llvm-project/mlir/lib/Transforms/LoopFusion.cpp
Jacques Pienaar cc9a6ed09d Initialize Pass with PassID.
The passID is not currently stored in Pass but this avoids the unused variable warning. The passID is used to uniquely identify passes, currently this is only stored/used in PassInfo.

PiperOrigin-RevId: 220485662
2019-03-29 13:50:34 -07:00

250 lines
9.7 KiB
C++

//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements loop fusion.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/StmtVisitor.h"
#include "mlir/Pass.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
namespace {
/// Loop fusion pass. This pass fuses adjacent loops in MLFunctions which
/// access the same memref with no dependences.
// See MatchTestPattern for details on candidate loop selection.
// TODO(andydavis) Extend this pass to check for fusion preventing dependences,
// and add support for more general loop fusion algorithms.
struct LoopFusion : public FunctionPass {
LoopFusion() : FunctionPass(&LoopFusion::passID) {}
PassResult runOnMLFunction(MLFunction *f) override;
static char passID;
};
// LoopCollector walks the statements in an MLFunction and builds a map from
// StmtBlocks to a list of loops within the StmtBlock, and a map from ForStmts
// to the list of loads and stores with its StmtBlock.
class LoopCollector : public StmtWalker<LoopCollector> {
public:
DenseMap<StmtBlock *, SmallVector<ForStmt *, 2>> loopMap;
DenseMap<ForStmt *, SmallVector<OperationStmt *, 2>> loadsAndStoresMap;
bool hasIfStmt = false;
void visitForStmt(ForStmt *forStmt) {
loopMap[forStmt->getBlock()].push_back(forStmt);
}
void visitIfStmt(IfStmt *ifStmt) { hasIfStmt = true; }
void visitOperationStmt(OperationStmt *opStmt) {
if (auto *parentStmt = opStmt->getParentStmt()) {
if (auto *parentForStmt = dyn_cast<ForStmt>(parentStmt)) {
if (opStmt->isa<LoadOp>() || opStmt->isa<StoreOp>()) {
loadsAndStoresMap[parentForStmt].push_back(opStmt);
}
}
}
}
};
} // end anonymous namespace
char LoopFusion::passID = 0;
FunctionPass *mlir::createLoopFusionPass() { return new LoopFusion; }
// TODO(andydavis) Remove the following test code when more general loop
// fusion is supported.
struct FusionCandidate {
// Loop nest of ForStmts with 'accessA' in the inner-most loop.
SmallVector<ForStmt *, 2> forStmtsA;
// Load or store operation within loop nest 'forStmtsA'.
MemRefAccess accessA;
// Loop nest of ForStmts with 'accessB' in the inner-most loop.
SmallVector<ForStmt *, 2> forStmtsB;
// Load or store operation within loop nest 'forStmtsB'.
MemRefAccess accessB;
};
static void getSingleMemRefAccess(OperationStmt *loadOrStoreOpStmt,
MemRefAccess *access) {
if (auto loadOp = loadOrStoreOpStmt->dyn_cast<LoadOp>()) {
access->memref = cast<MLValue>(loadOp->getMemRef());
access->opStmt = loadOrStoreOpStmt;
auto loadMemrefType = loadOp->getMemRefType();
access->indices.reserve(loadMemrefType.getRank());
for (auto *index : loadOp->getIndices()) {
access->indices.push_back(cast<MLValue>(index));
}
} else {
assert(loadOrStoreOpStmt->isa<StoreOp>());
auto storeOp = loadOrStoreOpStmt->dyn_cast<StoreOp>();
access->opStmt = loadOrStoreOpStmt;
access->memref = cast<MLValue>(storeOp->getMemRef());
auto storeMemrefType = storeOp->getMemRefType();
access->indices.reserve(storeMemrefType.getRank());
for (auto *index : storeOp->getIndices()) {
access->indices.push_back(cast<MLValue>(index));
}
}
}
// Checks if 'forStmtA' and 'forStmtB' match specific test criterion:
// constant loop bounds, no nested loops, single StoreOp in 'forStmtA' and
// a single LoadOp in 'forStmtB'.
// Returns true if the test pattern matches, false otherwise.
static bool MatchTestPatternLoopPair(LoopCollector *lc,
FusionCandidate *candidate,
ForStmt *forStmtA, ForStmt *forStmtB) {
if (forStmtA == nullptr || forStmtB == nullptr)
return false;
// Return if 'forStmtA' and 'forStmtB' do not have matching constant
// bounds and step.
if (!forStmtA->hasConstantBounds() || !forStmtB->hasConstantBounds() ||
forStmtA->getConstantLowerBound() != forStmtB->getConstantLowerBound() ||
forStmtA->getConstantUpperBound() != forStmtB->getConstantUpperBound() ||
forStmtA->getStep() != forStmtB->getStep())
return false;
// Return if 'forStmtA' or 'forStmtB' have nested loops.
if (lc->loopMap.count(forStmtA) > 0 || lc->loopMap.count(forStmtB))
return false;
// Return if 'forStmtA' or 'forStmtB' do not have exactly one load or store.
if (lc->loadsAndStoresMap[forStmtA].size() != 1 ||
lc->loadsAndStoresMap[forStmtB].size() != 1)
return false;
// Get load/store access for forStmtA.
getSingleMemRefAccess(lc->loadsAndStoresMap[forStmtA][0],
&candidate->accessA);
// Return if 'accessA' is not a store.
if (!candidate->accessA.opStmt->isa<StoreOp>())
return false;
// Get load/store access for forStmtB.
getSingleMemRefAccess(lc->loadsAndStoresMap[forStmtB][0],
&candidate->accessB);
// Return if accesses do not access the same memref.
if (candidate->accessA.memref != candidate->accessB.memref)
return false;
candidate->forStmtsA.push_back(forStmtA);
candidate->forStmtsB.push_back(forStmtB);
return true;
}
// Returns the child ForStmt of 'parent' if unique, returns false otherwise.
ForStmt *getSingleForStmtChild(ForStmt *parent) {
if (parent->getStatements().size() == 1 && isa<ForStmt>(parent->front()))
return dyn_cast<ForStmt>(&parent->front());
return nullptr;
}
// Checks for a specific ForStmt/OpStatment test pattern in 'f', returns true
// on success and resturns fusion candidate in 'candidate'. Returns false
// otherwise.
// Currently supported test patterns:
// *) Adjacent loops with a StoreOp the only op in first loop, and a LoadOp the
// only op in the second loop (both load/store accessing the same memref).
// *) As above, but with one level of perfect loop nesting.
//
// TODO(andydavis) Look into using ntv@ pattern matcher here.
static bool MatchTestPattern(MLFunction *f, FusionCandidate *candidate) {
LoopCollector lc;
lc.walk(f);
// Return if an IfStmt was found or if less than two ForStmts were found.
if (lc.hasIfStmt || lc.loopMap.count(f) == 0 || lc.loopMap[f].size() < 2)
return false;
auto *forStmtA = lc.loopMap[f][0];
auto *forStmtB = lc.loopMap[f][1];
if (!MatchTestPatternLoopPair(&lc, candidate, forStmtA, forStmtB)) {
// Check for one level of loop nesting.
candidate->forStmtsA.push_back(forStmtA);
candidate->forStmtsB.push_back(forStmtB);
return MatchTestPatternLoopPair(&lc, candidate,
getSingleForStmtChild(forStmtA),
getSingleForStmtChild(forStmtB));
}
return true;
}
// FuseLoops implements the code generation mechanics of loop fusion.
// Fuses the operations statments from the inner-most loop in 'c.forStmtsB',
// by cloning them into the inner-most loop in 'c.forStmtsA', then erasing
// old statements and loops.
static void fuseLoops(const FusionCandidate &c) {
MLFuncBuilder builder(c.forStmtsA.back(),
StmtBlock::iterator(c.forStmtsA.back()->end()));
DenseMap<const MLValue *, MLValue *> operandMap;
assert(c.forStmtsA.size() == c.forStmtsB.size());
for (unsigned i = 0, e = c.forStmtsA.size(); i < e; i++) {
// Map loop IVs to 'forStmtB[i]' to loop IV for 'forStmtA[i]'.
operandMap[c.forStmtsB[i]] = c.forStmtsA[i];
}
// Clone the body of inner-most loop in 'forStmtsB', into the body of
// inner-most loop in 'forStmtsA'.
SmallVector<Statement *, 2> stmtsToErase;
auto *innerForStmtB = c.forStmtsB.back();
for (auto &stmt : *innerForStmtB) {
builder.clone(stmt, operandMap);
stmtsToErase.push_back(&stmt);
}
// Erase 'forStmtB' and its statement list.
for (auto it = stmtsToErase.rbegin(); it != stmtsToErase.rend(); ++it)
(*it)->erase();
// Erase 'forStmtsB' loop nest.
for (int i = static_cast<int>(c.forStmtsB.size()) - 1; i >= 0; --i)
c.forStmtsB[i]->erase();
}
PassResult LoopFusion::runOnMLFunction(MLFunction *f) {
FusionCandidate candidate;
if (!MatchTestPattern(f, &candidate))
return failure();
// TODO(andydavis) Add checks for fusion-preventing dependences and ordering
// constraints which would prevent fusion.
// TODO(andydavis) This check if overly conservative for now. Support fusing
// statements with compatible dependences (i.e. statements where the
// dependence between the statements does not reverse direction when the
// statements are fused into the same loop).
if (!checkMemrefAccessDependence(candidate.accessA, candidate.accessB)) {
// Current conservatinve test policy: No dependence exists between accesses
// in different loop nests -> fuse loops.
fuseLoops(candidate);
}
return success();
}
static PassRegistration<LoopFusion> pass("loop-fusion", "Fuse loop nests");