llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
Abid Qadeer cd12ffb622
[mlir][debug] Allow multiple DIGlobalVariableExpression on globals. (#111981)
Currently, we allow only one DIGlobalVariableExpressionAttr per global.
It is especially evident in import where we pick the first from the list
and ignore the rest. In contrast, LLVM allows multiple
DIGlobalVariableExpression to be attached to the global. They are needed
for correct working of things like DICommonBlock. This PR removes this
restriction in mlir. Changes are mostly mechanical. One thing on which I
went a bit back and forth was the representation inside GlobalOp. I
would be happy to change if there are better ways to do this.

---------

Co-authored-by: Tobias Gysi <tobias.gysi@nextsilicon.com>
2024-10-13 23:36:00 +01:00

2021 lines
81 KiB
C++

//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "AttrKindDetail.h"
#include "DebugTranslation.h"
#include "LoopAnnotationTranslation.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMInterfaces.h"
#include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h"
#include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/OpenMP/OpenMPInterfaces.h"
#include "mlir/IR/AttrTypeSubElements.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectResourceBlobManager.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Target/LLVMIR/LLVMTranslationInterface.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <optional>
#define DEBUG_TYPE "llvm-dialect-to-llvm-ir"
using namespace mlir;
using namespace mlir::LLVM;
using namespace mlir::LLVM::detail;
extern llvm::cl::opt<bool> UseNewDbgInfoFormat;
#include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc"
namespace {
/// A customized inserter for LLVM's IRBuilder that captures all LLVM IR
/// instructions that are created for future reference.
///
/// This is intended to be used with the `CollectionScope` RAII object:
///
/// llvm::IRBuilder<..., InstructionCapturingInserter> builder;
/// {
/// InstructionCapturingInserter::CollectionScope scope(builder);
/// // Call IRBuilder methods as usual.
///
/// // This will return a list of all instructions created by the builder,
/// // in order of creation.
/// builder.getInserter().getCapturedInstructions();
/// }
/// // This will return an empty list.
/// builder.getInserter().getCapturedInstructions();
///
/// The capturing functionality is _disabled_ by default for performance
/// consideration. It needs to be explicitly enabled, which is achieved by
/// creating a `CollectionScope`.
class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter {
public:
/// Constructs the inserter.
InstructionCapturingInserter()
: llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) {
if (LLVM_LIKELY(enabled))
capturedInstructions.push_back(instruction);
}) {}
/// Returns the list of LLVM IR instructions captured since the last cleanup.
ArrayRef<llvm::Instruction *> getCapturedInstructions() const {
return capturedInstructions;
}
/// Clears the list of captured LLVM IR instructions.
void clearCapturedInstructions() { capturedInstructions.clear(); }
/// RAII object enabling the capture of created LLVM IR instructions.
class CollectionScope {
public:
/// Creates the scope for the given inserter.
CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing);
/// Ends the scope.
~CollectionScope();
ArrayRef<llvm::Instruction *> getCapturedInstructions() {
if (!inserter)
return {};
return inserter->getCapturedInstructions();
}
private:
/// Back reference to the inserter.
InstructionCapturingInserter *inserter = nullptr;
/// List of instructions in the inserter prior to this scope.
SmallVector<llvm::Instruction *> previouslyCollectedInstructions;
/// Whether the inserter was enabled prior to this scope.
bool wasEnabled;
};
/// Enable or disable the capturing mechanism.
void setEnabled(bool enabled = true) { this->enabled = enabled; }
private:
/// List of captured instructions.
SmallVector<llvm::Instruction *> capturedInstructions;
/// Whether the collection is enabled.
bool enabled = false;
};
using CapturingIRBuilder =
llvm::IRBuilder<llvm::ConstantFolder, InstructionCapturingInserter>;
} // namespace
InstructionCapturingInserter::CollectionScope::CollectionScope(
llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) {
if (!isBuilderCapturing)
return;
auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder);
inserter = &capturingIRBuilder.getInserter();
wasEnabled = inserter->enabled;
if (wasEnabled)
previouslyCollectedInstructions.swap(inserter->capturedInstructions);
inserter->setEnabled(true);
}
InstructionCapturingInserter::CollectionScope::~CollectionScope() {
if (!inserter)
return;
previouslyCollectedInstructions.swap(inserter->capturedInstructions);
// If collection was enabled (likely in another, surrounding scope), keep
// the instructions collected in this scope.
if (wasEnabled) {
llvm::append_range(inserter->capturedInstructions,
previouslyCollectedInstructions);
}
inserter->setEnabled(wasEnabled);
}
/// Translates the given data layout spec attribute to the LLVM IR data layout.
/// Only integer, float, pointer and endianness entries are currently supported.
static FailureOr<llvm::DataLayout>
translateDataLayout(DataLayoutSpecInterface attribute,
const DataLayout &dataLayout,
std::optional<Location> loc = std::nullopt) {
if (!loc)
loc = UnknownLoc::get(attribute.getContext());
// Translate the endianness attribute.
std::string llvmDataLayout;
llvm::raw_string_ostream layoutStream(llvmDataLayout);
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey());
if (!key)
continue;
if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) {
auto value = cast<StringAttr>(entry.getValue());
bool isLittleEndian =
value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle;
layoutStream << "-" << (isLittleEndian ? "e" : "E");
continue;
}
if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) {
auto value = cast<IntegerAttr>(entry.getValue());
uint64_t space = value.getValue().getZExtValue();
// Skip the default address space.
if (space == 0)
continue;
layoutStream << "-P" << space;
continue;
}
if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) {
auto value = cast<IntegerAttr>(entry.getValue());
uint64_t space = value.getValue().getZExtValue();
// Skip the default address space.
if (space == 0)
continue;
layoutStream << "-G" << space;
continue;
}
if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) {
auto value = cast<IntegerAttr>(entry.getValue());
uint64_t space = value.getValue().getZExtValue();
// Skip the default address space.
if (space == 0)
continue;
layoutStream << "-A" << space;
continue;
}
if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) {
auto value = cast<IntegerAttr>(entry.getValue());
uint64_t alignment = value.getValue().getZExtValue();
// Skip the default stack alignment.
if (alignment == 0)
continue;
layoutStream << "-S" << alignment;
continue;
}
emitError(*loc) << "unsupported data layout key " << key;
return failure();
}
// Go through the list of entries to check which types are explicitly
// specified in entries. Where possible, data layout queries are used instead
// of directly inspecting the entries.
for (DataLayoutEntryInterface entry : attribute.getEntries()) {
auto type = llvm::dyn_cast_if_present<Type>(entry.getKey());
if (!type)
continue;
// Data layout for the index type is irrelevant at this point.
if (isa<IndexType>(type))
continue;
layoutStream << "-";
LogicalResult result =
llvm::TypeSwitch<Type, LogicalResult>(type)
.Case<IntegerType, Float16Type, Float32Type, Float64Type,
Float80Type, Float128Type>([&](Type type) -> LogicalResult {
if (auto intType = dyn_cast<IntegerType>(type)) {
if (intType.getSignedness() != IntegerType::Signless)
return emitError(*loc)
<< "unsupported data layout for non-signless integer "
<< intType;
layoutStream << "i";
} else {
layoutStream << "f";
}
uint64_t size = dataLayout.getTypeSizeInBits(type);
uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
uint64_t preferred =
dataLayout.getTypePreferredAlignment(type) * 8u;
layoutStream << size << ":" << abi;
if (abi != preferred)
layoutStream << ":" << preferred;
return success();
})
.Case([&](LLVMPointerType type) {
layoutStream << "p" << type.getAddressSpace() << ":";
uint64_t size = dataLayout.getTypeSizeInBits(type);
uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u;
uint64_t preferred =
dataLayout.getTypePreferredAlignment(type) * 8u;
uint64_t index = *dataLayout.getTypeIndexBitwidth(type);
layoutStream << size << ":" << abi << ":" << preferred << ":"
<< index;
return success();
})
.Default([loc](Type type) {
return emitError(*loc)
<< "unsupported type in data layout: " << type;
});
if (failed(result))
return failure();
}
StringRef layoutSpec(llvmDataLayout);
if (layoutSpec.starts_with("-"))
layoutSpec = layoutSpec.drop_front();
return llvm::DataLayout(layoutSpec);
}
/// Builds a constant of a sequential LLVM type `type`, potentially containing
/// other sequential types recursively, from the individual constant values
/// provided in `constants`. `shape` contains the number of elements in nested
/// sequential types. Reports errors at `loc` and returns nullptr on error.
static llvm::Constant *
buildSequentialConstant(ArrayRef<llvm::Constant *> &constants,
ArrayRef<int64_t> shape, llvm::Type *type,
Location loc) {
if (shape.empty()) {
llvm::Constant *result = constants.front();
constants = constants.drop_front();
return result;
}
llvm::Type *elementType;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
elementType = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
elementType = vectorTy->getElementType();
} else {
emitError(loc) << "expected sequential LLVM types wrapping a scalar";
return nullptr;
}
SmallVector<llvm::Constant *, 8> nested;
nested.reserve(shape.front());
for (int64_t i = 0; i < shape.front(); ++i) {
nested.push_back(buildSequentialConstant(constants, shape.drop_front(),
elementType, loc));
if (!nested.back())
return nullptr;
}
if (shape.size() == 1 && type->isVectorTy())
return llvm::ConstantVector::get(nested);
return llvm::ConstantArray::get(
llvm::ArrayType::get(elementType, shape.front()), nested);
}
/// Returns the first non-sequential type nested in sequential types.
static llvm::Type *getInnermostElementType(llvm::Type *type) {
do {
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) {
type = arrayTy->getElementType();
} else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) {
type = vectorTy->getElementType();
} else {
return type;
}
} while (true);
}
/// Convert a dense elements attribute to an LLVM IR constant using its raw data
/// storage if possible. This supports elements attributes of tensor or vector
/// type and avoids constructing separate objects for individual values of the
/// innermost dimension. Constants for other dimensions are still constructed
/// recursively. Returns null if constructing from raw data is not supported for
/// this type, e.g., element type is not a power-of-two-sized primitive. Reports
/// other errors at `loc`.
static llvm::Constant *
convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr,
llvm::Type *llvmType,
const ModuleTranslation &moduleTranslation) {
if (!denseElementsAttr)
return nullptr;
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType))
return nullptr;
ShapedType type = denseElementsAttr.getType();
if (type.getNumElements() == 0)
return nullptr;
// Check that the raw data size matches what is expected for the scalar size.
// TODO: in theory, we could repack the data here to keep constructing from
// raw data.
// TODO: we may also need to consider endianness when cross-compiling to an
// architecture where it is different.
int64_t elementByteSize = denseElementsAttr.getRawData().size() /
denseElementsAttr.getNumElements();
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits())
return nullptr;
// Compute the shape of all dimensions but the innermost. Note that the
// innermost dimension may be that of the vector element type.
bool hasVectorElementType = isa<VectorType>(type.getElementType());
int64_t numAggregates =
denseElementsAttr.getNumElements() /
(hasVectorElementType ? 1
: denseElementsAttr.getType().getShape().back());
ArrayRef<int64_t> outerShape = type.getShape();
if (!hasVectorElementType)
outerShape = outerShape.drop_back();
// Handle the case of vector splat, LLVM has special support for it.
if (denseElementsAttr.isSplat() &&
(isa<VectorType>(type) || hasVectorElementType)) {
llvm::Constant *splatValue = LLVM::detail::getLLVMConstant(
innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc,
moduleTranslation);
llvm::Constant *splatVector =
llvm::ConstantDataVector::getSplat(0, splatValue);
SmallVector<llvm::Constant *> constants(numAggregates, splatVector);
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
if (denseElementsAttr.isSplat())
return nullptr;
// In case of non-splat, create a constructor for the innermost constant from
// a piece of raw data.
std::function<llvm::Constant *(StringRef)> buildCstData;
if (isa<TensorType>(type)) {
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
if (vectorElementType && vectorElementType.getRank() == 1) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(
data, vectorElementType.getShape().back(), innermostLLVMType);
};
} else if (!vectorElementType) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
} else if (isa<VectorType>(type)) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
if (!buildCstData)
return nullptr;
// Create innermost constants and defer to the default constant creation
// mechanism for other dimensions.
SmallVector<llvm::Constant *> constants;
int64_t aggregateSize = denseElementsAttr.getType().getShape().back() *
(innermostLLVMType->getScalarSizeInBits() / 8);
constants.reserve(numAggregates);
for (unsigned i = 0; i < numAggregates; ++i) {
StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize,
aggregateSize);
constants.push_back(buildCstData(data));
}
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
/// Convert a dense resource elements attribute to an LLVM IR constant using its
/// raw data storage if possible. This supports elements attributes of tensor or
/// vector type and avoids constructing separate objects for individual values
/// of the innermost dimension. Constants for other dimensions are still
/// constructed recursively. Returns nullptr on failure and emits errors at
/// `loc`.
static llvm::Constant *convertDenseResourceElementsAttr(
Location loc, DenseResourceElementsAttr denseResourceAttr,
llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) {
assert(denseResourceAttr && "expected non-null attribute");
llvm::Type *innermostLLVMType = getInnermostElementType(llvmType);
if (!llvm::ConstantDataSequential::isElementTypeCompatible(
innermostLLVMType)) {
emitError(loc, "no known conversion for innermost element type");
return nullptr;
}
ShapedType type = denseResourceAttr.getType();
assert(type.getNumElements() > 0 && "Expected non-empty elements attribute");
AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob();
if (!blob) {
emitError(loc, "resource does not exist");
return nullptr;
}
ArrayRef<char> rawData = blob->getData();
// Check that the raw data size matches what is expected for the scalar size.
// TODO: in theory, we could repack the data here to keep constructing from
// raw data.
// TODO: we may also need to consider endianness when cross-compiling to an
// architecture where it is different.
int64_t numElements = denseResourceAttr.getType().getNumElements();
int64_t elementByteSize = rawData.size() / numElements;
if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) {
emitError(loc, "raw data size does not match element type size");
return nullptr;
}
// Compute the shape of all dimensions but the innermost. Note that the
// innermost dimension may be that of the vector element type.
bool hasVectorElementType = isa<VectorType>(type.getElementType());
int64_t numAggregates =
numElements / (hasVectorElementType
? 1
: denseResourceAttr.getType().getShape().back());
ArrayRef<int64_t> outerShape = type.getShape();
if (!hasVectorElementType)
outerShape = outerShape.drop_back();
// Create a constructor for the innermost constant from a piece of raw data.
std::function<llvm::Constant *(StringRef)> buildCstData;
if (isa<TensorType>(type)) {
auto vectorElementType = dyn_cast<VectorType>(type.getElementType());
if (vectorElementType && vectorElementType.getRank() == 1) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(
data, vectorElementType.getShape().back(), innermostLLVMType);
};
} else if (!vectorElementType) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataArray::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
} else if (isa<VectorType>(type)) {
buildCstData = [&](StringRef data) {
return llvm::ConstantDataVector::getRaw(data, type.getShape().back(),
innermostLLVMType);
};
}
if (!buildCstData) {
emitError(loc, "unsupported dense_resource type");
return nullptr;
}
// Create innermost constants and defer to the default constant creation
// mechanism for other dimensions.
SmallVector<llvm::Constant *> constants;
int64_t aggregateSize = denseResourceAttr.getType().getShape().back() *
(innermostLLVMType->getScalarSizeInBits() / 8);
constants.reserve(numAggregates);
for (unsigned i = 0; i < numAggregates; ++i) {
StringRef data(rawData.data() + i * aggregateSize, aggregateSize);
constants.push_back(buildCstData(data));
}
ArrayRef<llvm::Constant *> constantsRef = constants;
return buildSequentialConstant(constantsRef, outerShape, llvmType, loc);
}
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. Also, an array attribute with two
/// elements is supported to represent a complex constant. In case of error,
/// report it to `loc` and return nullptr.
llvm::Constant *mlir::LLVM::detail::getLLVMConstant(
llvm::Type *llvmType, Attribute attr, Location loc,
const ModuleTranslation &moduleTranslation) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) {
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
if (!arrayAttr) {
emitError(loc, "expected an array attribute for a struct constant");
return nullptr;
}
SmallVector<llvm::Constant *> structElements;
structElements.reserve(structType->getNumElements());
for (auto [elemType, elemAttr] :
zip_equal(structType->elements(), arrayAttr)) {
llvm::Constant *element =
getLLVMConstant(elemType, elemAttr, loc, moduleTranslation);
if (!element)
return nullptr;
structElements.push_back(element);
}
return llvm::ConstantStruct::get(structType, structElements);
}
// For integer types, we allow a mismatch in sizes as the index type in
// MLIR might have a different size than the index type in the LLVM module.
if (auto intAttr = dyn_cast<IntegerAttr>(attr))
return llvm::ConstantInt::get(
llvmType,
intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth()));
if (auto floatAttr = dyn_cast<FloatAttr>(attr)) {
const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics();
// Special case for 8-bit floats, which are represented by integers due to
// the lack of native fp8 types in LLVM at the moment. Additionally, handle
// targets (like AMDGPU) that don't implement bfloat and convert all bfloats
// to i16.
unsigned floatWidth = APFloat::getSizeInBits(sem);
if (llvmType->isIntegerTy(floatWidth))
return llvm::ConstantInt::get(llvmType,
floatAttr.getValue().bitcastToAPInt());
if (llvmType !=
llvm::Type::getFloatingPointTy(llvmType->getContext(),
floatAttr.getValue().getSemantics())) {
emitError(loc, "FloatAttr does not match expected type of the constant");
return nullptr;
}
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
}
if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr))
return llvm::ConstantExpr::getBitCast(
moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType);
if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) {
llvm::Type *elementType;
uint64_t numElements;
bool isScalable = false;
if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) {
elementType = arrayTy->getElementType();
numElements = arrayTy->getNumElements();
} else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) {
elementType = fVectorTy->getElementType();
numElements = fVectorTy->getNumElements();
} else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) {
elementType = sVectorTy->getElementType();
numElements = sVectorTy->getMinNumElements();
isScalable = true;
} else {
llvm_unreachable("unrecognized constant vector type");
}
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
bool elementTypeSequential =
isa<llvm::ArrayType, llvm::VectorType>(elementType);
llvm::Constant *child = getLLVMConstant(
elementType,
elementTypeSequential ? splatAttr
: splatAttr.getSplatValue<Attribute>(),
loc, moduleTranslation);
if (!child)
return nullptr;
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(
llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child);
if (llvmType->isArrayTy()) {
auto *arrayType = llvm::ArrayType::get(elementType, numElements);
if (child->isZeroValue()) {
return llvm::ConstantAggregateZero::get(arrayType);
} else {
if (llvm::ConstantDataSequential::isElementTypeCompatible(
elementType)) {
// TODO: Handle all compatible types. This code only handles integer.
if (isa<llvm::IntegerType>(elementType)) {
if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) {
if (ci->getBitWidth() == 8) {
SmallVector<int8_t> constants(numElements, ci->getZExtValue());
return llvm::ConstantDataArray::get(elementType->getContext(),
constants);
}
if (ci->getBitWidth() == 16) {
SmallVector<int16_t> constants(numElements, ci->getZExtValue());
return llvm::ConstantDataArray::get(elementType->getContext(),
constants);
}
if (ci->getBitWidth() == 32) {
SmallVector<int32_t> constants(numElements, ci->getZExtValue());
return llvm::ConstantDataArray::get(elementType->getContext(),
constants);
}
if (ci->getBitWidth() == 64) {
SmallVector<int64_t> constants(numElements, ci->getZExtValue());
return llvm::ConstantDataArray::get(elementType->getContext(),
constants);
}
}
}
}
// std::vector is used here to accomodate large number of elements that
// exceed SmallVector capacity.
std::vector<llvm::Constant *> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
}
// Try using raw elements data if possible.
if (llvm::Constant *result =
convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr),
llvmType, moduleTranslation)) {
return result;
}
if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) {
return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType,
moduleTranslation);
}
// Fall back to element-by-element construction otherwise.
if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) {
assert(elementsAttr.getShapedType().hasStaticShape());
assert(!elementsAttr.getShapedType().getShape().empty() &&
"unexpected empty elements attribute shape");
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(elementsAttr.getNumElements());
llvm::Type *innermostType = getInnermostElementType(llvmType);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(
getLLVMConstant(innermostType, n, loc, moduleTranslation));
if (!constants.back())
return nullptr;
}
ArrayRef<llvm::Constant *> constantsRef = constants;
llvm::Constant *result = buildSequentialConstant(
constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc);
assert(constantsRef.empty() && "did not consume all elemental constants");
return result;
}
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
return llvm::ConstantDataArray::get(
moduleTranslation.getLLVMContext(),
ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
ModuleTranslation::ModuleTranslation(Operation *module,
std::unique_ptr<llvm::Module> llvmModule)
: mlirModule(module), llvmModule(std::move(llvmModule)),
debugTranslation(
std::make_unique<DebugTranslation>(module, *this->llvmModule)),
loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>(
*this, *this->llvmModule)),
typeTranslator(this->llvmModule->getContext()),
iface(module->getContext()) {
assert(satisfiesLLVMModule(mlirModule) &&
"mlirModule should honor LLVM's module semantics.");
}
ModuleTranslation::~ModuleTranslation() {
if (ompBuilder)
ompBuilder->finalize();
}
void ModuleTranslation::forgetMapping(Region &region) {
SmallVector<Region *> toProcess;
toProcess.push_back(&region);
while (!toProcess.empty()) {
Region *current = toProcess.pop_back_val();
for (Block &block : *current) {
blockMapping.erase(&block);
for (Value arg : block.getArguments())
valueMapping.erase(arg);
for (Operation &op : block) {
for (Value value : op.getResults())
valueMapping.erase(value);
if (op.hasSuccessors())
branchMapping.erase(&op);
if (isa<LLVM::GlobalOp>(op))
globalsMapping.erase(&op);
if (isa<LLVM::CallOp>(op))
callMapping.erase(&op);
llvm::append_range(
toProcess,
llvm::map_range(op.getRegions(), [](Region &r) { return &r; }));
}
}
}
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
Operation &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator))
return terminator.getOperand(index);
#ifndef NDEBUG
llvm::SmallPtrSet<Block *, 4> seenSuccessors;
for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) {
Block *successor = terminator.getSuccessor(i);
auto branch = cast<BranchOpInterface>(terminator);
SuccessorOperands successorOperands = branch.getSuccessorOperands(i);
assert(
(!seenSuccessors.contains(successor) || successorOperands.empty()) &&
"successors with arguments in LLVM branches must be different blocks");
seenSuccessors.insert(successor);
}
#endif
// For instructions that branch based on a condition value, we need to take
// the operands for the branch that was taken.
if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) {
// For conditional branches, we take the operands from either the "true" or
// the "false" branch.
return condBranchOp.getSuccessor(0) == current
? condBranchOp.getTrueDestOperands()[index]
: condBranchOp.getFalseDestOperands()[index];
}
if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) {
// For switches, we take the operands from either the default case, or from
// the case branch that was taken.
if (switchOp.getDefaultDestination() == current)
return switchOp.getDefaultOperands()[index];
for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations()))
if (i.value() == current)
return switchOp.getCaseOperands(i.index())[index];
}
if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) {
return invokeOp.getNormalDest() == current
? invokeOp.getNormalDestOperands()[index]
: invokeOp.getUnwindDestOperands()[index];
}
llvm_unreachable(
"only branch, switch or invoke operations can be terminators "
"of a block that has successors");
}
/// Connect the PHI nodes to the results of preceding blocks.
void mlir::LLVM::detail::connectPHINodes(Region &region,
const ModuleTranslation &state) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (Block &bb : llvm::drop_begin(region)) {
llvm::BasicBlock *llvmBB = state.lookupBlock(&bb);
auto phis = llvmBB->phis();
auto numArguments = bb.getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto [index, phiNode] : llvm::enumerate(phis)) {
for (auto *pred : bb.getPredecessors()) {
// Find the LLVM IR block that contains the converted terminator
// instruction and use it in the PHI node. Note that this block is not
// necessarily the same as state.lookupBlock(pred), some operations
// (in particular, OpenMP operations using OpenMPIRBuilder) may have
// split the blocks.
llvm::Instruction *terminator =
state.lookupBranch(pred->getTerminator());
assert(terminator && "missing the mapping for a terminator");
phiNode.addIncoming(state.lookupValue(getPHISourceValue(
&bb, pred, numArguments, index)),
terminator->getParent());
}
}
}
}
llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic,
ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) {
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *fn =
llvm::Intrinsic::getOrInsertDeclaration(module, intrinsic, tys);
return builder.CreateCall(fn, args);
}
llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall(
llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation,
Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults,
ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands,
ArrayRef<unsigned> immArgPositions,
ArrayRef<StringLiteral> immArgAttrNames) {
assert(immArgPositions.size() == immArgAttrNames.size() &&
"LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal "
"length");
// Map operands and attributes to LLVM values.
auto operands = moduleTranslation.lookupValues(intrOp->getOperands());
SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size());
for (auto [immArgPos, immArgName] :
llvm::zip(immArgPositions, immArgAttrNames)) {
auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName));
assert(attr.getType().isIntOrFloat() && "expected int or float immarg");
auto *type = moduleTranslation.convertType(attr.getType());
args[immArgPos] = LLVM::detail::getLLVMConstant(
type, attr, intrOp->getLoc(), moduleTranslation);
}
unsigned opArg = 0;
for (auto &arg : args) {
if (!arg)
arg = operands[opArg++];
}
// Resolve overloaded intrinsic declaration.
SmallVector<llvm::Type *> overloadedTypes;
for (unsigned overloadedResultIdx : overloadedResults) {
if (numResults > 1) {
// More than one result is mapped to an LLVM struct.
overloadedTypes.push_back(moduleTranslation.convertType(
llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType())
.getBody()[overloadedResultIdx]));
} else {
overloadedTypes.push_back(
moduleTranslation.convertType(intrOp->getResult(0).getType()));
}
}
for (unsigned overloadedOperandIdx : overloadedOperands)
overloadedTypes.push_back(args[overloadedOperandIdx]->getType());
llvm::Module *module = builder.GetInsertBlock()->getModule();
llvm::Function *llvmIntr = llvm::Intrinsic::getOrInsertDeclaration(
module, intrinsic, overloadedTypes);
return builder.CreateCall(llvmIntr, args);
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.
LogicalResult ModuleTranslation::convertOperation(Operation &op,
llvm::IRBuilderBase &builder,
bool recordInsertions) {
const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op);
if (!opIface)
return op.emitError("cannot be converted to LLVM IR: missing "
"`LLVMTranslationDialectInterface` registration for "
"dialect for op: ")
<< op.getName();
InstructionCapturingInserter::CollectionScope scope(builder,
recordInsertions);
if (failed(opIface->convertOperation(&op, builder, *this)))
return op.emitError("LLVM Translation failed for operation: ")
<< op.getName();
return convertDialectAttributes(&op, scope.getCapturedInstructions());
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet. Uses
/// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have
/// been created for `bb` and included in the block mapping. Inserts new
/// instructions at the end of the block and leaves `builder` in a state
/// suitable for further insertion into the end of the block.
LogicalResult ModuleTranslation::convertBlockImpl(Block &bb,
bool ignoreArguments,
llvm::IRBuilderBase &builder,
bool recordInsertions) {
builder.SetInsertPoint(lookupBlock(&bb));
auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram();
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType();
if (!isCompatibleType(wrappedType))
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(arg.getLoc(), subprogram));
llvm::Type *type = convertType(wrappedType);
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
mapValue(arg, phi);
}
}
// Traverse operations.
for (auto &op : bb) {
// Set the current debug location within the builder.
builder.SetCurrentDebugLocation(
debugTranslation->translateLoc(op.getLoc(), subprogram));
if (failed(convertOperation(op, builder, recordInsertions)))
return failure();
// Set the branch weight metadata on the translated instruction.
if (auto iface = dyn_cast<BranchWeightOpInterface>(op))
setBranchWeightsMetadata(iface);
}
return success();
}
/// A helper method to get the single Block in an operation honoring LLVM's
/// module requirements.
static Block &getModuleBody(Operation *module) {
return module->getRegion(0).front();
}
/// A helper method to decide if a constant must not be set as a global variable
/// initializer. For an external linkage variable, the variable with an
/// initializer is considered externally visible and defined in this module, the
/// variable without an initializer is externally available and is defined
/// elsewhere.
static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage,
llvm::Constant *cst) {
return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage;
}
/// Sets the runtime preemption specifier of `gv` to dso_local if
/// `dsoLocalRequested` is true, otherwise it is left unchanged.
static void addRuntimePreemptionSpecifier(bool dsoLocalRequested,
llvm::GlobalValue *gv) {
if (dsoLocalRequested)
gv->setDSOLocal(true);
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions. Convert llvm.global_ctors and global_dtors ops.
LogicalResult ModuleTranslation::convertGlobals() {
// Mapping from compile unit to its respective set of global variables.
DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars;
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = convertType(op.getType());
llvm::Constant *cst = nullptr;
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(),
*this))) {
return failure();
}
}
auto linkage = convertLinkageToLLVM(op.getLinkage());
// LLVM IR requires constant with linkage other than external or weak
// external to have initializers. If MLIR does not provide an initializer,
// default to undef.
bool dropInitializer = shouldDropGlobalInitializer(linkage, cst);
if (!dropInitializer && !cst)
cst = llvm::UndefValue::get(type);
else if (dropInitializer && cst)
cst = nullptr;
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(),
/*InsertBefore=*/nullptr,
op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel
: llvm::GlobalValue::NotThreadLocal,
op.getAddrSpace(), op.getExternallyInitialized());
if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) {
auto selectorOp = cast<ComdatSelectorOp>(
SymbolTable::lookupNearestSymbolFrom(op, *comdat));
var->setComdat(comdatMapping.lookup(selectorOp));
}
if (op.getUnnamedAddr().has_value())
var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr()));
if (op.getSection().has_value())
var->setSection(*op.getSection());
addRuntimePreemptionSpecifier(op.getDsoLocal(), var);
std::optional<uint64_t> alignment = op.getAlignment();
if (alignment.has_value())
var->setAlignment(llvm::MaybeAlign(alignment.value()));
var->setVisibility(convertVisibilityToLLVM(op.getVisibility_()));
globalsMapping.try_emplace(op, var);
// Add debug information if present.
if (op.getDbgExprs()) {
for (auto exprAttr :
op.getDbgExprs()->getAsRange<DIGlobalVariableExpressionAttr>()) {
llvm::DIGlobalVariableExpression *diGlobalExpr =
debugTranslation->translateGlobalVariableExpression(exprAttr);
llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable();
var->addDebugInfo(diGlobalExpr);
// There is no `globals` field in DICompileUnitAttr which can be
// directly assigned to DICompileUnit. We have to build the list by
// looking at the dbgExpr of all the GlobalOps. The scope of the
// variable is used to get the DICompileUnit in which to add it. But
// there are cases where the scope of a global does not directly point
// to the DICompileUnit and we have to do a bit more work to get to
// it. Some of those cases are:
//
// 1. For the languages that support modules, the scope hierarchy can
// be variable -> DIModule -> DICompileUnit
//
// 2. For the Fortran common block variable, the scope hierarchy can
// be variable -> DICommonBlock -> DISubprogram -> DICompileUnit
//
// 3. For entities like static local variables in C or variable with
// SAVE attribute in Fortran, the scope hierarchy can be
// variable -> DISubprogram -> DICompileUnit
llvm::DIScope *scope = diGlobalVar->getScope();
if (auto *mod = dyn_cast_if_present<llvm::DIModule>(scope))
scope = mod->getScope();
else if (auto *cb = dyn_cast_if_present<llvm::DICommonBlock>(scope)) {
if (auto *sp =
dyn_cast_if_present<llvm::DISubprogram>(cb->getScope()))
scope = sp->getUnit();
} else if (auto *sp = dyn_cast_if_present<llvm::DISubprogram>(scope))
scope = sp->getUnit();
// Get the compile unit (scope) of the the global variable.
if (llvm::DICompileUnit *compileUnit =
dyn_cast_if_present<llvm::DICompileUnit>(scope)) {
// Update the compile unit with this incoming global variable
// expression during the finalizing step later.
allGVars[compileUnit].push_back(diGlobalExpr);
}
}
}
}
// Convert global variable bodies. This is done after all global variables
// have been created in LLVM IR because a global body may refer to another
// global or itself. So all global variables need to be mapped first.
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
[[maybe_unused]] int numConstantsHit = 0;
[[maybe_unused]] int numConstantsErased = 0;
DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap;
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)))
return emitError(op.getLoc(), "fail to convert global initializer");
auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0)));
if (!cst)
return emitError(op.getLoc(), "unemittable constant value");
// When emitting an LLVM constant, a new constant is created and the old
// constant may become dangling and take space. We should remove the
// dangling constants to avoid memory explosion especially for constant
// arrays whose number of elements is large.
// Because multiple operations may refer to the same constant, we need
// to count the number of uses of each constant array and remove it only
// when the count becomes zero.
if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) {
numConstantsHit++;
Value result = op.getResult(0);
int numUsers = std::distance(result.use_begin(), result.use_end());
auto [iterator, inserted] =
constantAggregateUseMap.try_emplace(agg, numUsers);
if (!inserted) {
// Key already exists, update the value
iterator->second += numUsers;
}
}
// Scan the operands of the operation to decrement the use count of
// constants. Erase the constant if the use count becomes zero.
for (Value v : op.getOperands()) {
auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v));
if (!cst)
continue;
auto iter = constantAggregateUseMap.find(cst);
assert(iter != constantAggregateUseMap.end() && "constant not found");
iter->second--;
if (iter->second == 0) {
// NOTE: cannot call removeDeadConstantUsers() here because it
// may remove the constant which has uses not be converted yet.
if (cst->user_empty()) {
cst->destroyConstant();
numConstantsErased++;
}
constantAggregateUseMap.erase(iter);
}
}
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
llvm::Constant *cst =
cast<llvm::Constant>(lookupValue(ret.getOperand(0)));
auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op));
if (!shouldDropGlobalInitializer(global->getLinkage(), cst))
global->setInitializer(cst);
// Try to remove the dangling constants again after all operations are
// converted.
for (auto it : constantAggregateUseMap) {
auto cst = it.first;
cst->removeDeadConstantUsers();
if (cst->user_empty()) {
cst->destroyConstant();
numConstantsErased++;
}
}
LLVM_DEBUG(llvm::dbgs()
<< "Convert initializer for " << op.getName() << "\n";
llvm::dbgs() << numConstantsHit << " new constants hit\n";
llvm::dbgs()
<< numConstantsErased << " dangling constants erased\n";);
}
}
// Convert llvm.mlir.global_ctors and dtors.
for (Operation &op : getModuleBody(mlirModule)) {
auto ctorOp = dyn_cast<GlobalCtorsOp>(op);
auto dtorOp = dyn_cast<GlobalDtorsOp>(op);
if (!ctorOp && !dtorOp)
continue;
auto range = ctorOp ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities())
: llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities());
auto appendGlobalFn =
ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors;
for (auto symbolAndPriority : range) {
llvm::Function *f = lookupFunction(
cast<FlatSymbolRefAttr>(std::get<0>(symbolAndPriority)).getValue());
appendGlobalFn(*llvmModule, f,
cast<IntegerAttr>(std::get<1>(symbolAndPriority)).getInt(),
/*Data=*/nullptr);
}
}
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>())
if (failed(convertDialectAttributes(op, {})))
return failure();
// Finally, update the compile units their respective sets of global variables
// created earlier.
for (const auto &[compileUnit, globals] : allGVars) {
compileUnit->replaceGlobalVariables(
llvm::MDTuple::get(getLLVMContext(), globals));
}
return success();
}
/// Attempts to add an attribute identified by `key`, optionally with the given
/// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the
/// attribute has a kind known to LLVM IR, create the attribute of this kind,
/// otherwise keep it as a string attribute. Performs additional checks for
/// attributes known to have or not have a value in order to avoid assertions
/// inside LLVM upon construction.
static LogicalResult checkedAddLLVMFnAttribute(Location loc,
llvm::Function *llvmFunc,
StringRef key,
StringRef value = StringRef()) {
auto kind = llvm::Attribute::getAttrKindFromName(key);
if (kind == llvm::Attribute::None) {
llvmFunc->addFnAttr(key, value);
return success();
}
if (llvm::Attribute::isIntAttrKind(kind)) {
if (value.empty())
return emitError(loc) << "LLVM attribute '" << key << "' expects a value";
int64_t result;
if (!value.getAsInteger(/*Radix=*/0, result))
llvmFunc->addFnAttr(
llvm::Attribute::get(llvmFunc->getContext(), kind, result));
else
llvmFunc->addFnAttr(key, value);
return success();
}
if (!value.empty())
return emitError(loc) << "LLVM attribute '" << key
<< "' does not expect a value, found '" << value
<< "'";
llvmFunc->addFnAttr(kind);
return success();
}
/// Return a representation of `value` as metadata.
static llvm::Metadata *convertIntegerToMetadata(llvm::LLVMContext &context,
const llvm::APInt &value) {
llvm::Constant *constant = llvm::ConstantInt::get(context, value);
return llvm::ConstantAsMetadata::get(constant);
}
/// Return a representation of `value` as an MDNode.
static llvm::MDNode *convertIntegerToMDNode(llvm::LLVMContext &context,
const llvm::APInt &value) {
return llvm::MDNode::get(context, convertIntegerToMetadata(context, value));
}
/// Return an MDNode encoding `vec_type_hint` metadata.
static llvm::MDNode *convertVecTypeHintToMDNode(llvm::LLVMContext &context,
llvm::Type *type,
bool isSigned) {
llvm::Metadata *typeMD =
llvm::ConstantAsMetadata::get(llvm::UndefValue::get(type));
llvm::Metadata *isSignedMD =
convertIntegerToMetadata(context, llvm::APInt(32, isSigned ? 1 : 0));
return llvm::MDNode::get(context, {typeMD, isSignedMD});
}
/// Return an MDNode with a tuple given by the values in `values`.
static llvm::MDNode *convertIntegerArrayToMDNode(llvm::LLVMContext &context,
ArrayRef<int32_t> values) {
SmallVector<llvm::Metadata *> mdValues;
llvm::transform(
values, std::back_inserter(mdValues), [&context](int32_t value) {
return convertIntegerToMetadata(context, llvm::APInt(32, value));
});
return llvm::MDNode::get(context, mdValues);
}
/// Attaches the attributes listed in the given array attribute to `llvmFunc`.
/// Reports error to `loc` if any and returns immediately. Expects `attributes`
/// to be an array attribute containing either string attributes, treated as
/// value-less LLVM attributes, or array attributes containing two string
/// attributes, with the first string being the name of the corresponding LLVM
/// attribute and the second string beings its value. Note that even integer
/// attributes are expected to have their values expressed as strings.
static LogicalResult
forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes,
llvm::Function *llvmFunc) {
if (!attributes)
return success();
for (Attribute attr : *attributes) {
if (auto stringAttr = dyn_cast<StringAttr>(attr)) {
if (failed(
checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue())))
return failure();
continue;
}
auto arrayAttr = dyn_cast<ArrayAttr>(attr);
if (!arrayAttr || arrayAttr.size() != 2)
return emitError(loc)
<< "expected 'passthrough' to contain string or array attributes";
auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]);
auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]);
if (!keyAttr || !valueAttr)
return emitError(loc)
<< "expected arrays within 'passthrough' to contain two strings";
if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(),
valueAttr.getValue())))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block, branch value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
branchMapping.clear();
llvm::Function *llvmFunc = lookupFunction(func.getName());
// Add function arguments to the value remapping table.
for (auto [mlirArg, llvmArg] :
llvm::zip(func.getArguments(), llvmFunc->args()))
mapValue(mlirArg, &llvmArg);
// Check the personality and set it.
if (func.getPersonality()) {
llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext());
if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(),
func.getLoc(), *this))
llvmFunc->setPersonalityFn(pfunc);
}
if (std::optional<StringRef> section = func.getSection())
llvmFunc->setSection(*section);
if (func.getArmStreaming())
llvmFunc->addFnAttr("aarch64_pstate_sm_enabled");
else if (func.getArmLocallyStreaming())
llvmFunc->addFnAttr("aarch64_pstate_sm_body");
else if (func.getArmStreamingCompatible())
llvmFunc->addFnAttr("aarch64_pstate_sm_compatible");
if (func.getArmNewZa())
llvmFunc->addFnAttr("aarch64_new_za");
else if (func.getArmInZa())
llvmFunc->addFnAttr("aarch64_in_za");
else if (func.getArmOutZa())
llvmFunc->addFnAttr("aarch64_out_za");
else if (func.getArmInoutZa())
llvmFunc->addFnAttr("aarch64_inout_za");
else if (func.getArmPreservesZa())
llvmFunc->addFnAttr("aarch64_preserves_za");
if (auto targetCpu = func.getTargetCpu())
llvmFunc->addFnAttr("target-cpu", *targetCpu);
if (auto tuneCpu = func.getTuneCpu())
llvmFunc->addFnAttr("tune-cpu", *tuneCpu);
if (auto targetFeatures = func.getTargetFeatures())
llvmFunc->addFnAttr("target-features", targetFeatures->getFeaturesString());
if (auto attr = func.getVscaleRange())
llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs(
getLLVMContext(), attr->getMinRange().getInt(),
attr->getMaxRange().getInt()));
if (auto unsafeFpMath = func.getUnsafeFpMath())
llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath));
if (auto noInfsFpMath = func.getNoInfsFpMath())
llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath));
if (auto noNansFpMath = func.getNoNansFpMath())
llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath));
if (auto approxFuncFpMath = func.getApproxFuncFpMath())
llvmFunc->addFnAttr("approx-func-fp-math",
llvm::toStringRef(*approxFuncFpMath));
if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath())
llvmFunc->addFnAttr("no-signed-zeros-fp-math",
llvm::toStringRef(*noSignedZerosFpMath));
if (auto denormalFpMath = func.getDenormalFpMath())
llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath);
if (auto denormalFpMathF32 = func.getDenormalFpMathF32())
llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32);
if (auto fpContract = func.getFpContract())
llvmFunc->addFnAttr("fp-contract", *fpContract);
// Add function attribute frame-pointer, if found.
if (FramePointerKindAttr attr = func.getFramePointerAttr())
llvmFunc->addFnAttr("frame-pointer",
LLVM::framePointerKind::stringifyFramePointerKind(
(attr.getFramePointerKind())));
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
mapBlock(&bb, llvmBB);
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = getBlocksSortedByDominance(func.getBody());
for (Block *bb : blocks) {
CapturingIRBuilder builder(llvmContext);
if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder,
/*recordInsertions=*/true)))
return failure();
}
// After all blocks have been traversed and values mapped, connect the PHI
// nodes to the results of preceding blocks.
detail::connectPHINodes(func.getBody(), *this);
// Finally, convert dialect attributes attached to the function.
return convertDialectAttributes(func, {});
}
LogicalResult ModuleTranslation::convertDialectAttributes(
Operation *op, ArrayRef<llvm::Instruction *> instructions) {
for (NamedAttribute attribute : op->getDialectAttrs())
if (failed(iface.amendOperation(op, instructions, attribute, *this)))
return failure();
return success();
}
/// Converts memory effect attributes from `func` and attaches them to
/// `llvmFunc`.
static void convertFunctionMemoryAttributes(LLVMFuncOp func,
llvm::Function *llvmFunc) {
if (!func.getMemoryEffects())
return;
MemoryEffectsAttr memEffects = func.getMemoryEffectsAttr();
// Add memory effects incrementally.
llvm::MemoryEffects newMemEffects =
llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem,
convertModRefInfoToLLVM(memEffects.getArgMem()));
newMemEffects |= llvm::MemoryEffects(
llvm::MemoryEffects::Location::InaccessibleMem,
convertModRefInfoToLLVM(memEffects.getInaccessibleMem()));
newMemEffects |=
llvm::MemoryEffects(llvm::MemoryEffects::Location::Other,
convertModRefInfoToLLVM(memEffects.getOther()));
llvmFunc->setMemoryEffects(newMemEffects);
}
/// Converts function attributes from `func` and attaches them to `llvmFunc`.
static void convertFunctionAttributes(LLVMFuncOp func,
llvm::Function *llvmFunc) {
if (func.getNoInlineAttr())
llvmFunc->addFnAttr(llvm::Attribute::NoInline);
if (func.getAlwaysInlineAttr())
llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline);
if (func.getOptimizeNoneAttr())
llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone);
if (func.getConvergentAttr())
llvmFunc->addFnAttr(llvm::Attribute::Convergent);
if (func.getNoUnwindAttr())
llvmFunc->addFnAttr(llvm::Attribute::NoUnwind);
if (func.getWillReturnAttr())
llvmFunc->addFnAttr(llvm::Attribute::WillReturn);
convertFunctionMemoryAttributes(func, llvmFunc);
}
/// Converts function attributes from `func` and attaches them to `llvmFunc`.
static void convertFunctionKernelAttributes(LLVMFuncOp func,
llvm::Function *llvmFunc,
ModuleTranslation &translation) {
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
if (VecTypeHintAttr vecTypeHint = func.getVecTypeHintAttr()) {
Type type = vecTypeHint.getHint().getValue();
llvm::Type *llvmType = translation.convertType(type);
bool isSigned = vecTypeHint.getIsSigned();
llvmFunc->setMetadata(
func.getVecTypeHintAttrName(),
convertVecTypeHintToMDNode(llvmContext, llvmType, isSigned));
}
if (std::optional<ArrayRef<int32_t>> workGroupSizeHint =
func.getWorkGroupSizeHint()) {
llvmFunc->setMetadata(
func.getWorkGroupSizeHintAttrName(),
convertIntegerArrayToMDNode(llvmContext, *workGroupSizeHint));
}
if (std::optional<ArrayRef<int32_t>> reqdWorkGroupSize =
func.getReqdWorkGroupSize()) {
llvmFunc->setMetadata(
func.getReqdWorkGroupSizeAttrName(),
convertIntegerArrayToMDNode(llvmContext, *reqdWorkGroupSize));
}
if (std::optional<uint32_t> intelReqdSubGroupSize =
func.getIntelReqdSubGroupSize()) {
llvmFunc->setMetadata(
func.getIntelReqdSubGroupSizeAttrName(),
convertIntegerToMDNode(llvmContext,
llvm::APInt(32, *intelReqdSubGroupSize)));
}
}
FailureOr<llvm::AttrBuilder>
ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx,
DictionaryAttr paramAttrs) {
llvm::AttrBuilder attrBuilder(llvmModule->getContext());
auto attrNameToKindMapping = getAttrNameToKindMapping();
for (auto namedAttr : paramAttrs) {
auto it = attrNameToKindMapping.find(namedAttr.getName());
if (it != attrNameToKindMapping.end()) {
llvm::Attribute::AttrKind llvmKind = it->second;
llvm::TypeSwitch<Attribute>(namedAttr.getValue())
.Case<TypeAttr>([&](auto typeAttr) {
attrBuilder.addTypeAttr(llvmKind, convertType(typeAttr.getValue()));
})
.Case<IntegerAttr>([&](auto intAttr) {
attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt());
})
.Case<UnitAttr>([&](auto) { attrBuilder.addAttribute(llvmKind); });
} else if (namedAttr.getNameDialect()) {
if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this)))
return failure();
}
}
return attrBuilder;
}
LogicalResult ModuleTranslation::convertFunctionSignatures() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles, or global initializers that reference functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(convertType(function.getFunctionType())));
llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee());
llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage()));
llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv()));
mapFunction(function.getName(), llvmFunc);
addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc);
// Convert function attributes.
convertFunctionAttributes(function, llvmFunc);
// Convert function kernel attributes to metadata.
convertFunctionKernelAttributes(function, llvmFunc, *this);
// Convert function_entry_count attribute to metadata.
if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount())
llvmFunc->setEntryCount(entryCount.value());
// Convert result attributes.
if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) {
DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]);
FailureOr<llvm::AttrBuilder> attrBuilder =
convertParameterAttrs(function, -1, resultAttrs);
if (failed(attrBuilder))
return failure();
llvmFunc->addRetAttrs(*attrBuilder);
}
// Convert argument attributes.
for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) {
if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) {
FailureOr<llvm::AttrBuilder> attrBuilder =
convertParameterAttrs(function, argIdx, argAttrs);
if (failed(attrBuilder))
return failure();
llvmArg.addAttrs(*attrBuilder);
}
}
// Forward the pass-through attributes to LLVM.
if (failed(forwardPassthroughAttributes(
function.getLoc(), function.getPassthrough(), llvmFunc)))
return failure();
// Convert visibility attribute.
llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_()));
// Convert the comdat attribute.
if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) {
auto selectorOp = cast<ComdatSelectorOp>(
SymbolTable::lookupNearestSymbolFrom(function, *comdat));
llvmFunc->setComdat(comdatMapping.lookup(selectorOp));
}
if (auto gc = function.getGarbageCollector())
llvmFunc->setGC(gc->str());
if (auto unnamedAddr = function.getUnnamedAddr())
llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr));
if (auto alignment = function.getAlignment())
llvmFunc->setAlignment(llvm::MaybeAlign(*alignment));
// Translate the debug information for this function.
debugTranslation->translate(function, *llvmFunc);
}
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Do not convert external functions, but do process dialect attributes
// attached to them.
if (function.isExternal()) {
if (failed(convertDialectAttributes(function, {})))
return failure();
continue;
}
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
LogicalResult ModuleTranslation::convertComdats() {
for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) {
for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) {
llvm::Module *module = getLLVMModule();
if (module->getComdatSymbolTable().contains(selectorOp.getSymName()))
return emitError(selectorOp.getLoc())
<< "comdat selection symbols must be unique even in different "
"comdat regions";
llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName());
comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat()));
comdatMapping.try_emplace(selectorOp, comdat);
}
}
return success();
}
void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op,
llvm::Instruction *inst) {
if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op))
inst->setMetadata(llvm::LLVMContext::MD_access_group, node);
}
llvm::MDNode *
ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) {
auto [scopeIt, scopeInserted] =
aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr);
if (!scopeInserted)
return scopeIt->second;
llvm::LLVMContext &ctx = llvmModule->getContext();
auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt);
// Convert the domain metadata node if necessary.
auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace(
aliasScopeAttr.getDomain(), nullptr);
if (insertedDomain) {
llvm::SmallVector<llvm::Metadata *, 2> operands;
// Placeholder for self-reference.
operands.push_back(dummy.get());
if (StringAttr description = aliasScopeAttr.getDomain().getDescription())
operands.push_back(llvm::MDString::get(ctx, description));
domainIt->second = llvm::MDNode::get(ctx, operands);
// Self-reference for uniqueness.
domainIt->second->replaceOperandWith(0, domainIt->second);
}
// Convert the scope metadata node.
assert(domainIt->second && "Scope's domain should already be valid");
llvm::SmallVector<llvm::Metadata *, 3> operands;
// Placeholder for self-reference.
operands.push_back(dummy.get());
operands.push_back(domainIt->second);
if (StringAttr description = aliasScopeAttr.getDescription())
operands.push_back(llvm::MDString::get(ctx, description));
scopeIt->second = llvm::MDNode::get(ctx, operands);
// Self-reference for uniqueness.
scopeIt->second->replaceOperandWith(0, scopeIt->second);
return scopeIt->second;
}
llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes(
ArrayRef<AliasScopeAttr> aliasScopeAttrs) {
SmallVector<llvm::Metadata *> nodes;
nodes.reserve(aliasScopeAttrs.size());
for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs)
nodes.push_back(getOrCreateAliasScope(aliasScopeAttr));
return llvm::MDNode::get(getLLVMContext(), nodes);
}
void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op,
llvm::Instruction *inst) {
auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) {
if (!aliasScopeAttrs || aliasScopeAttrs.empty())
return;
llvm::MDNode *node = getOrCreateAliasScopes(
llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>()));
inst->setMetadata(kind, node);
};
populateScopeMetadata(op.getAliasScopesOrNull(),
llvm::LLVMContext::MD_alias_scope);
populateScopeMetadata(op.getNoAliasScopesOrNull(),
llvm::LLVMContext::MD_noalias);
}
llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const {
return tbaaMetadataMapping.lookup(tbaaAttr);
}
void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op,
llvm::Instruction *inst) {
ArrayAttr tagRefs = op.getTBAATagsOrNull();
if (!tagRefs || tagRefs.empty())
return;
// LLVM IR currently does not support attaching more than one TBAA access tag
// to a memory accessing instruction. It may be useful to support this in
// future, but for the time being just ignore the metadata if MLIR operation
// has multiple access tags.
if (tagRefs.size() > 1) {
op.emitWarning() << "TBAA access tags were not translated, because LLVM "
"IR only supports a single tag per instruction";
return;
}
llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0]));
inst->setMetadata(llvm::LLVMContext::MD_tbaa, node);
}
void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) {
DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull();
if (!weightsAttr)
return;
llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op);
assert(inst && "expected the operation to have a mapping to an instruction");
SmallVector<uint32_t> weights(weightsAttr.asArrayRef());
inst->setMetadata(
llvm::LLVMContext::MD_prof,
llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights));
}
LogicalResult ModuleTranslation::createTBAAMetadata() {
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64);
// Walk the entire module and create all metadata nodes for the TBAA
// attributes. The code below relies on two invariants of the
// `AttrTypeWalker`:
// 1. Attributes are visited in post-order: Since the attributes create a DAG,
// this ensures that any lookups into `tbaaMetadataMapping` for child
// attributes succeed.
// 2. Attributes are only ever visited once: This way we don't leak any
// LLVM metadata instances.
AttrTypeWalker walker;
walker.addWalk([&](TBAARootAttr root) {
tbaaMetadataMapping.insert(
{root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))});
});
walker.addWalk([&](TBAATypeDescriptorAttr descriptor) {
SmallVector<llvm::Metadata *> operands;
operands.push_back(llvm::MDString::get(ctx, descriptor.getId()));
for (TBAAMemberAttr member : descriptor.getMembers()) {
operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc()));
operands.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(offsetTy, member.getOffset())));
}
tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)});
});
walker.addWalk([&](TBAATagAttr tag) {
SmallVector<llvm::Metadata *> operands;
operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType()));
operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType()));
operands.push_back(llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(offsetTy, tag.getOffset())));
if (tag.getConstant())
operands.push_back(
llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1)));
tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)});
});
mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) {
if (auto attr = analysisOpInterface.getTBAATagsOrNull())
walker.walk(attr);
});
return success();
}
LogicalResult ModuleTranslation::createIdentMetadata() {
if (auto attr = mlirModule->getAttrOfType<StringAttr>(
LLVMDialect::getIdentAttrName())) {
StringRef ident = attr;
llvm::LLVMContext &ctx = llvmModule->getContext();
llvm::NamedMDNode *namedMd =
llvmModule->getOrInsertNamedMetadata(LLVMDialect::getIdentAttrName());
llvm::MDNode *md = llvm::MDNode::get(ctx, llvm::MDString::get(ctx, ident));
namedMd->addOperand(md);
}
return success();
}
void ModuleTranslation::setLoopMetadata(Operation *op,
llvm::Instruction *inst) {
LoopAnnotationAttr attr =
TypeSwitch<Operation *, LoopAnnotationAttr>(op)
.Case<LLVM::BrOp, LLVM::CondBrOp>(
[](auto branchOp) { return branchOp.getLoopAnnotationAttr(); });
if (!attr)
return;
llvm::MDNode *loopMD =
loopAnnotationTranslation->translateLoopAnnotation(attr, op);
inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD);
}
llvm::Type *ModuleTranslation::convertType(Type type) {
return typeTranslator.translateType(type);
}
/// A helper to look up remapped operands in the value remapping table.
SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(lookupValue(v));
return remapped;
}
llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() {
if (!ompBuilder) {
ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule);
ompBuilder->initialize();
// Flags represented as top-level OpenMP dialect attributes are set in
// `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set
// the default configuration.
ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig(
/* IsTargetDevice = */ false, /* IsGPU = */ false,
/* OpenMPOffloadMandatory = */ false,
/* HasRequiresReverseOffload = */ false,
/* HasRequiresUnifiedAddress = */ false,
/* HasRequiresUnifiedSharedMemory = */ false,
/* HasRequiresDynamicAllocators = */ false));
}
return ompBuilder.get();
}
llvm::DILocation *ModuleTranslation::translateLoc(Location loc,
llvm::DILocalScope *scope) {
return debugTranslation->translateLoc(loc, scope);
}
llvm::DIExpression *
ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) {
return debugTranslation->translateExpression(attr);
}
llvm::DIGlobalVariableExpression *
ModuleTranslation::translateGlobalVariableExpression(
LLVM::DIGlobalVariableExpressionAttr attr) {
return debugTranslation->translateGlobalVariableExpression(attr);
}
llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) {
return debugTranslation->translate(attr);
}
llvm::RoundingMode
ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) {
return convertRoundingModeToLLVM(rounding);
}
llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior(
LLVM::FPExceptionBehavior exceptionBehavior) {
return convertFPExceptionBehaviorToLLVM(exceptionBehavior);
}
llvm::NamedMDNode *
ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) {
return llvmModule->getOrInsertNamedMetadata(name);
}
void ModuleTranslation::StackFrame::anchor() {}
static std::unique_ptr<llvm::Module>
prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext,
StringRef name) {
m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>();
auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext);
// ModuleTranslation can currently only construct modules in the old debug
// info format, so set the flag accordingly.
llvmModule->setNewDbgInfoFormatFlag(false);
if (auto dataLayoutAttr =
m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) {
llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue());
} else {
FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout(""));
if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) {
if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) {
llvmDataLayout =
translateDataLayout(spec, DataLayout(iface), m->getLoc());
}
} else if (auto mod = dyn_cast<ModuleOp>(m)) {
if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) {
llvmDataLayout =
translateDataLayout(spec, DataLayout(mod), m->getLoc());
}
}
if (failed(llvmDataLayout))
return nullptr;
llvmModule->setDataLayout(*llvmDataLayout);
}
if (auto targetTripleAttr =
m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName()))
llvmModule->setTargetTriple(cast<StringAttr>(targetTripleAttr).getValue());
return llvmModule;
}
std::unique_ptr<llvm::Module>
mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext,
StringRef name, bool disableVerification) {
if (!satisfiesLLVMModule(module)) {
module->emitOpError("can not be translated to an LLVMIR module");
return nullptr;
}
std::unique_ptr<llvm::Module> llvmModule =
prepareLLVMModule(module, llvmContext, name);
if (!llvmModule)
return nullptr;
LLVM::ensureDistinctSuccessors(module);
LLVM::legalizeDIExpressionsRecursively(module);
ModuleTranslation translator(module, std::move(llvmModule));
llvm::IRBuilder<> llvmBuilder(llvmContext);
// Convert module before functions and operations inside, so dialect
// attributes can be used to change dialect-specific global configurations via
// `amendOperation()`. These configurations can then influence the translation
// of operations afterwards.
if (failed(translator.convertOperation(*module, llvmBuilder)))
return nullptr;
if (failed(translator.convertComdats()))
return nullptr;
if (failed(translator.convertFunctionSignatures()))
return nullptr;
if (failed(translator.convertGlobals()))
return nullptr;
if (failed(translator.createTBAAMetadata()))
return nullptr;
if (failed(translator.createIdentMetadata()))
return nullptr;
// Convert other top-level operations if possible.
for (Operation &o : getModuleBody(module).getOperations()) {
if (!isa<LLVM::LLVMFuncOp, LLVM::GlobalOp, LLVM::GlobalCtorsOp,
LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) &&
!o.hasTrait<OpTrait::IsTerminator>() &&
failed(translator.convertOperation(o, llvmBuilder))) {
return nullptr;
}
}
// Operations in function bodies with symbolic references must be converted
// after the top-level operations they refer to are declared, so we do it
// last.
if (failed(translator.convertFunctions()))
return nullptr;
// Once we've finished constructing elements in the module, we should convert
// it to use the debug info format desired by LLVM.
// See https://llvm.org/docs/RemoveDIsDebugInfo.html
translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat);
if (!disableVerification &&
llvm::verifyModule(*translator.llvmModule, &llvm::errs()))
return nullptr;
return std::move(translator.llvmModule);
}