
An old clang warns that the const object has no default constructor so it may remain uninitialized forever. That's a false alarm because all fields have a default initializer. Apply the suggested fixit anyway.
1350 lines
51 KiB
C++
1350 lines
51 KiB
C++
//== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines RangeConstraintManager, a class that tracks simple
|
|
// equality and inequality constraints on symbolic values of ProgramState.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/JsonSupport.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableSet.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This class can be extended with other tables which will help to reason
|
|
// about ranges more precisely.
|
|
class OperatorRelationsTable {
|
|
static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE &&
|
|
BO_GE < BO_EQ && BO_EQ < BO_NE,
|
|
"This class relies on operators order. Rework it otherwise.");
|
|
|
|
public:
|
|
enum TriStateKind {
|
|
False = 0,
|
|
True,
|
|
Unknown,
|
|
};
|
|
|
|
private:
|
|
// CmpOpTable holds states which represent the corresponding range for
|
|
// branching an exploded graph. We can reason about the branch if there is
|
|
// a previously known fact of the existence of a comparison expression with
|
|
// operands used in the current expression.
|
|
// E.g. assuming (x < y) is true that means (x != y) is surely true.
|
|
// if (x previous_operation y) // < | != | >
|
|
// if (x operation y) // != | > | <
|
|
// tristate // True | Unknown | False
|
|
//
|
|
// CmpOpTable represents next:
|
|
// __|< |> |<=|>=|==|!=|UnknownX2|
|
|
// < |1 |0 |* |0 |0 |* |1 |
|
|
// > |0 |1 |0 |* |0 |* |1 |
|
|
// <=|1 |0 |1 |* |1 |* |0 |
|
|
// >=|0 |1 |* |1 |1 |* |0 |
|
|
// ==|0 |0 |* |* |1 |0 |1 |
|
|
// !=|1 |1 |* |* |0 |1 |0 |
|
|
//
|
|
// Columns stands for a previous operator.
|
|
// Rows stands for a current operator.
|
|
// Each row has exactly two `Unknown` cases.
|
|
// UnknownX2 means that both `Unknown` previous operators are met in code,
|
|
// and there is a special column for that, for example:
|
|
// if (x >= y)
|
|
// if (x != y)
|
|
// if (x <= y)
|
|
// False only
|
|
static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1;
|
|
const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = {
|
|
// < > <= >= == != UnknownX2
|
|
{True, False, Unknown, False, False, Unknown, True}, // <
|
|
{False, True, False, Unknown, False, Unknown, True}, // >
|
|
{True, False, True, Unknown, True, Unknown, False}, // <=
|
|
{False, True, Unknown, True, True, Unknown, False}, // >=
|
|
{False, False, Unknown, Unknown, True, False, True}, // ==
|
|
{True, True, Unknown, Unknown, False, True, False}, // !=
|
|
};
|
|
|
|
static size_t getIndexFromOp(BinaryOperatorKind OP) {
|
|
return static_cast<size_t>(OP - BO_LT);
|
|
}
|
|
|
|
public:
|
|
constexpr size_t getCmpOpCount() const { return CmpOpCount; }
|
|
|
|
static BinaryOperatorKind getOpFromIndex(size_t Index) {
|
|
return static_cast<BinaryOperatorKind>(Index + BO_LT);
|
|
}
|
|
|
|
TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP,
|
|
BinaryOperatorKind QueriedOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][getIndexFromOp(QueriedOP)];
|
|
}
|
|
|
|
TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const {
|
|
return CmpOpTable[getIndexFromOp(CurrentOP)][CmpOpCount];
|
|
}
|
|
};
|
|
//===----------------------------------------------------------------------===//
|
|
// RangeSet implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeSet::IntersectInRange(BasicValueFactory &BV, Factory &F,
|
|
const llvm::APSInt &Lower,
|
|
const llvm::APSInt &Upper,
|
|
PrimRangeSet &newRanges,
|
|
PrimRangeSet::iterator &i,
|
|
PrimRangeSet::iterator &e) const {
|
|
// There are six cases for each range R in the set:
|
|
// 1. R is entirely before the intersection range.
|
|
// 2. R is entirely after the intersection range.
|
|
// 3. R contains the entire intersection range.
|
|
// 4. R starts before the intersection range and ends in the middle.
|
|
// 5. R starts in the middle of the intersection range and ends after it.
|
|
// 6. R is entirely contained in the intersection range.
|
|
// These correspond to each of the conditions below.
|
|
for (/* i = begin(), e = end() */; i != e; ++i) {
|
|
if (i->To() < Lower) {
|
|
continue;
|
|
}
|
|
if (i->From() > Upper) {
|
|
break;
|
|
}
|
|
|
|
if (i->Includes(Lower)) {
|
|
if (i->Includes(Upper)) {
|
|
newRanges =
|
|
F.add(newRanges, Range(BV.getValue(Lower), BV.getValue(Upper)));
|
|
break;
|
|
} else
|
|
newRanges = F.add(newRanges, Range(BV.getValue(Lower), i->To()));
|
|
} else {
|
|
if (i->Includes(Upper)) {
|
|
newRanges = F.add(newRanges, Range(i->From(), BV.getValue(Upper)));
|
|
break;
|
|
} else
|
|
newRanges = F.add(newRanges, *i);
|
|
}
|
|
}
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMinValue() const {
|
|
assert(!isEmpty());
|
|
return begin()->From();
|
|
}
|
|
|
|
const llvm::APSInt &RangeSet::getMaxValue() const {
|
|
assert(!isEmpty());
|
|
// NOTE: It's a shame that we can't implement 'getMaxValue' without scanning
|
|
// the whole tree to get to the last element.
|
|
// llvm::ImmutableSet should support decrement for 'end' iterators
|
|
// or reverse order iteration.
|
|
auto It = begin();
|
|
for (auto End = end(); std::next(It) != End; ++It) {
|
|
}
|
|
return It->To();
|
|
}
|
|
|
|
bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const {
|
|
if (isEmpty()) {
|
|
// This range is already infeasible.
|
|
return false;
|
|
}
|
|
|
|
// This function has nine cases, the cartesian product of range-testing
|
|
// both the upper and lower bounds against the symbol's type.
|
|
// Each case requires a different pinning operation.
|
|
// The function returns false if the described range is entirely outside
|
|
// the range of values for the associated symbol.
|
|
APSIntType Type(getMinValue());
|
|
APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Lower, true);
|
|
APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Upper, true);
|
|
|
|
switch (LowerTest) {
|
|
case APSIntType::RTR_Below:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts below what's possible but ends within it. Pin.
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range spans all possible values for the symbol. Pin.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps around, but all lower values are not possible.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
case APSIntType::RTR_Within:
|
|
// The range may or may not wrap around, but both limits are valid.
|
|
Type.apply(Lower);
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The range starts within what's possible but ends above it. Pin.
|
|
Type.apply(Lower);
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
switch (UpperTest) {
|
|
case APSIntType::RTR_Below:
|
|
// The range wraps but is outside the symbol's set of possible values.
|
|
return false;
|
|
case APSIntType::RTR_Within:
|
|
// The range starts above what's possible but ends within it (wrap).
|
|
Lower = Type.getMinValue();
|
|
Type.apply(Upper);
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
// The entire range is outside the symbol's set of possible values.
|
|
// If this is a conventionally-ordered range, the state is infeasible.
|
|
if (Lower <= Upper)
|
|
return false;
|
|
|
|
// However, if the range wraps around, it spans all possible values.
|
|
Lower = Type.getMinValue();
|
|
Upper = Type.getMaxValue();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns a set containing the values in the receiving set, intersected with
|
|
// the closed range [Lower, Upper]. Unlike the Range type, this range uses
|
|
// modular arithmetic, corresponding to the common treatment of C integer
|
|
// overflow. Thus, if the Lower bound is greater than the Upper bound, the
|
|
// range is taken to wrap around. This is equivalent to taking the
|
|
// intersection with the two ranges [Min, Upper] and [Lower, Max],
|
|
// or, alternatively, /removing/ all integers between Upper and Lower.
|
|
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
|
|
llvm::APSInt Lower, llvm::APSInt Upper) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
if (isEmpty() || !pin(Lower, Upper))
|
|
return newRanges;
|
|
|
|
PrimRangeSet::iterator i = begin(), e = end();
|
|
if (Lower <= Upper)
|
|
IntersectInRange(BV, F, Lower, Upper, newRanges, i, e);
|
|
else {
|
|
// The order of the next two statements is important!
|
|
// IntersectInRange() does not reset the iteration state for i and e.
|
|
// Therefore, the lower range most be handled first.
|
|
IntersectInRange(BV, F, BV.getMinValue(Upper), Upper, newRanges, i, e);
|
|
IntersectInRange(BV, F, Lower, BV.getMaxValue(Lower), newRanges, i, e);
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
// Returns a set containing the values in the receiving set, intersected with
|
|
// the range set passed as parameter.
|
|
RangeSet RangeSet::Intersect(BasicValueFactory &BV, Factory &F,
|
|
const RangeSet &Other) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
for (iterator i = Other.begin(), e = Other.end(); i != e; ++i) {
|
|
RangeSet newPiece = Intersect(BV, F, i->From(), i->To());
|
|
for (iterator j = newPiece.begin(), ee = newPiece.end(); j != ee; ++j) {
|
|
newRanges = F.add(newRanges, *j);
|
|
}
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
// Turn all [A, B] ranges to [-B, -A], when "-" is a C-like unary minus
|
|
// operation under the values of the type.
|
|
//
|
|
// We also handle MIN because applying unary minus to MIN does not change it.
|
|
// Example 1:
|
|
// char x = -128; // -128 is a MIN value in a range of 'char'
|
|
// char y = -x; // y: -128
|
|
// Example 2:
|
|
// unsigned char x = 0; // 0 is a MIN value in a range of 'unsigned char'
|
|
// unsigned char y = -x; // y: 0
|
|
//
|
|
// And it makes us to separate the range
|
|
// like [MIN, N] to [MIN, MIN] U [-N,MAX].
|
|
// For instance, whole range is {-128..127} and subrange is [-128,-126],
|
|
// thus [-128,-127,-126,.....] negates to [-128,.....,126,127].
|
|
//
|
|
// Negate restores disrupted ranges on bounds,
|
|
// e.g. [MIN, B] => [MIN, MIN] U [-B, MAX] => [MIN, B].
|
|
RangeSet RangeSet::Negate(BasicValueFactory &BV, Factory &F) const {
|
|
PrimRangeSet newRanges = F.getEmptySet();
|
|
|
|
if (isEmpty())
|
|
return newRanges;
|
|
|
|
const llvm::APSInt sampleValue = getMinValue();
|
|
const llvm::APSInt &MIN = BV.getMinValue(sampleValue);
|
|
const llvm::APSInt &MAX = BV.getMaxValue(sampleValue);
|
|
|
|
// Handle a special case for MIN value.
|
|
iterator i = begin();
|
|
const llvm::APSInt &from = i->From();
|
|
const llvm::APSInt &to = i->To();
|
|
if (from == MIN) {
|
|
// If [from, to] are [MIN, MAX], then just return the same [MIN, MAX].
|
|
if (to == MAX) {
|
|
newRanges = ranges;
|
|
} else {
|
|
// Add separate range for the lowest value.
|
|
newRanges = F.add(newRanges, Range(MIN, MIN));
|
|
// Skip adding the second range in case when [from, to] are [MIN, MIN].
|
|
if (to != MIN) {
|
|
newRanges = F.add(newRanges, Range(BV.getValue(-to), MAX));
|
|
}
|
|
}
|
|
// Skip the first range in the loop.
|
|
++i;
|
|
}
|
|
|
|
// Negate all other ranges.
|
|
for (iterator e = end(); i != e; ++i) {
|
|
// Negate int values.
|
|
const llvm::APSInt &newFrom = BV.getValue(-i->To());
|
|
const llvm::APSInt &newTo = BV.getValue(-i->From());
|
|
// Add a negated range.
|
|
newRanges = F.add(newRanges, Range(newFrom, newTo));
|
|
}
|
|
|
|
if (newRanges.isSingleton())
|
|
return newRanges;
|
|
|
|
// Try to find and unite next ranges:
|
|
// [MIN, MIN] & [MIN + 1, N] => [MIN, N].
|
|
iterator iter1 = newRanges.begin();
|
|
iterator iter2 = std::next(iter1);
|
|
|
|
if (iter1->To() == MIN && (iter2->From() - 1) == MIN) {
|
|
const llvm::APSInt &to = iter2->To();
|
|
// remove adjacent ranges
|
|
newRanges = F.remove(newRanges, *iter1);
|
|
newRanges = F.remove(newRanges, *newRanges.begin());
|
|
// add united range
|
|
newRanges = F.add(newRanges, Range(MIN, to));
|
|
}
|
|
|
|
return newRanges;
|
|
}
|
|
|
|
void RangeSet::print(raw_ostream &os) const {
|
|
bool isFirst = true;
|
|
os << "{ ";
|
|
for (iterator i = begin(), e = end(); i != e; ++i) {
|
|
if (isFirst)
|
|
isFirst = false;
|
|
else
|
|
os << ", ";
|
|
|
|
os << '[' << i->From().toString(10) << ", " << i->To().toString(10)
|
|
<< ']';
|
|
}
|
|
os << " }";
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A little component aggregating all of the reasoning we have about
|
|
/// the ranges of symbolic expressions.
|
|
///
|
|
/// Even when we don't know the exact values of the operands, we still
|
|
/// can get a pretty good estimate of the result's range.
|
|
class SymbolicRangeInferrer
|
|
: public SymExprVisitor<SymbolicRangeInferrer, RangeSet> {
|
|
public:
|
|
static RangeSet inferRange(BasicValueFactory &BV, RangeSet::Factory &F,
|
|
ProgramStateRef State, SymbolRef Sym) {
|
|
SymbolicRangeInferrer Inferrer(BV, F, State);
|
|
return Inferrer.infer(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymExpr(SymbolRef Sym) {
|
|
// If we got to this function, the actual type of the symbolic
|
|
// expression is not supported for advanced inference.
|
|
// In this case, we simply backoff to the default "let's simply
|
|
// infer the range from the expression's type".
|
|
return infer(Sym->getType());
|
|
}
|
|
|
|
RangeSet VisitSymIntExpr(const SymIntExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitIntSymExpr(const IntSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
RangeSet VisitSymSymExpr(const SymSymExpr *Sym) {
|
|
return VisitBinaryOperator(Sym);
|
|
}
|
|
|
|
private:
|
|
SymbolicRangeInferrer(BasicValueFactory &BV, RangeSet::Factory &F,
|
|
ProgramStateRef S)
|
|
: ValueFactory(BV), RangeFactory(F), State(S) {}
|
|
|
|
/// Infer range information from the given integer constant.
|
|
///
|
|
/// It's not a real "inference", but is here for operating with
|
|
/// sub-expressions in a more polymorphic manner.
|
|
RangeSet inferAs(const llvm::APSInt &Val, QualType) {
|
|
return {RangeFactory, Val};
|
|
}
|
|
|
|
/// Infer range information from symbol in the context of the given type.
|
|
RangeSet inferAs(SymbolRef Sym, QualType DestType) {
|
|
QualType ActualType = Sym->getType();
|
|
// Check that we can reason about the symbol at all.
|
|
if (ActualType->isIntegralOrEnumerationType() ||
|
|
Loc::isLocType(ActualType)) {
|
|
return infer(Sym);
|
|
}
|
|
// Otherwise, let's simply infer from the destination type.
|
|
// We couldn't figure out nothing else about that expression.
|
|
return infer(DestType);
|
|
}
|
|
|
|
RangeSet infer(SymbolRef Sym) {
|
|
const RangeSet *AssociatedRange = State->get<ConstraintRange>(Sym);
|
|
|
|
// If Sym is a difference of symbols A - B, then maybe we have range set
|
|
// stored for B - A.
|
|
const RangeSet *RangeAssociatedWithNegatedSym =
|
|
getRangeForMinusSymbol(State, Sym);
|
|
|
|
// If we have range set stored for both A - B and B - A then calculate the
|
|
// effective range set by intersecting the range set for A - B and the
|
|
// negated range set of B - A.
|
|
if (AssociatedRange && RangeAssociatedWithNegatedSym)
|
|
return AssociatedRange->Intersect(
|
|
ValueFactory, RangeFactory,
|
|
RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory));
|
|
|
|
if (AssociatedRange)
|
|
return *AssociatedRange;
|
|
|
|
if (RangeAssociatedWithNegatedSym)
|
|
return RangeAssociatedWithNegatedSym->Negate(ValueFactory, RangeFactory);
|
|
|
|
// If Sym is a comparison expression (except <=>),
|
|
// find any other comparisons with the same operands.
|
|
// See function description.
|
|
const RangeSet CmpRangeSet = getRangeForComparisonSymbol(State, Sym);
|
|
if (!CmpRangeSet.isEmpty())
|
|
return CmpRangeSet;
|
|
|
|
return Visit(Sym);
|
|
}
|
|
|
|
/// Infer range information solely from the type.
|
|
RangeSet infer(QualType T) {
|
|
// Lazily generate a new RangeSet representing all possible values for the
|
|
// given symbol type.
|
|
RangeSet Result(RangeFactory, ValueFactory.getMinValue(T),
|
|
ValueFactory.getMaxValue(T));
|
|
|
|
// References are known to be non-zero.
|
|
if (T->isReferenceType())
|
|
return assumeNonZero(Result, T);
|
|
|
|
return Result;
|
|
}
|
|
|
|
template <class BinarySymExprTy>
|
|
RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) {
|
|
// TODO #1: VisitBinaryOperator implementation might not make a good
|
|
// use of the inferred ranges. In this case, we might be calculating
|
|
// everything for nothing. This being said, we should introduce some
|
|
// sort of laziness mechanism here.
|
|
//
|
|
// TODO #2: We didn't go into the nested expressions before, so it
|
|
// might cause us spending much more time doing the inference.
|
|
// This can be a problem for deeply nested expressions that are
|
|
// involved in conditions and get tested continuously. We definitely
|
|
// need to address this issue and introduce some sort of caching
|
|
// in here.
|
|
QualType ResultType = Sym->getType();
|
|
return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType),
|
|
Sym->getOpcode(),
|
|
inferAs(Sym->getRHS(), ResultType), ResultType);
|
|
}
|
|
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op,
|
|
RangeSet RHS, QualType T) {
|
|
switch (Op) {
|
|
case BO_Or:
|
|
return VisitBinaryOperator<BO_Or>(LHS, RHS, T);
|
|
case BO_And:
|
|
return VisitBinaryOperator<BO_And>(LHS, RHS, T);
|
|
case BO_Rem:
|
|
return VisitBinaryOperator<BO_Rem>(LHS, RHS, T);
|
|
default:
|
|
return infer(T);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Ranges and operators
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Return a rough approximation of the given range set.
|
|
///
|
|
/// For the range set:
|
|
/// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] }
|
|
/// it will return the range [x_0, y_N].
|
|
static Range fillGaps(RangeSet Origin) {
|
|
assert(!Origin.isEmpty());
|
|
return {Origin.getMinValue(), Origin.getMaxValue()};
|
|
}
|
|
|
|
/// Try to convert given range into the given type.
|
|
///
|
|
/// It will return llvm::None only when the trivial conversion is possible.
|
|
llvm::Optional<Range> convert(const Range &Origin, APSIntType To) {
|
|
if (To.testInRange(Origin.From(), false) != APSIntType::RTR_Within ||
|
|
To.testInRange(Origin.To(), false) != APSIntType::RTR_Within) {
|
|
return llvm::None;
|
|
}
|
|
return Range(ValueFactory.Convert(To, Origin.From()),
|
|
ValueFactory.Convert(To, Origin.To()));
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) {
|
|
// We should propagate information about unfeasbility of one of the
|
|
// operands to the resulting range.
|
|
if (LHS.isEmpty() || RHS.isEmpty()) {
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
Range CoarseLHS = fillGaps(LHS);
|
|
Range CoarseRHS = fillGaps(RHS);
|
|
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
|
|
// We need to convert ranges to the resulting type, so we can compare values
|
|
// and combine them in a meaningful (in terms of the given operation) way.
|
|
auto ConvertedCoarseLHS = convert(CoarseLHS, ResultType);
|
|
auto ConvertedCoarseRHS = convert(CoarseRHS, ResultType);
|
|
|
|
// It is hard to reason about ranges when conversion changes
|
|
// borders of the ranges.
|
|
if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) {
|
|
return infer(T);
|
|
}
|
|
|
|
return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T);
|
|
}
|
|
|
|
template <BinaryOperator::Opcode Op>
|
|
RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) {
|
|
return infer(T);
|
|
}
|
|
|
|
/// Return a symmetrical range for the given range and type.
|
|
///
|
|
/// If T is signed, return the smallest range [-x..x] that covers the original
|
|
/// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't
|
|
/// exist due to original range covering min(T)).
|
|
///
|
|
/// If T is unsigned, return the smallest range [0..x] that covers the
|
|
/// original range.
|
|
Range getSymmetricalRange(Range Origin, QualType T) {
|
|
APSIntType RangeType = ValueFactory.getAPSIntType(T);
|
|
|
|
if (RangeType.isUnsigned()) {
|
|
return Range(ValueFactory.getMinValue(RangeType), Origin.To());
|
|
}
|
|
|
|
if (Origin.From().isMinSignedValue()) {
|
|
// If mini is a minimal signed value, absolute value of it is greater
|
|
// than the maximal signed value. In order to avoid these
|
|
// complications, we simply return the whole range.
|
|
return {ValueFactory.getMinValue(RangeType),
|
|
ValueFactory.getMaxValue(RangeType)};
|
|
}
|
|
|
|
// At this point, we are sure that the type is signed and we can safely
|
|
// use unary - operator.
|
|
//
|
|
// While calculating absolute maximum, we can use the following formula
|
|
// because of these reasons:
|
|
// * If From >= 0 then To >= From and To >= -From.
|
|
// AbsMax == To == max(To, -From)
|
|
// * If To <= 0 then -From >= -To and -From >= From.
|
|
// AbsMax == -From == max(-From, To)
|
|
// * Otherwise, From <= 0, To >= 0, and
|
|
// AbsMax == max(abs(From), abs(To))
|
|
llvm::APSInt AbsMax = std::max(-Origin.From(), Origin.To());
|
|
|
|
// Intersection is guaranteed to be non-empty.
|
|
return {ValueFactory.getValue(-AbsMax), ValueFactory.getValue(AbsMax)};
|
|
}
|
|
|
|
/// Return a range set subtracting zero from \p Domain.
|
|
RangeSet assumeNonZero(RangeSet Domain, QualType T) {
|
|
APSIntType IntType = ValueFactory.getAPSIntType(T);
|
|
return Domain.Intersect(ValueFactory, RangeFactory,
|
|
++IntType.getZeroValue(), --IntType.getZeroValue());
|
|
}
|
|
|
|
// FIXME: Once SValBuilder supports unary minus, we should use SValBuilder to
|
|
// obtain the negated symbolic expression instead of constructing the
|
|
// symbol manually. This will allow us to support finding ranges of not
|
|
// only negated SymSymExpr-type expressions, but also of other, simpler
|
|
// expressions which we currently do not know how to negate.
|
|
const RangeSet *getRangeForMinusSymbol(ProgramStateRef State, SymbolRef Sym) {
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Sym)) {
|
|
if (SSE->getOpcode() == BO_Sub) {
|
|
QualType T = Sym->getType();
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
SymbolRef negSym =
|
|
SymMgr.getSymSymExpr(SSE->getRHS(), BO_Sub, SSE->getLHS(), T);
|
|
|
|
if (const RangeSet *negV = State->get<ConstraintRange>(negSym)) {
|
|
// Unsigned range set cannot be negated, unless it is [0, 0].
|
|
if (T->isUnsignedIntegerOrEnumerationType() ||
|
|
T->isSignedIntegerOrEnumerationType())
|
|
return negV;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns ranges only for binary comparison operators (except <=>)
|
|
// when left and right operands are symbolic values.
|
|
// Finds any other comparisons with the same operands.
|
|
// Then do logical calculations and refuse impossible branches.
|
|
// E.g. (x < y) and (x > y) at the same time are impossible.
|
|
// E.g. (x >= y) and (x != y) at the same time makes (x > y) true only.
|
|
// E.g. (x == y) and (y == x) are just reversed but the same.
|
|
// It covers all possible combinations (see CmpOpTable description).
|
|
// Note that `x` and `y` can also stand for subexpressions,
|
|
// not only for actual symbols.
|
|
RangeSet getRangeForComparisonSymbol(ProgramStateRef State, SymbolRef Sym) {
|
|
const RangeSet EmptyRangeSet = RangeFactory.getEmptySet();
|
|
|
|
auto SSE = dyn_cast<SymSymExpr>(Sym);
|
|
if (!SSE)
|
|
return EmptyRangeSet;
|
|
|
|
BinaryOperatorKind CurrentOP = SSE->getOpcode();
|
|
|
|
// We currently do not support <=> (C++20).
|
|
if (!BinaryOperator::isComparisonOp(CurrentOP) || (CurrentOP == BO_Cmp))
|
|
return EmptyRangeSet;
|
|
|
|
static const OperatorRelationsTable CmpOpTable{};
|
|
|
|
const SymExpr *LHS = SSE->getLHS();
|
|
const SymExpr *RHS = SSE->getRHS();
|
|
QualType T = SSE->getType();
|
|
|
|
SymbolManager &SymMgr = State->getSymbolManager();
|
|
const llvm::APSInt &Zero = ValueFactory.getValue(0, T);
|
|
const llvm::APSInt &One = ValueFactory.getValue(1, T);
|
|
const RangeSet TrueRangeSet(RangeFactory, One, One);
|
|
const RangeSet FalseRangeSet(RangeFactory, Zero, Zero);
|
|
|
|
int UnknownStates = 0;
|
|
|
|
// Loop goes through all of the columns exept the last one ('UnknownX2').
|
|
// We treat `UnknownX2` column separately at the end of the loop body.
|
|
for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) {
|
|
|
|
// Let's find an expression e.g. (x < y).
|
|
BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(i);
|
|
const SymSymExpr *SymSym = SymMgr.getSymSymExpr(LHS, QueriedOP, RHS, T);
|
|
const RangeSet *QueriedRangeSet = State->get<ConstraintRange>(SymSym);
|
|
|
|
// If ranges were not previously found,
|
|
// try to find a reversed expression (y > x).
|
|
if (!QueriedRangeSet) {
|
|
const BinaryOperatorKind ROP =
|
|
BinaryOperator::reverseComparisonOp(QueriedOP);
|
|
SymSym = SymMgr.getSymSymExpr(RHS, ROP, LHS, T);
|
|
QueriedRangeSet = State->get<ConstraintRange>(SymSym);
|
|
}
|
|
|
|
if (!QueriedRangeSet || QueriedRangeSet->isEmpty())
|
|
continue;
|
|
|
|
const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue();
|
|
const bool isInFalseBranch =
|
|
ConcreteValue ? (*ConcreteValue == 0) : false;
|
|
|
|
// If it is a false branch, we shall be guided by opposite operator,
|
|
// because the table is made assuming we are in the true branch.
|
|
// E.g. when (x <= y) is false, then (x > y) is true.
|
|
if (isInFalseBranch)
|
|
QueriedOP = BinaryOperator::negateComparisonOp(QueriedOP);
|
|
|
|
OperatorRelationsTable::TriStateKind BranchState =
|
|
CmpOpTable.getCmpOpState(CurrentOP, QueriedOP);
|
|
|
|
if (BranchState == OperatorRelationsTable::Unknown) {
|
|
if (++UnknownStates == 2)
|
|
// If we met both Unknown states.
|
|
// if (x <= y) // assume true
|
|
// if (x != y) // assume true
|
|
// if (x < y) // would be also true
|
|
// Get a state from `UnknownX2` column.
|
|
BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP);
|
|
else
|
|
continue;
|
|
}
|
|
|
|
return (BranchState == OperatorRelationsTable::True) ? TrueRangeSet
|
|
: FalseRangeSet;
|
|
}
|
|
|
|
return EmptyRangeSet;
|
|
}
|
|
|
|
BasicValueFactory &ValueFactory;
|
|
RangeSet::Factory &RangeFactory;
|
|
ProgramStateRef State;
|
|
};
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely greater or equal than any of the operands.
|
|
const llvm::APSInt &Min = std::max(LHS.From(), RHS.From());
|
|
|
|
// We estimate maximal value for positives as the maximal value for the
|
|
// given type. For negatives, we estimate it with -1 (e.g. 0x11111111).
|
|
//
|
|
// TODO: We basically, limit the resulting range from below, but don't do
|
|
// anything with the upper bound.
|
|
//
|
|
// For positive operands, it can be done as follows: for the upper
|
|
// bound of LHS and RHS we calculate the most significant bit set.
|
|
// Let's call it the N-th bit. Then we can estimate the maximal
|
|
// number to be 2^(N+1)-1, i.e. the number with all the bits up to
|
|
// the N-th bit set.
|
|
const llvm::APSInt &Max = IsLHSNegative
|
|
? ValueFactory.getValue(--Zero)
|
|
: ValueFactory.getMaxValue(ResultType);
|
|
|
|
return {RangeFactory, ValueFactory.getValue(Min), Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is negative.
|
|
if (IsLHSNegative || IsRHSNegative) {
|
|
// This means that the result is definitely negative as well.
|
|
return {RangeFactory, ValueFactory.getMinValue(ResultType),
|
|
ValueFactory.getValue(--Zero)};
|
|
}
|
|
|
|
RangeSet DefaultRange = infer(T);
|
|
|
|
// It is pretty hard to reason about operands with different signs
|
|
// (and especially with possibly different signs). We simply check if it
|
|
// can be zero. In order to conclude that the result could not be zero,
|
|
// at least one of the operands should be definitely not zero itself.
|
|
if (!LHS.Includes(Zero) || !RHS.Includes(Zero)) {
|
|
return assumeNonZero(DefaultRange, T);
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return DefaultRange;
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
APSIntType ResultType = ValueFactory.getAPSIntType(T);
|
|
llvm::APSInt Zero = ResultType.getZeroValue();
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
bool IsLHSNegative = LHS.To() < Zero;
|
|
bool IsRHSNegative = RHS.To() < Zero;
|
|
|
|
// Check if both ranges have the same sign.
|
|
if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) ||
|
|
(IsLHSNegative && IsRHSNegative)) {
|
|
// The result is definitely less or equal than any of the operands.
|
|
const llvm::APSInt &Max = std::min(LHS.To(), RHS.To());
|
|
|
|
// We conservatively estimate lower bound to be the smallest positive
|
|
// or negative value corresponding to the sign of the operands.
|
|
const llvm::APSInt &Min = IsLHSNegative
|
|
? ValueFactory.getMinValue(ResultType)
|
|
: ValueFactory.getValue(Zero);
|
|
|
|
return {RangeFactory, Min, Max};
|
|
}
|
|
|
|
// Otherwise, let's check if at least one of the operands is positive.
|
|
if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) {
|
|
// This makes result definitely positive.
|
|
//
|
|
// We can also reason about a maximal value by finding the maximal
|
|
// value of the positive operand.
|
|
const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To();
|
|
|
|
// The minimal value on the other hand is much harder to reason about.
|
|
// The only thing we know for sure is that the result is positive.
|
|
return {RangeFactory, ValueFactory.getValue(Zero),
|
|
ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
// Nothing much else to do here.
|
|
return infer(T);
|
|
}
|
|
|
|
template <>
|
|
RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS,
|
|
Range RHS,
|
|
QualType T) {
|
|
llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue();
|
|
|
|
Range ConservativeRange = getSymmetricalRange(RHS, T);
|
|
|
|
llvm::APSInt Max = ConservativeRange.To();
|
|
llvm::APSInt Min = ConservativeRange.From();
|
|
|
|
if (Max == Zero) {
|
|
// It's an undefined behaviour to divide by 0 and it seems like we know
|
|
// for sure that RHS is 0. Let's say that the resulting range is
|
|
// simply infeasible for that matter.
|
|
return RangeFactory.getEmptySet();
|
|
}
|
|
|
|
// At this point, our conservative range is closed. The result, however,
|
|
// couldn't be greater than the RHS' maximal absolute value. Because of
|
|
// this reason, we turn the range into open (or half-open in case of
|
|
// unsigned integers).
|
|
//
|
|
// While we operate on integer values, an open interval (a, b) can be easily
|
|
// represented by the closed interval [a + 1, b - 1]. And this is exactly
|
|
// what we do next.
|
|
//
|
|
// If we are dealing with unsigned case, we shouldn't move the lower bound.
|
|
if (Min.isSigned()) {
|
|
++Min;
|
|
}
|
|
--Max;
|
|
|
|
bool IsLHSPositiveOrZero = LHS.From() >= Zero;
|
|
bool IsRHSPositiveOrZero = RHS.From() >= Zero;
|
|
|
|
// Remainder operator results with negative operands is implementation
|
|
// defined. Positive cases are much easier to reason about though.
|
|
if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) {
|
|
// If maximal value of LHS is less than maximal value of RHS,
|
|
// the result won't get greater than LHS.To().
|
|
Max = std::min(LHS.To(), Max);
|
|
// We want to check if it is a situation similar to the following:
|
|
//
|
|
// <------------|---[ LHS ]--------[ RHS ]----->
|
|
// -INF 0 +INF
|
|
//
|
|
// In this situation, we can conclude that (LHS / RHS) == 0 and
|
|
// (LHS % RHS) == LHS.
|
|
Min = LHS.To() < RHS.From() ? LHS.From() : Zero;
|
|
}
|
|
|
|
// Nevertheless, the symmetrical range for RHS is a conservative estimate
|
|
// for any sign of either LHS, or RHS.
|
|
return {RangeFactory, ValueFactory.getValue(Min), ValueFactory.getValue(Max)};
|
|
}
|
|
|
|
class RangeConstraintManager : public RangedConstraintManager {
|
|
public:
|
|
RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB)
|
|
: RangedConstraintManager(EE, SVB) {}
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from ConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
bool haveEqualConstraints(ProgramStateRef S1,
|
|
ProgramStateRef S2) const override {
|
|
return S1->get<ConstraintRange>() == S2->get<ConstraintRange>();
|
|
}
|
|
|
|
bool canReasonAbout(SVal X) const override;
|
|
|
|
ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override;
|
|
|
|
const llvm::APSInt *getSymVal(ProgramStateRef State,
|
|
SymbolRef Sym) const override;
|
|
|
|
ProgramStateRef removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) override;
|
|
|
|
void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n",
|
|
unsigned int Space = 0, bool IsDot = false) const override;
|
|
|
|
//===------------------------------------------------------------------===//
|
|
// Implementation for interface from RangedConstraintManager.
|
|
//===------------------------------------------------------------------===//
|
|
|
|
ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym,
|
|
const llvm::APSInt &V,
|
|
const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
ProgramStateRef assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) override;
|
|
|
|
private:
|
|
RangeSet::Factory F;
|
|
|
|
RangeSet getRange(ProgramStateRef State, SymbolRef Sym);
|
|
|
|
RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<ConstraintManager>
|
|
ento::CreateRangeConstraintManager(ProgramStateManager &StMgr,
|
|
ExprEngine *Eng) {
|
|
return std::make_unique<RangeConstraintManager>(Eng, StMgr.getSValBuilder());
|
|
}
|
|
|
|
bool RangeConstraintManager::canReasonAbout(SVal X) const {
|
|
Optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>();
|
|
if (SymVal && SymVal->isExpression()) {
|
|
const SymExpr *SE = SymVal->getSymbol();
|
|
|
|
if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(SE)) {
|
|
switch (SIE->getOpcode()) {
|
|
// We don't reason yet about bitwise-constraints on symbolic values.
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
return false;
|
|
// We don't reason yet about these arithmetic constraints on
|
|
// symbolic values.
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_Rem:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
return false;
|
|
// All other cases.
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(SE)) {
|
|
// FIXME: Handle <=> here.
|
|
if (BinaryOperator::isEqualityOp(SSE->getOpcode()) ||
|
|
BinaryOperator::isRelationalOp(SSE->getOpcode())) {
|
|
// We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc.
|
|
// We've recently started producing Loc <> NonLoc comparisons (that
|
|
// result from casts of one of the operands between eg. intptr_t and
|
|
// void *), but we can't reason about them yet.
|
|
if (Loc::isLocType(SSE->getLHS()->getType())) {
|
|
return Loc::isLocType(SSE->getRHS()->getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
const RangeSet *Ranges = State->get<ConstraintRange>(Sym);
|
|
|
|
// If we don't have any information about this symbol, it's underconstrained.
|
|
if (!Ranges)
|
|
return ConditionTruthVal();
|
|
|
|
// If we have a concrete value, see if it's zero.
|
|
if (const llvm::APSInt *Value = Ranges->getConcreteValue())
|
|
return *Value == 0;
|
|
|
|
BasicValueFactory &BV = getBasicVals();
|
|
APSIntType IntType = BV.getAPSIntType(Sym->getType());
|
|
llvm::APSInt Zero = IntType.getZeroValue();
|
|
|
|
// Check if zero is in the set of possible values.
|
|
if (Ranges->Intersect(BV, F, Zero, Zero).isEmpty())
|
|
return false;
|
|
|
|
// Zero is a possible value, but it is not the /only/ possible value.
|
|
return ConditionTruthVal();
|
|
}
|
|
|
|
const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St,
|
|
SymbolRef Sym) const {
|
|
const ConstraintRangeTy::data_type *T = St->get<ConstraintRange>(Sym);
|
|
return T ? T->getConcreteValue() : nullptr;
|
|
}
|
|
|
|
/// Scan all symbols referenced by the constraints. If the symbol is not alive
|
|
/// as marked in LSymbols, mark it as dead in DSymbols.
|
|
ProgramStateRef
|
|
RangeConstraintManager::removeDeadBindings(ProgramStateRef State,
|
|
SymbolReaper &SymReaper) {
|
|
bool Changed = false;
|
|
ConstraintRangeTy CR = State->get<ConstraintRange>();
|
|
ConstraintRangeTy::Factory &CRFactory = State->get_context<ConstraintRange>();
|
|
|
|
for (ConstraintRangeTy::iterator I = CR.begin(), E = CR.end(); I != E; ++I) {
|
|
SymbolRef Sym = I.getKey();
|
|
if (SymReaper.isDead(Sym)) {
|
|
Changed = true;
|
|
CR = CRFactory.remove(CR, Sym);
|
|
}
|
|
}
|
|
|
|
return Changed ? State->set<ConstraintRange>(CR) : State;
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getRange(ProgramStateRef State,
|
|
SymbolRef Sym) {
|
|
return SymbolicRangeInferrer::inferRange(getBasicVals(), F, State, Sym);
|
|
}
|
|
|
|
//===------------------------------------------------------------------------===
|
|
// assumeSymX methods: protected interface for RangeConstraintManager.
|
|
//===------------------------------------------------------------------------===/
|
|
|
|
// The syntax for ranges below is mathematical, using [x, y] for closed ranges
|
|
// and (x, y) for open ranges. These ranges are modular, corresponding with
|
|
// a common treatment of C integer overflow. This means that these methods
|
|
// do not have to worry about overflow; RangeSet::Intersect can handle such a
|
|
// "wraparound" range.
|
|
// As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1,
|
|
// UINT_MAX, 0, 1, and 2.
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return St;
|
|
|
|
llvm::APSInt Lower = AdjustmentType.convert(Int) - Adjustment;
|
|
llvm::APSInt Upper = Lower;
|
|
--Lower;
|
|
++Upper;
|
|
|
|
// [Int-Adjustment+1, Int-Adjustment-1]
|
|
// Notice that the lower bound is greater than the upper bound.
|
|
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, Upper, Lower);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
if (AdjustmentType.testInRange(Int, true) != APSIntType::RTR_Within)
|
|
return nullptr;
|
|
|
|
// [Int-Adjustment, Int-Adjustment]
|
|
llvm::APSInt AdjInt = AdjustmentType.convert(Int) - Adjustment;
|
|
RangeSet New = getRange(St, Sym).Intersect(getBasicVals(), F, AdjInt, AdjInt);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return getRange(St, Sym);
|
|
}
|
|
|
|
// Special case for Int == Min. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
--Upper;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLTRange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGTRange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always false.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return F.getEmptySet();
|
|
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
++Lower;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGTRange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymGERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return getRange(St, Sym);
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return F.getEmptySet();
|
|
}
|
|
|
|
// Special case for Int == Min. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
if (ComparisonVal == Min)
|
|
return getRange(St, Sym);
|
|
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
llvm::APSInt Lower = ComparisonVal - Adjustment;
|
|
llvm::APSInt Upper = Max - Adjustment;
|
|
|
|
return getRange(St, Sym).Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(
|
|
llvm::function_ref<RangeSet()> RS,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
// Before we do any real work, see if the value can even show up.
|
|
APSIntType AdjustmentType(Adjustment);
|
|
switch (AdjustmentType.testInRange(Int, true)) {
|
|
case APSIntType::RTR_Below:
|
|
return F.getEmptySet();
|
|
case APSIntType::RTR_Within:
|
|
break;
|
|
case APSIntType::RTR_Above:
|
|
return RS();
|
|
}
|
|
|
|
// Special case for Int == Max. This is always feasible.
|
|
llvm::APSInt ComparisonVal = AdjustmentType.convert(Int);
|
|
llvm::APSInt Max = AdjustmentType.getMaxValue();
|
|
if (ComparisonVal == Max)
|
|
return RS();
|
|
|
|
llvm::APSInt Min = AdjustmentType.getMinValue();
|
|
llvm::APSInt Lower = Min - Adjustment;
|
|
llvm::APSInt Upper = ComparisonVal - Adjustment;
|
|
|
|
return RS().Intersect(getBasicVals(), F, Lower, Upper);
|
|
}
|
|
|
|
RangeSet RangeConstraintManager::getSymLERange(ProgramStateRef St,
|
|
SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
return getSymLERange([&] { return getRange(St, Sym); }, Int, Adjustment);
|
|
}
|
|
|
|
ProgramStateRef
|
|
RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym,
|
|
const llvm::APSInt &Int,
|
|
const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymLERange(St, Sym, Int, Adjustment);
|
|
return New.isEmpty() ? nullptr : St->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet New = getSymGERange(State, Sym, From, Adjustment);
|
|
if (New.isEmpty())
|
|
return nullptr;
|
|
RangeSet Out = getSymLERange([&] { return New; }, To, Adjustment);
|
|
return Out.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, Out);
|
|
}
|
|
|
|
ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange(
|
|
ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From,
|
|
const llvm::APSInt &To, const llvm::APSInt &Adjustment) {
|
|
RangeSet RangeLT = getSymLTRange(State, Sym, From, Adjustment);
|
|
RangeSet RangeGT = getSymGTRange(State, Sym, To, Adjustment);
|
|
RangeSet New(RangeLT.addRange(F, RangeGT));
|
|
return New.isEmpty() ? nullptr : State->set<ConstraintRange>(Sym, New);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pretty-printing.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State,
|
|
const char *NL, unsigned int Space,
|
|
bool IsDot) const {
|
|
ConstraintRangeTy Constraints = State->get<ConstraintRange>();
|
|
|
|
Indent(Out, Space, IsDot) << "\"constraints\": ";
|
|
if (Constraints.isEmpty()) {
|
|
Out << "null," << NL;
|
|
return;
|
|
}
|
|
|
|
++Space;
|
|
Out << '[' << NL;
|
|
for (ConstraintRangeTy::iterator I = Constraints.begin();
|
|
I != Constraints.end(); ++I) {
|
|
Indent(Out, Space, IsDot)
|
|
<< "{ \"symbol\": \"" << I.getKey() << "\", \"range\": \"";
|
|
I.getData().print(Out);
|
|
Out << "\" }";
|
|
|
|
if (std::next(I) != Constraints.end())
|
|
Out << ',';
|
|
Out << NL;
|
|
}
|
|
|
|
--Space;
|
|
Indent(Out, Space, IsDot) << "]," << NL;
|
|
}
|