute(VPTransformState &State) override;
/// Return the cost of this VPEVLBasedIVPHIRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// For now, match the behavior of the legacy cost model.
return 0;
}
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A Recipe for widening the canonical induction variable of the vector loop.
class VPWidenCanonicalIVRecipe : public VPSingleDefRecipe,
public VPUnrollPartAccessor<1> {
public:
VPWidenCanonicalIVRecipe(VPCanonicalIVPHIRecipe *CanonicalIV)
: VPSingleDefRecipe(VPDef::VPWidenCanonicalIVSC, {CanonicalIV}) {}
~VPWidenCanonicalIVRecipe() override = default;
VPWidenCanonicalIVRecipe *clone() override {
return new VPWidenCanonicalIVRecipe(
cast<VPCanonicalIVPHIRecipe>(getOperand(0)));
}
VP_CLASSOF_IMPL(VPDef::VPWidenCanonicalIVSC)
/// Generate a canonical vector induction variable of the vector loop, with
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
/// step = <VF*UF, VF*UF, ..., VF*UF>.
void execute(VPTransformState &State) override;
/// Return the cost of this VPWidenCanonicalIVPHIRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for converting the input value \p IV value to the corresponding
/// value of an IV with different start and step values, using Start + IV *
/// Step.
class VPDerivedIVRecipe : public VPSingleDefRecipe {
/// Kind of the induction.
const InductionDescriptor::InductionKind Kind;
/// If not nullptr, the floating point induction binary operator. Must be set
/// for floating point inductions.
const FPMathOperator *FPBinOp;
public:
VPDerivedIVRecipe(const InductionDescriptor &IndDesc, VPValue *Start,
VPCanonicalIVPHIRecipe *CanonicalIV, VPValue *Step)
: VPDerivedIVRecipe(
IndDesc.getKind(),
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp()),
Start, CanonicalIV, Step) {}
VPDerivedIVRecipe(InductionDescriptor::InductionKind Kind,
const FPMathOperator *FPBinOp, VPValue *Start, VPValue *IV,
VPValue *Step)
: VPSingleDefRecipe(VPDef::VPDerivedIVSC, {Start, IV, Step}), Kind(Kind),
FPBinOp(FPBinOp) {}
~VPDerivedIVRecipe() override = default;
VPDerivedIVRecipe *clone() override {
return new VPDerivedIVRecipe(Kind, FPBinOp, getStartValue(), getOperand(1),
getStepValue());
}
VP_CLASSOF_IMPL(VPDef::VPDerivedIVSC)
/// Generate the transformed value of the induction at offset StartValue (1.
/// operand) + IV (2. operand) * StepValue (3, operand).
void execute(VPTransformState &State) override;
/// Return the cost of this VPDerivedIVRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
Type *getScalarType() const {
return getStartValue()->getLiveInIRValue()->getType();
}
VPValue *getStartValue() const { return getOperand(0); }
VPValue *getStepValue() const { return getOperand(2); }
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their scalar values.
class VPScalarIVStepsRecipe : public VPRecipeWithIRFlags,
public VPUnrollPartAccessor<2> {
Instruction::BinaryOps InductionOpcode;
public:
VPScalarIVStepsRecipe(VPValue *IV, VPValue *Step,
Instruction::BinaryOps Opcode, FastMathFlags FMFs)
: VPRecipeWithIRFlags(VPDef::VPScalarIVStepsSC,
ArrayRef<VPValue *>({IV, Step}), FMFs),
InductionOpcode(Opcode) {}
VPScalarIVStepsRecipe(const InductionDescriptor &IndDesc, VPValue *IV,
VPValue *Step)
: VPScalarIVStepsRecipe(
IV, Step, IndDesc.getInductionOpcode(),
dyn_cast_or_null<FPMathOperator>(IndDesc.getInductionBinOp())
? IndDesc.getInductionBinOp()->getFastMathFlags()
: FastMathFlags()) {}
~VPScalarIVStepsRecipe() override = default;
VPScalarIVStepsRecipe *clone() override {
return new VPScalarIVStepsRecipe(
getOperand(0), getOperand(1), InductionOpcode,
hasFastMathFlags() ? getFastMathFlags() : FastMathFlags());
}
VP_CLASSOF_IMPL(VPDef::VPScalarIVStepsSC)
/// Generate the scalarized versions of the phi node as needed by their users.
void execute(VPTransformState &State) override;
/// Return the cost of this VPScalarIVStepsRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override {
// TODO: Compute accurate cost after retiring the legacy cost model.
return 0;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
VPValue *getStepValue() const { return getOperand(1); }
/// Returns true if the recipe only uses the first lane of operand \p Op.
bool onlyFirstLaneUsed(const VPValue *Op) const override {
assert(is_contained(operands(), Op) &&
"Op must be an operand of the recipe");
return true;
}
};
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions. All PHI-like recipes must come before any non-PHI recipes.
class VPBasicBlock : public VPBlockBase {
public:
using RecipeListTy = iplist<VPRecipeBase>;
protected:
/// The VPRecipes held in the order of output instructions to generate.
RecipeListTy Recipes;
VPBasicBlock(const unsigned char BlockSC, const Twine &Name = "")
: VPBlockBase(BlockSC, Name.str()) {}
public:
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
: VPBlockBase(VPBasicBlockSC, Name.str()) {
if (Recipe)
appendRecipe(Recipe);
}
~VPBasicBlock() override {
while (!Recipes.empty())
Recipes.pop_back();
}
/// Instruction iterators...
using iterator = RecipeListTy::iterator;
using const_iterator = RecipeListTy::const_iterator;
using reverse_iterator = RecipeListTy::reverse_iterator;
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
//===--------------------------------------------------------------------===//
/// Recipe iterator methods
///
inline iterator begin() { return Recipes.begin(); }
inline const_iterator begin() const { return Recipes.begin(); }
inline iterator end() { return Recipes.end(); }
inline const_iterator end() const { return Recipes.end(); }
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
inline reverse_iterator rend() { return Recipes.rend(); }
inline const_reverse_iterator rend() const { return Recipes.rend(); }
inline size_t size() const { return Recipes.size(); }
inline bool empty() const { return Recipes.empty(); }
inline const VPRecipeBase &front() const { return Recipes.front(); }
inline VPRecipeBase &front() { return Recipes.front(); }
inline const VPRecipeBase &back() const { return Recipes.back(); }
inline VPRecipeBase &back() { return Recipes.back(); }
/// Returns a reference to the list of recipes.
RecipeListTy &getRecipeList() { return Recipes; }
/// Returns a pointer to a member of the recipe list.
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
return &VPBasicBlock::Recipes;
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC ||
V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC;
}
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
assert(Recipe && "No recipe to append.");
assert(!Recipe->Parent && "Recipe already in VPlan");
Recipe->Parent = this;
Recipes.insert(InsertPt, Recipe);
}
/// Augment the existing recipes of a VPBasicBlock with an additional
/// \p Recipe as the last recipe.
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
/// The method which generates the output IR instructions that correspond to
/// this VPBasicBlock, thereby "executing" the VPlan.
void execute(VPTransformState *State) override;
/// Return the cost of this VPBasicBlock.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override;
/// Return the position of the first non-phi node recipe in the block.
iterator getFirstNonPhi();
/// Returns an iterator range over the PHI-like recipes in the block.
iterator_range<iterator> phis() {
return make_range(begin(), getFirstNonPhi());
}
void dropAllReferences(VPValue *NewValue) override;
/// Split current block at \p SplitAt by inserting a new block between the
/// current block and its successors and moving all recipes starting at
/// SplitAt to the new block. Returns the new block.
VPBasicBlock *splitAt(iterator SplitAt);
VPRegionBlock *getEnclosingLoopRegion();
const VPRegionBlock *getEnclosingLoopRegion() const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print this VPBsicBlock to \p O, prefixing all lines with \p Indent. \p
/// SlotTracker is used to print unnamed VPValue's using consequtive numbers.
///
/// Note that the numbering is applied to the whole VPlan, so printing
/// individual blocks is consistent with the whole VPlan printing.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
using VPBlockBase::print; // Get the print(raw_stream &O) version.
#endif
/// If the block has multiple successors, return the branch recipe terminating
/// the block. If there are no or only a single successor, return nullptr;
VPRecipeBase *getTerminator();
const VPRecipeBase *getTerminator() const;
/// Returns true if the block is exiting it's parent region.
bool isExiting() const;
/// Clone the current block and it's recipes, without updating the operands of
/// the cloned recipes.
VPBasicBlock *clone() override {
auto *NewBlock = new VPBasicBlock(getName());
for (VPRecipeBase &R : *this)
NewBlock->appendRecipe(R.clone());
return NewBlock;
}
protected:
/// Execute the recipes in the IR basic block \p BB.
void executeRecipes(VPTransformState *State, BasicBlock *BB);
/// Connect the VPBBs predecessors' in the VPlan CFG to the IR basic block
/// generated for this VPBB.
void connectToPredecessors(VPTransformState::CFGState &CFG);
private:
/// Create an IR BasicBlock to hold the output instructions generated by this
/// VPBasicBlock, and return it. Update the CFGState accordingly.
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};
/// A special type of VPBasicBlock that wraps an existing IR basic block.
/// Recipes of the block get added before the first non-phi instruction in the
/// wrapped block.
/// Note: At the moment, VPIRBasicBlock can only be used to wrap VPlan's
/// preheader block.
class VPIRBasicBlock : public VPBasicBlock {
BasicBlock *IRBB;
public:
VPIRBasicBlock(BasicBlock *IRBB)
: VPBasicBlock(VPIRBasicBlockSC,
(Twine("ir-bb<") + IRBB->getName() + Twine(">")).str()),
IRBB(IRBB) {}
~VPIRBasicBlock() override {}
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPIRBasicBlockSC;
}
/// Create a VPIRBasicBlock from \p IRBB containing VPIRInstructions for all
/// instructions in \p IRBB, except its terminator which is managed in VPlan.
static VPIRBasicBlock *fromBasicBlock(BasicBlock *IRBB);
/// The method which generates the output IR instructions that correspond to
/// this VPBasicBlock, thereby "executing" the VPlan.
void execute(VPTransformState *State) override;
VPIRBasicBlock *clone() override {
auto *NewBlock = new VPIRBasicBlock(IRBB);
for (VPRecipeBase &R : Recipes)
NewBlock->appendRecipe(R.clone());
return NewBlock;
}
BasicBlock *getIRBasicBlock() const { return IRBB; }
};
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exiting subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Entry;
/// Hold the Single Exiting block of the SESE region modelled by the
/// VPRegionBlock.
VPBlockBase *Exiting;
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool IsReplicator;
public:
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exiting,
const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exiting(Exiting),
IsReplicator(IsReplicator) {
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
assert(Exiting->getSuccessors().empty() && "Exit block has successors.");
Entry->setParent(this);
Exiting->setParent(this);
}
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exiting(nullptr),
IsReplicator(IsReplicator) {}
~VPRegionBlock() override {
if (Entry) {
VPValue DummyValue;
Entry->dropAllReferences(&DummyValue);
deleteCFG(Entry);
}
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
}
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *getEntry() { return Entry; }
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
/// EntryBlock must have no predecessors.
void setEntry(VPBlockBase *EntryBlock) {
assert(EntryBlock->getPredecessors().empty() &&
"Entry block cannot have predecessors.");
Entry = EntryBlock;
EntryBlock->setParent(this);
}
const VPBlockBase *getExiting() const { return Exiting; }
VPBlockBase *getExiting() { return Exiting; }
/// Set \p ExitingBlock as the exiting VPBlockBase of this VPRegionBlock. \p
/// ExitingBlock must have no successors.
void setExiting(VPBlockBase *ExitingBlock) {
assert(ExitingBlock->getSuccessors().empty() &&
"Exit block cannot have successors.");
Exiting = ExitingBlock;
ExitingBlock->setParent(this);
}
/// Returns the pre-header VPBasicBlock of the loop region.
VPBasicBlock *getPreheaderVPBB() {
assert(!isReplicator() && "should only get pre-header of loop regions");
return getSinglePredecessor()->getExitingBasicBlock();
}
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool isReplicator() const { return IsReplicator; }
/// The method which generates the output IR instructions that correspond to
/// this VPRegionBlock, thereby "executing" the VPlan.
void execute(VPTransformState *State) override;
// Return the cost of this region.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx) override;
void dropAllReferences(VPValue *NewValue) override;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print this VPRegionBlock to \p O (recursively), prefixing all lines with
/// \p Indent. \p SlotTracker is used to print unnamed VPValue's using
/// consequtive numbers.
///
/// Note that the numbering is applied to the whole VPlan, so printing
/// individual regions is consistent with the whole VPlan printing.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
using VPBlockBase::print; // Get the print(raw_stream &O) version.
#endif
/// Clone all blocks in the single-entry single-exit region of the block and
/// their recipes without updating the operands of the cloned recipes.
VPRegionBlock *clone() override;
};
/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBasicBlock.
class VPlan {
friend class VPlanPrinter;
friend class VPSlotTracker;
/// Hold the single entry to the Hierarchical CFG of the VPlan, i.e. the
/// preheader of the vector loop.
VPBasicBlock *Entry;
/// VPBasicBlock corresponding to the original preheader. Used to place
/// VPExpandSCEV recipes for expressions used during skeleton creation and the
/// rest of VPlan execution.
VPBasicBlock *Preheader;
/// VPIRBasicBlock wrapping the header of the original scalar loop.
VPIRBasicBlock *ScalarHeader;
/// Holds the VFs applicable to this VPlan.
SmallSetVector<ElementCount, 2> VFs;
/// Holds the UFs applicable to this VPlan. If empty, the VPlan is valid for
/// any UF.
SmallSetVector<unsigned, 2> UFs;
/// Holds the name of the VPlan, for printing.
std::string Name;
/// Represents the trip count of the original loop, for folding
/// the tail.
VPValue *TripCount = nullptr;
/// Represents the backedge taken count of the original loop, for folding
/// the tail. It equals TripCount - 1.
VPValue *BackedgeTakenCount = nullptr;
/// Represents the vector trip count.
VPValue VectorTripCount;
/// Represents the vectorization factor of the loop.
VPValue VF;
/// Represents the loop-invariant VF * UF of the vector loop region.
VPValue VFxUF;
/// Holds a mapping between Values and their corresponding VPValue inside
/// VPlan.
Value2VPValueTy Value2VPValue;
/// Contains all the external definitions created for this VPlan. External
/// definitions are VPValues that hold a pointer to their underlying IR.
SmallVector<VPValue *, 16> VPLiveInsToFree;
/// Mapping from SCEVs to the VPValues representing their expansions.
/// NOTE: This mapping is temporary and will be removed once all users have
/// been modeled in VPlan directly.
DenseMap<const SCEV *, VPValue *> SCEVToExpansion;
public:
/// Construct a VPlan with original preheader \p Preheader, trip count \p TC,
/// \p Entry to the plan and with \p ScalarHeader wrapping the original header
/// of the scalar loop. At the moment, \p Preheader and \p Entry need to be
/// disconnected, as the bypass blocks between them are not yet modeled in
/// VPlan.
VPlan(VPBasicBlock *Preheader, VPValue *TC, VPBasicBlock *Entry,
VPIRBasicBlock *ScalarHeader)
: VPlan(Preheader, Entry, ScalarHeader) {
TripCount = TC;
}
/// Construct a VPlan with original preheader \p Preheader, \p Entry to
/// the plan and with \p ScalarHeader wrapping the original header of the
/// scalar loop. At the moment, \p Preheader and \p Entry need to be
/// disconnected, as the bypass blocks between them are not yet modeled in
/// VPlan.
VPlan(VPBasicBlock *Preheader, VPBasicBlock *Entry,
VPIRBasicBlock *ScalarHeader)
: Entry(Entry), Preheader(Preheader), ScalarHeader(ScalarHeader) {
Entry->setPlan(this);
Preheader->setPlan(this);
assert(Preheader->getNumSuccessors() == 0 &&
Preheader->getNumPredecessors() == 0 &&
"preheader must be disconnected");
assert(ScalarHeader->getNumSuccessors() == 0 &&
"scalar header must be a leaf node");
}
~VPlan();
/// Create initial VPlan, having an "entry" VPBasicBlock (wrapping
/// original scalar pre-header ) which contains SCEV expansions that need
/// to happen before the CFG is modified; a VPBasicBlock for the vector
/// pre-header, followed by a region for the vector loop, followed by the
/// middle VPBasicBlock. If a check is needed to guard executing the scalar
/// epilogue loop, it will be added to the middle block, together with
/// VPBasicBlocks for the scalar preheader and exit blocks.
/// \p InductionTy is the type of the canonical induction and used for related
/// values, like the trip count expression.
static VPlanPtr createInitialVPlan(Type *InductionTy,
PredicatedScalarEvolution &PSE,
bool RequiresScalarEpilogueCheck,
bool TailFolded, Loop *TheLoop);
/// Prepare the plan for execution, setting up the required live-in values.
void prepareToExecute(Value *TripCount, Value *VectorTripCount,
Value *CanonicalIVStartValue, VPTransformState &State);
/// Generate the IR code for this VPlan.
void execute(VPTransformState *State);
/// Return the cost of this plan.
InstructionCost cost(ElementCount VF, VPCostContext &Ctx);
VPBasicBlock *getEntry() { return Entry; }
const VPBasicBlock *getEntry() const { return Entry; }
/// Return the VPIRBasicBlock wrapping the header of the scalar loop.
VPIRBasicBlock *getScalarHeader() const { return ScalarHeader; }
/// Return the VPBasicBlock for the preheader of the scalar loop.
VPBasicBlock *getScalarPreheader() const {
return cast<VPBasicBlock>(ScalarHeader->getSinglePredecessor());
}
/// Returns the 'middle' block of the plan, that is the block that selects
/// whether to execute the scalar tail loop or the exit block from the loop
/// latch.
const VPBasicBlock *getMiddleBlock() const {
return cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
}
VPBasicBlock *getMiddleBlock() {
return cast<VPBasicBlock>(getVectorLoopRegion()->getSingleSuccessor());
}
/// The trip count of the original loop.
VPValue *getTripCount() const {
assert(TripCount && "trip count needs to be set before accessing it");
return TripCount;
}
/// Resets the trip count for the VPlan. The caller must make sure all uses of
/// the original trip count have been replaced.
void resetTripCount(VPValue *NewTripCount) {
assert(TripCount && NewTripCount && TripCount->getNumUsers() == 0 &&
"TripCount always must be set");
TripCount = NewTripCount;
}
/// The backedge taken count of the original loop.
VPValue *getOrCreateBackedgeTakenCount() {
if (!BackedgeTakenCount)
BackedgeTakenCount = new VPValue();
return BackedgeTakenCount;
}
/// The vector trip count.
VPValue &getVectorTripCount() { return VectorTripCount; }
/// Returns the VF of the vector loop region.
VPValue &getVF() { return VF; };
/// Returns VF * UF of the vector loop region.
VPValue &getVFxUF() { return VFxUF; }
void addVF(ElementCount VF) { VFs.insert(VF); }
void setVF(ElementCount VF) {
assert(hasVF(VF) && "Cannot set VF not already in plan");
VFs.clear();
VFs.insert(VF);
}
bool hasVF(ElementCount VF) { return VFs.count(VF); }
bool hasScalableVF() {
return any_of(VFs, [](ElementCount VF) { return VF.isScalable(); });
}
/// Returns an iterator range over all VFs of the plan.
iterator_range<SmallSetVector<ElementCount, 2>::iterator>
vectorFactors() const {
return {VFs.begin(), VFs.end()};
}
bool hasScalarVFOnly() const { return VFs.size() == 1 && VFs[0].isScalar(); }
bool hasUF(unsigned UF) const { return UFs.empty() || UFs.contains(UF); }
unsigned getUF() const {
assert(UFs.size() == 1 && "Expected a single UF");
return UFs[0];
}
void setUF(unsigned UF) {
assert(hasUF(UF) && "Cannot set the UF not already in plan");
UFs.clear();
UFs.insert(UF);
}
/// Return a string with the name of the plan and the applicable VFs and UFs.
std::string getName() const;
void setName(const Twine &newName) { Name = newName.str(); }
/// Gets the live-in VPValue for \p V or adds a new live-in (if none exists
/// yet) for \p V.
VPValue *getOrAddLiveIn(Value *V) {
assert(V && "Trying to get or add the VPValue of a null Value");
if (!Value2VPValue.count(V)) {
VPValue *VPV = new VPValue(V);
VPLiveInsToFree.push_back(VPV);
assert(VPV->isLiveIn() && "VPV must be a live-in.");
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
Value2VPValue[V] = VPV;
}
assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
assert(Value2VPValue[V]->isLiveIn() &&
"Only live-ins should be in mapping");
return Value2VPValue[V];
}
/// Return the live-in VPValue for \p V, if there is one or nullptr otherwise.
VPValue *getLiveIn(Value *V) const { return Value2VPValue.lookup(V); }
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the live-ins of this VPlan to \p O.
void printLiveIns(raw_ostream &O) const;
/// Print this VPlan to \p O.
void print(raw_ostream &O) const;
/// Print this VPlan in DOT format to \p O.
void printDOT(raw_ostream &O) const;
/// Dump the plan to stderr (for debugging).
LLVM_DUMP_METHOD void dump() const;
#endif
/// Returns the VPRegionBlock of the vector loop.
VPRegionBlock *getVectorLoopRegion() {
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
}
const VPRegionBlock *getVectorLoopRegion() const {
return cast<VPRegionBlock>(getEntry()->getSingleSuccessor());
}
/// Returns the preheader of the vector loop region.
VPBasicBlock *getVectorPreheader() {
return cast<VPBasicBlock>(getVectorLoopRegion()->getSinglePredecessor());
}
/// Returns the canonical induction recipe of the vector loop.
VPCanonicalIVPHIRecipe *getCanonicalIV() {
VPBasicBlock *EntryVPBB = getVectorLoopRegion()->getEntryBasicBlock();
if (EntryVPBB->empty()) {
// VPlan native path.
EntryVPBB = cast<VPBasicBlock>(EntryVPBB->getSingleSuccessor());
}
return cast<VPCanonicalIVPHIRecipe>(&*EntryVPBB->begin());
}
VPValue *getSCEVExpansion(const SCEV *S) const {
return SCEVToExpansion.lookup(S);
}
void addSCEVExpansion(const SCEV *S, VPValue *V) {
assert(!SCEVToExpansion.contains(S) && "SCEV already expanded");
SCEVToExpansion[S] = V;
}
/// \return The block corresponding to the original preheader.
VPBasicBlock *getPreheader() { return Preheader; }
const VPBasicBlock *getPreheader() const { return Preheader; }
/// Clone the current VPlan, update all VPValues of the new VPlan and cloned
/// recipes to refer to the clones, and return it.
VPlan *duplicate();
};
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
raw_ostream &OS;
const VPlan &Plan;
unsigned Depth = 0;
unsigned TabWidth = 2;
std::string Indent;
unsigned BID = 0;
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
VPSlotTracker SlotTracker;
/// Handle indentation.
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
/// Print a given \p Block of the Plan.
void dumpBlock(const VPBlockBase *Block);
/// Print the information related to the CFG edges going out of a given
/// \p Block, followed by printing the successor blocks themselves.
void dumpEdges(const VPBlockBase *Block);
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
/// its successor blocks.
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
/// Print a given \p Region of the Plan.
void dumpRegion(const VPRegionBlock *Region);
unsigned getOrCreateBID(const VPBlockBase *Block) {
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
}
Twine getOrCreateName(const VPBlockBase *Block);
Twine getUID(const VPBlockBase *Block);
/// Print the information related to a CFG edge between two VPBlockBases.
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
const Twine &Label);
public:
VPlanPrinter(raw_ostream &O, const VPlan &P)
: OS(O), Plan(P), SlotTracker(&P) {}
LLVM_DUMP_METHOD void dump();
};
struct VPlanIngredient {
const Value *V;
VPlanIngredient(const Value *V) : V(V) {}
void print(raw_ostream &O) const;
};
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
I.print(OS);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
Plan.print(OS);
return OS;
}
#endif
//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//
/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
VPBlockUtils() = delete;
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
/// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. \p BlockPtr's
/// successors are moved from \p BlockPtr to \p NewBlock. \p NewBlock must
/// have neither successors nor predecessors.
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
assert(NewBlock->getSuccessors().empty() &&
NewBlock->getPredecessors().empty() &&
"Can't insert new block with predecessors or successors.");
NewBlock->setParent(BlockPtr->getParent());
SmallVector<VPBlockBase *> Succs(BlockPtr->successors());
for (VPBlockBase *Succ : Succs) {
disconnectBlocks(BlockPtr, Succ);
connectBlocks(NewBlock, Succ);
}
connectBlocks(BlockPtr, NewBlock);
}
/// Insert disconnected block \p NewBlock before \p Blockptr. First
/// disconnects all predecessors of \p BlockPtr and connects them to \p
/// NewBlock. Add \p NewBlock as predecessor of \p BlockPtr and \p BlockPtr as
/// successor of \p NewBlock.
static void insertBlockBefore(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
assert(NewBlock->getSuccessors().empty() &&
NewBlock->getPredecessors().empty() &&
"Can't insert new block with predecessors or successors.");
NewBlock->setParent(BlockPtr->getParent());
for (VPBlockBase *Pred : to_vector(BlockPtr->predecessors())) {
disconnectBlocks(Pred, BlockPtr);
connectBlocks(Pred, NewBlock);
}
connectBlocks(NewBlock, BlockPtr);
}
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
/// parent to \p IfTrue and \p IfFalse. \p BlockPtr must have no successors
/// and \p IfTrue and \p IfFalse must have neither successors nor
/// predecessors.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
VPBlockBase *BlockPtr) {
assert(IfTrue->getSuccessors().empty() &&
"Can't insert IfTrue with successors.");
assert(IfFalse->getSuccessors().empty() &&
"Can't insert IfFalse with successors.");
BlockPtr->setTwoSuccessors(IfTrue, IfFalse);
IfTrue->setPredecessors({BlockPtr});
IfFalse->setPredecessors({BlockPtr});
IfTrue->setParent(BlockPtr->getParent());
IfFalse->setParent(BlockPtr->getParent());
}
/// Connect VPBlockBases \p From and \p To bi-directionally. If \p PredIdx is
/// -1, append \p From to the predecessors of \p To, otherwise set \p To's
/// predecessor at \p PredIdx to \p From. If \p SuccIdx is -1, append \p To to
/// the successors of \p From, otherwise set \p From's successor at \p SuccIdx
/// to \p To. Both VPBlockBases must have the same parent, which can be null.
/// Both VPBlockBases can be already connected to other VPBlockBases.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To,
unsigned PredIdx = -1u, unsigned SuccIdx = -1u) {
assert((From->getParent() == To->getParent()) &&
"Can't connect two block with different parents");
assert((SuccIdx != -1u || From->getNumSuccessors() < 2) &&
"Blocks can't have more than two successors.");
assert((PredIdx != -1u || To->getNumPredecessors() < 2) &&
"Blocks can't have more than two predecessors.");
if (SuccIdx == -1u)
From->appendSuccessor(To);
else
From->getSuccessors()[SuccIdx] = To;
if (PredIdx == -1u)
To->appendPredecessor(From);
else
To->getPredecessors()[PredIdx] = From;
}
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
/// from the successors of \p From and \p From from the predecessors of \p To.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
assert(To && "Successor to disconnect is null.");
From->removeSuccessor(To);
To->removePredecessor(From);
}
/// Reassociate all the blocks connected to \p Old so that they now point to
/// \p New.
static void reassociateBlocks(VPBlockBase *Old, VPBlockBase *New) {
for (auto *Pred : to_vector(Old->getPredecessors()))
Pred->replaceSuccessor(Old, New);
for (auto *Succ : to_vector(Old->getSuccessors()))
Succ->replacePredecessor(Old, New);
New->setPredecessors(Old->getPredecessors());
New->setSuccessors(Old->getSuccessors());
Old->clearPredecessors();
Old->clearSuccessors();
}
/// Return an iterator range over \p Range which only includes \p BlockTy
/// blocks. The accesses are casted to \p BlockTy.
template <typename BlockTy, typename T>
static auto blocksOnly(const T &Range) {
// Create BaseTy with correct const-ness based on BlockTy.
using BaseTy = std::conditional_t<std::is_const<BlockTy>::value,
const VPBlockBase, VPBlockBase>;
// We need to first create an iterator range over (const) BlocktTy & instead
// of (const) BlockTy * for filter_range to work properly.
auto Mapped =
map_range(Range, [](BaseTy *Block) -> BaseTy & { return *Block; });
auto Filter = make_filter_range(
Mapped, [](BaseTy &Block) { return isa<BlockTy>(&Block); });
return map_range(Filter, [](BaseTy &Block) -> BlockTy * {
return cast<BlockTy>(&Block);
});
}
/// Inserts \p BlockPtr on the edge between \p From and \p To. That is, update
/// \p From's successor to \p To to point to \p BlockPtr and \p To's
/// predecessor from \p From to \p BlockPtr. \p From and \p To are added to \p
/// BlockPtr's predecessors and successors respectively. There must be a
/// single edge between \p From and \p To.
static void insertOnEdge(VPBlockBase *From, VPBlockBase *To,
VPBlockBase *BlockPtr) {
auto &Successors = From->getSuccessors();
auto &Predecessors = To->getPredecessors();
assert(count(Successors, To) == 1 && count(Predecessors, From) == 1 &&
"must have single between From and To");
unsigned SuccIdx = std::distance(Successors.begin(), find(Successors, To));
unsigned PredIx =
std::distance(Predecessors.begin(), find(Predecessors, From));
VPBlockUtils::connectBlocks(From, BlockPtr, -1, SuccIdx);
VPBlockUtils::connectBlocks(BlockPtr, To, PredIx, -1);
}
};
class VPInterleavedAccessInfo {
DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
InterleaveGroupMap;
/// Type for mapping of instruction based interleave groups to VPInstruction
/// interleave groups
using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
InterleaveGroup<VPInstruction> *>;
/// Recursively \p Region and populate VPlan based interleave groups based on
/// \p IAI.
void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI);
/// Recursively traverse \p Block and populate VPlan based interleave groups
/// based on \p IAI.
void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI);
public:
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
~VPInterleavedAccessInfo() {
SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
// Avoid releasing a pointer twice.
for (auto &I : InterleaveGroupMap)
DelSet.insert(I.second);
for (auto *Ptr : DelSet)
delete Ptr;
}
/// Get the interleave group that \p Instr belongs to.
///
/// \returns nullptr if doesn't have such group.
InterleaveGroup<VPInstruction> *
getInterleaveGroup(VPInstruction *Instr) const {
return InterleaveGroupMap.lookup(Instr);
}
};
/// Class that maps (parts of) an existing VPlan to trees of combined
/// VPInstructions.
class VPlanSlp {
enum class OpMode { Failed, Load, Opcode };
/// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
/// DenseMap keys.
struct BundleDenseMapInfo {
static SmallVector<VPValue *, 4> getEmptyKey() {
return {reinterpret_cast<VPValue *>(-1)};
}
static SmallVector<VPValue *, 4> getTombstoneKey() {
return {reinterpret_cast<VPValue *>(-2)};
}
static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
}
static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
const SmallVector<VPValue *, 4> &RHS) {
return LHS == RHS;
}
};
/// Mapping of values in the original VPlan to a combined VPInstruction.
DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
BundleToCombined;
VPInterleavedAccessInfo &IAI;
/// Basic block to operate on. For now, only instructions in a single BB are
/// considered.
const VPBasicBlock &BB;
/// Indicates whether we managed to combine all visited instructions or not.
bool CompletelySLP = true;
/// Width of the widest combined bundle in bits.
unsigned WidestBundleBits = 0;
using MultiNodeOpTy =
typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
// Input operand bundles for the current multi node. Each multi node operand
// bundle contains values not matching the multi node's opcode. They will
// be reordered in reorderMultiNodeOps, once we completed building a
// multi node.
SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
/// Indicates whether we are building a multi node currently.
bool MultiNodeActive = false;
/// Check if we can vectorize Operands together.
bool areVectorizable(ArrayRef<VPValue *> Operands) const;
/// Add combined instruction \p New for the bundle \p Operands.
void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
/// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
VPInstruction *markFailed();
/// Reorder operands in the multi node to maximize sequential memory access
/// and commutative operations.
SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
/// Choose the best candidate to use for the lane after \p Last. The set of
/// candidates to choose from are values with an opcode matching \p Last's
/// or loads consecutive to \p Last.
std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
SmallPtrSetImpl<VPValue *> &Candidates,
VPInterleavedAccessInfo &IAI);
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print bundle \p Values to dbgs().
void dumpBundle(ArrayRef<VPValue *> Values);
#endif
public:
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
~VPlanSlp() = default;
/// Tries to build an SLP tree rooted at \p Operands and returns a
/// VPInstruction combining \p Operands, if they can be combined.
VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
/// Return the width of the widest combined bundle in bits.
unsigned getWidestBundleBits() const { return WidestBundleBits; }
/// Return true if all visited instruction can be combined.
bool isCompletelySLP() const { return CompletelySLP; }
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H