Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

211 lines
7.2 KiB
C++

//===--- PtrState.h - ARC State for a Ptr -------------------*- C++ -*-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains declarations for the ARC state associated with a ptr. It
// is only used by the ARC Sequence Dataflow computation. By separating this
// from the actual dataflow, it is easier to consider the mechanics of the ARC
// optimization separate from the actual predicates being used.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TRANSFORMS_OBJCARC_PTRSTATE_H
#define LLVM_LIB_TRANSFORMS_OBJCARC_PTRSTATE_H
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/ObjCARCInstKind.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
namespace llvm {
namespace objcarc {
class ARCMDKindCache;
class ProvenanceAnalysis;
/// \enum Sequence
///
/// \brief A sequence of states that a pointer may go through in which an
/// objc_retain and objc_release are actually needed.
enum Sequence {
S_None,
S_Retain, ///< objc_retain(x).
S_CanRelease, ///< foo(x) -- x could possibly see a ref count decrement.
S_Use, ///< any use of x.
S_Stop, ///< like S_Release, but code motion is stopped.
S_Release, ///< objc_release(x).
S_MovableRelease ///< objc_release(x), !clang.imprecise_release.
};
raw_ostream &operator<<(raw_ostream &OS,
const Sequence S) LLVM_ATTRIBUTE_UNUSED;
/// \brief Unidirectional information about either a
/// retain-decrement-use-release sequence or release-use-decrement-retain
/// reverse sequence.
struct RRInfo {
/// After an objc_retain, the reference count of the referenced
/// object is known to be positive. Similarly, before an objc_release, the
/// reference count of the referenced object is known to be positive. If
/// there are retain-release pairs in code regions where the retain count
/// is known to be positive, they can be eliminated, regardless of any side
/// effects between them.
///
/// Also, a retain+release pair nested within another retain+release
/// pair all on the known same pointer value can be eliminated, regardless
/// of any intervening side effects.
///
/// KnownSafe is true when either of these conditions is satisfied.
bool KnownSafe;
/// True of the objc_release calls are all marked with the "tail" keyword.
bool IsTailCallRelease;
/// If the Calls are objc_release calls and they all have a
/// clang.imprecise_release tag, this is the metadata tag.
MDNode *ReleaseMetadata;
/// For a top-down sequence, the set of objc_retains or
/// objc_retainBlocks. For bottom-up, the set of objc_releases.
SmallPtrSet<Instruction *, 2> Calls;
/// The set of optimal insert positions for moving calls in the opposite
/// sequence.
SmallPtrSet<Instruction *, 2> ReverseInsertPts;
/// If this is true, we cannot perform code motion but can still remove
/// retain/release pairs.
bool CFGHazardAfflicted;
RRInfo()
: KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(nullptr),
CFGHazardAfflicted(false) {}
void clear();
/// Conservatively merge the two RRInfo. Returns true if a partial merge has
/// occurred, false otherwise.
bool Merge(const RRInfo &Other);
};
/// \brief This class summarizes several per-pointer runtime properties which
/// are propagated through the flow graph.
class PtrState {
protected:
/// True if the reference count is known to be incremented.
bool KnownPositiveRefCount;
/// True if we've seen an opportunity for partial RR elimination, such as
/// pushing calls into a CFG triangle or into one side of a CFG diamond.
bool Partial;
/// The current position in the sequence.
unsigned char Seq : 8;
/// Unidirectional information about the current sequence.
RRInfo RRI;
PtrState() : KnownPositiveRefCount(false), Partial(false), Seq(S_None) {}
public:
bool IsKnownSafe() const { return RRI.KnownSafe; }
void SetKnownSafe(const bool NewValue) { RRI.KnownSafe = NewValue; }
bool IsTailCallRelease() const { return RRI.IsTailCallRelease; }
void SetTailCallRelease(const bool NewValue) {
RRI.IsTailCallRelease = NewValue;
}
bool IsTrackingImpreciseReleases() const {
return RRI.ReleaseMetadata != nullptr;
}
const MDNode *GetReleaseMetadata() const { return RRI.ReleaseMetadata; }
void SetReleaseMetadata(MDNode *NewValue) { RRI.ReleaseMetadata = NewValue; }
bool IsCFGHazardAfflicted() const { return RRI.CFGHazardAfflicted; }
void SetCFGHazardAfflicted(const bool NewValue) {
RRI.CFGHazardAfflicted = NewValue;
}
void SetKnownPositiveRefCount();
void ClearKnownPositiveRefCount();
bool HasKnownPositiveRefCount() const { return KnownPositiveRefCount; }
void SetSeq(Sequence NewSeq);
Sequence GetSeq() const { return static_cast<Sequence>(Seq); }
void ClearSequenceProgress() { ResetSequenceProgress(S_None); }
void ResetSequenceProgress(Sequence NewSeq);
void Merge(const PtrState &Other, bool TopDown);
void InsertCall(Instruction *I) { RRI.Calls.insert(I); }
void InsertReverseInsertPt(Instruction *I) { RRI.ReverseInsertPts.insert(I); }
void ClearReverseInsertPts() { RRI.ReverseInsertPts.clear(); }
bool HasReverseInsertPts() const { return !RRI.ReverseInsertPts.empty(); }
const RRInfo &GetRRInfo() const { return RRI; }
};
struct BottomUpPtrState : PtrState {
BottomUpPtrState() : PtrState() {}
/// (Re-)Initialize this bottom up pointer returning true if we detected a
/// pointer with nested releases.
bool InitBottomUp(ARCMDKindCache &Cache, Instruction *I);
/// Return true if this set of releases can be paired with a release. Modifies
/// state appropriately to reflect that the matching occurred if it is
/// successful.
///
/// It is assumed that one has already checked that the RCIdentity of the
/// retain and the RCIdentity of this ptr state are the same.
bool MatchWithRetain();
void HandlePotentialUse(BasicBlock *BB, Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, ARCInstKind Class);
bool HandlePotentialAlterRefCount(Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, ARCInstKind Class);
};
struct TopDownPtrState : PtrState {
TopDownPtrState() : PtrState() {}
/// (Re-)Initialize this bottom up pointer returning true if we detected a
/// pointer with nested releases.
bool InitTopDown(ARCInstKind Kind, Instruction *I);
/// Return true if this set of retains can be paired with the given
/// release. Modifies state appropriately to reflect that the matching
/// occurred.
bool MatchWithRelease(ARCMDKindCache &Cache, Instruction *Release);
void HandlePotentialUse(Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, ARCInstKind Class);
bool HandlePotentialAlterRefCount(Instruction *Inst, const Value *Ptr,
ProvenanceAnalysis &PA, ARCInstKind Class);
};
} // end namespace objcarc
} // end namespace llvm
#endif