Chandler Carruth cd269fee05 [StrTable] Switch Clang builtins to use string tables
This both reapplies #118734, the initial attempt at this, and updates it
significantly.

First, it uses the newly added `StringTable` abstraction for string
tables, and simplifies the construction to build the string table and
info arrays separately. This should reduce any `constexpr` compile time
memory or CPU cost of the original PR while significantly improving the
APIs throughout.

It also restructures the builtins to support sharding across several
independent tables. This accomplishes two improvements from the
original PR:

1) It improves the APIs used significantly.

2) When builtins are defined from different sources (like SVE vs MVE in
   AArch64), this allows each of them to build their own string table
   independently rather than having to merge the string tables and info
   structures.

3) It allows each shard to factor out a common prefix, often cutting the
   size of the strings needed for the builtins by a factor two.

The second point is important both to allow different mechanisms of
construction (for example a `.def` file and a tablegen'ed `.inc` file,
or different tablegen'ed `.inc files), it also simply reduces the sizes
of these tables which is valuable given how large they are in some
cases. The third builds on that size reduction.

Initially, we use this new sharding rather than merging tables in
AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system
works, as without further changes these still push scaling limits.
Subsequent commits will more deeply leverage the new structure,
including using the prefix capabilities which cannot be easily factored
out here and requires deep changes to the targets.
2025-02-04 18:04:57 +00:00

574 lines
19 KiB
C++

//===--- RISCV.cpp - Implement RISC-V target feature support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements RISC-V TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/RISCVTargetParser.h"
#include <optional>
using namespace clang;
using namespace clang::targets;
ArrayRef<const char *> RISCVTargetInfo::getGCCRegNames() const {
// clang-format off
static const char *const GCCRegNames[] = {
// Integer registers
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
// Floating point registers
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
// Vector registers
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
// CSRs
"fflags", "frm", "vtype", "vl", "vxsat", "vxrm", "sf.vcix_state"
};
// clang-format on
return llvm::ArrayRef(GCCRegNames);
}
ArrayRef<TargetInfo::GCCRegAlias> RISCVTargetInfo::getGCCRegAliases() const {
static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
{{"zero"}, "x0"}, {{"ra"}, "x1"}, {{"sp"}, "x2"}, {{"gp"}, "x3"},
{{"tp"}, "x4"}, {{"t0"}, "x5"}, {{"t1"}, "x6"}, {{"t2"}, "x7"},
{{"s0"}, "x8"}, {{"s1"}, "x9"}, {{"a0"}, "x10"}, {{"a1"}, "x11"},
{{"a2"}, "x12"}, {{"a3"}, "x13"}, {{"a4"}, "x14"}, {{"a5"}, "x15"},
{{"a6"}, "x16"}, {{"a7"}, "x17"}, {{"s2"}, "x18"}, {{"s3"}, "x19"},
{{"s4"}, "x20"}, {{"s5"}, "x21"}, {{"s6"}, "x22"}, {{"s7"}, "x23"},
{{"s8"}, "x24"}, {{"s9"}, "x25"}, {{"s10"}, "x26"}, {{"s11"}, "x27"},
{{"t3"}, "x28"}, {{"t4"}, "x29"}, {{"t5"}, "x30"}, {{"t6"}, "x31"},
{{"ft0"}, "f0"}, {{"ft1"}, "f1"}, {{"ft2"}, "f2"}, {{"ft3"}, "f3"},
{{"ft4"}, "f4"}, {{"ft5"}, "f5"}, {{"ft6"}, "f6"}, {{"ft7"}, "f7"},
{{"fs0"}, "f8"}, {{"fs1"}, "f9"}, {{"fa0"}, "f10"}, {{"fa1"}, "f11"},
{{"fa2"}, "f12"}, {{"fa3"}, "f13"}, {{"fa4"}, "f14"}, {{"fa5"}, "f15"},
{{"fa6"}, "f16"}, {{"fa7"}, "f17"}, {{"fs2"}, "f18"}, {{"fs3"}, "f19"},
{{"fs4"}, "f20"}, {{"fs5"}, "f21"}, {{"fs6"}, "f22"}, {{"fs7"}, "f23"},
{{"fs8"}, "f24"}, {{"fs9"}, "f25"}, {{"fs10"}, "f26"}, {{"fs11"}, "f27"},
{{"ft8"}, "f28"}, {{"ft9"}, "f29"}, {{"ft10"}, "f30"}, {{"ft11"}, "f31"}};
return llvm::ArrayRef(GCCRegAliases);
}
bool RISCVTargetInfo::validateAsmConstraint(
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
case 'I':
// A 12-bit signed immediate.
Info.setRequiresImmediate(-2048, 2047);
return true;
case 'J':
// Integer zero.
Info.setRequiresImmediate(0);
return true;
case 'K':
// A 5-bit unsigned immediate for CSR access instructions.
Info.setRequiresImmediate(0, 31);
return true;
case 'f':
// A floating-point register.
Info.setAllowsRegister();
return true;
case 'A':
// An address that is held in a general-purpose register.
Info.setAllowsMemory();
return true;
case 's':
case 'S': // A symbol or label reference with a constant offset
Info.setAllowsRegister();
return true;
case 'c':
// A RVC register - GPR or FPR
if (Name[1] == 'r' || Name[1] == 'R' || Name[1] == 'f') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
case 'R':
// An even-odd GPR pair
Info.setAllowsRegister();
return true;
case 'v':
// A vector register.
if (Name[1] == 'r' || Name[1] == 'd' || Name[1] == 'm') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
}
}
std::string RISCVTargetInfo::convertConstraint(const char *&Constraint) const {
std::string R;
switch (*Constraint) {
// c* and v* are two-letter constraints on RISC-V.
case 'c':
case 'v':
R = std::string("^") + std::string(Constraint, 2);
Constraint += 1;
break;
default:
R = TargetInfo::convertConstraint(Constraint);
break;
}
return R;
}
static unsigned getVersionValue(unsigned MajorVersion, unsigned MinorVersion) {
return MajorVersion * 1000000 + MinorVersion * 1000;
}
void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__riscv");
bool Is64Bit = getTriple().isRISCV64();
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
StringRef CodeModel = getTargetOpts().CodeModel;
unsigned FLen = ISAInfo->getFLen();
unsigned MinVLen = ISAInfo->getMinVLen();
unsigned MaxELen = ISAInfo->getMaxELen();
unsigned MaxELenFp = ISAInfo->getMaxELenFp();
if (CodeModel == "default")
CodeModel = "small";
if (CodeModel == "small")
Builder.defineMacro("__riscv_cmodel_medlow");
else if (CodeModel == "medium")
Builder.defineMacro("__riscv_cmodel_medany");
else if (CodeModel == "large")
Builder.defineMacro("__riscv_cmodel_large");
StringRef ABIName = getABI();
if (ABIName == "ilp32f" || ABIName == "lp64f")
Builder.defineMacro("__riscv_float_abi_single");
else if (ABIName == "ilp32d" || ABIName == "lp64d")
Builder.defineMacro("__riscv_float_abi_double");
else
Builder.defineMacro("__riscv_float_abi_soft");
if (ABIName == "ilp32e" || ABIName == "lp64e")
Builder.defineMacro("__riscv_abi_rve");
Builder.defineMacro("__riscv_arch_test");
for (auto &Extension : ISAInfo->getExtensions()) {
auto ExtName = Extension.first;
auto ExtInfo = Extension.second;
Builder.defineMacro(Twine("__riscv_", ExtName),
Twine(getVersionValue(ExtInfo.Major, ExtInfo.Minor)));
}
if (ISAInfo->hasExtension("zmmul"))
Builder.defineMacro("__riscv_mul");
if (ISAInfo->hasExtension("m")) {
Builder.defineMacro("__riscv_div");
Builder.defineMacro("__riscv_muldiv");
}
if (ISAInfo->hasExtension("a")) {
Builder.defineMacro("__riscv_atomic");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
if (Is64Bit)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
}
if (FLen) {
Builder.defineMacro("__riscv_flen", Twine(FLen));
Builder.defineMacro("__riscv_fdiv");
Builder.defineMacro("__riscv_fsqrt");
}
if (MinVLen) {
Builder.defineMacro("__riscv_v_min_vlen", Twine(MinVLen));
Builder.defineMacro("__riscv_v_elen", Twine(MaxELen));
Builder.defineMacro("__riscv_v_elen_fp", Twine(MaxELenFp));
}
if (ISAInfo->hasExtension("c"))
Builder.defineMacro("__riscv_compressed");
if (ISAInfo->hasExtension("zve32x"))
Builder.defineMacro("__riscv_vector");
// Currently we support the v1.0 RISC-V V intrinsics.
Builder.defineMacro("__riscv_v_intrinsic", Twine(getVersionValue(1, 0)));
auto VScale = getVScaleRange(Opts, false);
if (VScale && VScale->first && VScale->first == VScale->second)
Builder.defineMacro("__riscv_v_fixed_vlen",
Twine(VScale->first * llvm::RISCV::RVVBitsPerBlock));
if (FastScalarUnalignedAccess)
Builder.defineMacro("__riscv_misaligned_fast");
else
Builder.defineMacro("__riscv_misaligned_avoid");
if (ISAInfo->hasExtension("e")) {
if (Is64Bit)
Builder.defineMacro("__riscv_64e");
else
Builder.defineMacro("__riscv_32e");
}
}
static constexpr int NumRVVBuiltins =
clang::RISCVVector::FirstTSBuiltin - Builtin::FirstTSBuiltin;
static constexpr int NumRISCVBuiltins =
clang::RISCV::LastTSBuiltin - RISCVVector::FirstTSBuiltin;
static constexpr int NumBuiltins =
clang::RISCV::LastTSBuiltin - Builtin::FirstTSBuiltin;
static_assert(NumBuiltins == (NumRVVBuiltins + NumRISCVBuiltins));
static constexpr llvm::StringTable BuiltinRVVStrings =
CLANG_BUILTIN_STR_TABLE_START
#define BUILTIN CLANG_BUILTIN_STR_TABLE
#define TARGET_BUILTIN CLANG_TARGET_BUILTIN_STR_TABLE
#include "clang/Basic/BuiltinsRISCVVector.def"
;
static constexpr llvm::StringTable BuiltinRISCVStrings =
CLANG_BUILTIN_STR_TABLE_START
#define BUILTIN CLANG_BUILTIN_STR_TABLE
#define TARGET_BUILTIN CLANG_TARGET_BUILTIN_STR_TABLE
#include "clang/Basic/BuiltinsRISCV.inc"
;
static constexpr auto BuiltinRVVInfos = Builtin::MakeInfos<NumRVVBuiltins>({
#define BUILTIN CLANG_BUILTIN_ENTRY
#define TARGET_BUILTIN CLANG_TARGET_BUILTIN_ENTRY
#include "clang/Basic/BuiltinsRISCVVector.def"
});
static constexpr auto BuiltinRISCVInfos = Builtin::MakeInfos<NumRISCVBuiltins>({
#define BUILTIN CLANG_BUILTIN_ENTRY
#define TARGET_BUILTIN CLANG_TARGET_BUILTIN_ENTRY
#include "clang/Basic/BuiltinsRISCV.inc"
});
llvm::SmallVector<Builtin::InfosShard>
RISCVTargetInfo::getTargetBuiltins() const {
return {
{&BuiltinRVVStrings, BuiltinRVVInfos},
{&BuiltinRISCVStrings, BuiltinRISCVInfos},
};
}
bool RISCVTargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeaturesVec) const {
unsigned XLen = 32;
if (getTriple().isRISCV64()) {
Features["64bit"] = true;
XLen = 64;
} else {
Features["32bit"] = true;
}
std::vector<std::string> AllFeatures = FeaturesVec;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, FeaturesVec);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
}
// Append all features, not just new ones, so we override any negatives.
llvm::append_range(AllFeatures, (*ParseResult)->toFeatures());
return TargetInfo::initFeatureMap(Features, Diags, CPU, AllFeatures);
}
std::optional<std::pair<unsigned, unsigned>>
RISCVTargetInfo::getVScaleRange(const LangOptions &LangOpts,
bool IsArmStreamingFunction) const {
// RISCV::RVVBitsPerBlock is 64.
unsigned VScaleMin = ISAInfo->getMinVLen() / llvm::RISCV::RVVBitsPerBlock;
if (LangOpts.VScaleMin || LangOpts.VScaleMax) {
// Treat Zvl*b as a lower bound on vscale.
VScaleMin = std::max(VScaleMin, LangOpts.VScaleMin);
unsigned VScaleMax = LangOpts.VScaleMax;
if (VScaleMax != 0 && VScaleMax < VScaleMin)
VScaleMax = VScaleMin;
return std::pair<unsigned, unsigned>(VScaleMin ? VScaleMin : 1, VScaleMax);
}
if (VScaleMin > 0) {
unsigned VScaleMax = ISAInfo->getMaxVLen() / llvm::RISCV::RVVBitsPerBlock;
return std::make_pair(VScaleMin, VScaleMax);
}
return std::nullopt;
}
/// Return true if has this feature, need to sync with handleTargetFeatures.
bool RISCVTargetInfo::hasFeature(StringRef Feature) const {
bool Is64Bit = getTriple().isRISCV64();
auto Result = llvm::StringSwitch<std::optional<bool>>(Feature)
.Case("riscv", true)
.Case("riscv32", !Is64Bit)
.Case("riscv64", Is64Bit)
.Case("32bit", !Is64Bit)
.Case("64bit", Is64Bit)
.Case("experimental", HasExperimental)
.Default(std::nullopt);
if (Result)
return *Result;
return ISAInfo->hasExtension(Feature);
}
/// Perform initialization based on the user configured set of features.
bool RISCVTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, Features);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
} else {
ISAInfo = std::move(*ParseResult);
}
if (ABI.empty())
ABI = ISAInfo->computeDefaultABI().str();
if (ISAInfo->hasExtension("zfh") || ISAInfo->hasExtension("zhinx"))
HasLegalHalfType = true;
FastScalarUnalignedAccess =
llvm::is_contained(Features, "+unaligned-scalar-mem");
if (llvm::is_contained(Features, "+experimental"))
HasExperimental = true;
if (ABI == "ilp32e" && ISAInfo->hasExtension("d")) {
Diags.Report(diag::err_invalid_feature_combination)
<< "ILP32E cannot be used with the D ISA extension";
return false;
}
return true;
}
bool RISCVTargetInfo::isValidCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidCPUArchList(Values, Is64Bit);
}
bool RISCVTargetInfo::isValidTuneCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseTuneCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidTuneCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidTuneCPUArchList(Values, Is64Bit);
}
static void populateNegativeRISCVFeatures(std::vector<std::string> &Features) {
auto RII = llvm::RISCVISAInfo::parseArchString(
"rv64i", /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError()))
llvm_unreachable("unsupport rv64i");
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ true);
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
static void handleFullArchString(StringRef FullArchStr,
std::vector<std::string> &Features) {
auto RII = llvm::RISCVISAInfo::parseArchString(
FullArchStr, /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError())) {
// Forward the invalid FullArchStr.
Features.push_back(FullArchStr.str());
} else {
// Append a full list of features, including any negative extensions so that
// we override the CPU's features.
populateNegativeRISCVFeatures(Features);
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ true);
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
}
ParsedTargetAttr RISCVTargetInfo::parseTargetAttr(StringRef Features) const {
ParsedTargetAttr Ret;
if (Features == "default")
return Ret;
SmallVector<StringRef, 1> AttrFeatures;
Features.split(AttrFeatures, ";");
bool FoundArch = false;
auto handleArchExtension = [](StringRef AttrString,
std::vector<std::string> &Features) {
SmallVector<StringRef, 1> Exts;
AttrString.split(Exts, ",");
for (auto Ext : Exts) {
if (Ext.empty())
continue;
StringRef ExtName = Ext.substr(1);
std::string TargetFeature =
llvm::RISCVISAInfo::getTargetFeatureForExtension(ExtName);
if (!TargetFeature.empty())
Features.push_back(Ext.front() + TargetFeature);
else
Features.push_back(Ext.str());
}
};
for (auto &Feature : AttrFeatures) {
Feature = Feature.trim();
StringRef AttrString = Feature.split("=").second.trim();
if (Feature.starts_with("arch=")) {
// Override last features
Ret.Features.clear();
if (FoundArch)
Ret.Duplicate = "arch=";
FoundArch = true;
if (AttrString.starts_with("+")) {
// EXTENSION like arch=+v,+zbb
handleArchExtension(AttrString, Ret.Features);
} else {
// full-arch-string like arch=rv64gcv
handleFullArchString(AttrString, Ret.Features);
}
} else if (Feature.starts_with("cpu=")) {
if (!Ret.CPU.empty())
Ret.Duplicate = "cpu=";
Ret.CPU = AttrString;
if (!FoundArch) {
// Update Features with CPU's features
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(Ret.CPU);
if (MarchFromCPU != "") {
Ret.Features.clear();
handleFullArchString(MarchFromCPU, Ret.Features);
}
}
} else if (Feature.starts_with("tune=")) {
if (!Ret.Tune.empty())
Ret.Duplicate = "tune=";
Ret.Tune = AttrString;
} else if (Feature.starts_with("priority")) {
// Skip because it only use for FMV.
} else if (Feature.starts_with("+")) {
// Handle target_version/target_clones attribute strings
// that are already delimited by ','
handleArchExtension(Feature, Ret.Features);
}
}
return Ret;
}
uint64_t RISCVTargetInfo::getFMVPriority(ArrayRef<StringRef> Features) const {
// Priority is explicitly specified on RISC-V unlike on other targets, where
// it is derived by all the features of a specific version. Therefore if a
// feature contains the priority string, then return it immediately.
for (StringRef Feature : Features) {
auto [LHS, RHS] = Feature.rsplit(';');
if (LHS.consume_front("priority="))
Feature = LHS;
else if (RHS.consume_front("priority="))
Feature = RHS;
else
continue;
uint64_t Priority;
if (!Feature.getAsInteger(0, Priority))
return Priority;
}
// Default Priority is zero.
return 0;
}
TargetInfo::CallingConvCheckResult
RISCVTargetInfo::checkCallingConvention(CallingConv CC) const {
switch (CC) {
default:
return CCCR_Warning;
case CC_C:
case CC_RISCVVectorCall:
return CCCR_OK;
}
}
bool RISCVTargetInfo::validateCpuSupports(StringRef Feature) const {
// Only allow extensions we have a known bit position for in the
// __riscv_feature_bits structure.
return -1 != llvm::RISCVISAInfo::getRISCVFeaturesBitsInfo(Feature).second;
}
bool RISCVTargetInfo::isValidFeatureName(StringRef Name) const {
return llvm::RISCVISAInfo::isSupportedExtensionFeature(Name);
}
bool RISCVTargetInfo::validateGlobalRegisterVariable(
StringRef RegName, unsigned RegSize, bool &HasSizeMismatch) const {
if (RegName == "ra" || RegName == "sp" || RegName == "gp" ||
RegName == "tp" || RegName.starts_with("x") || RegName.starts_with("a") ||
RegName.starts_with("s") || RegName.starts_with("t")) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
HasSizeMismatch = RegSize != XLen;
return true;
}
return false;
}
bool RISCVTargetInfo::validateCpuIs(StringRef CPUName) const {
assert(getTriple().isOSLinux() &&
"__builtin_cpu_is() is only supported for Linux.");
return llvm::RISCV::hasValidCPUModel(CPUName);
}