llvm-project/clang/lib/Sema/SemaSwift.cpp
Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

784 lines
26 KiB
C++

//===------ SemaSwift.cpp ------ Swift language-specific routines ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis functions specific to Swift.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaSwift.h"
#include "clang/AST/DeclBase.h"
#include "clang/Basic/AttributeCommonInfo.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaObjC.h"
namespace clang {
SemaSwift::SemaSwift(Sema &S) : SemaBase(S) {}
SwiftNameAttr *SemaSwift::mergeNameAttr(Decl *D, const SwiftNameAttr &SNA,
StringRef Name) {
if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
<< PrevSNA << &SNA
<< (PrevSNA->isRegularKeywordAttribute() ||
SNA.isRegularKeywordAttribute());
Diag(SNA.getLoc(), diag::note_conflicting_attribute);
}
D->dropAttr<SwiftNameAttr>();
}
return ::new (getASTContext()) SwiftNameAttr(getASTContext(), SNA, Name);
}
/// Pointer-like types in the default address space.
static bool isValidSwiftContextType(QualType Ty) {
if (!Ty->hasPointerRepresentation())
return Ty->isDependentType();
return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
}
/// Pointers and references in the default address space.
static bool isValidSwiftIndirectResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
return Ty.getAddressSpace() == LangAS::Default;
}
/// Pointers and references to pointers in the default address space.
static bool isValidSwiftErrorResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
if (!Ty.getQualifiers().empty())
return false;
return isValidSwiftContextType(Ty);
}
static bool isValidSwiftContextName(StringRef ContextName) {
// ContextName might be qualified, e.g. 'MyNamespace.MyStruct'.
SmallVector<StringRef, 1> ContextNameComponents;
ContextName.split(ContextNameComponents, '.');
return all_of(ContextNameComponents, [&](StringRef Component) {
return isValidAsciiIdentifier(Component);
});
}
void SemaSwift::handleAttrAttr(Decl *D, const ParsedAttr &AL) {
if (AL.isInvalid() || AL.isUsedAsTypeAttr())
return;
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str)) {
AL.setInvalid();
return;
}
D->addAttr(::new (getASTContext()) SwiftAttrAttr(getASTContext(), AL, Str));
}
void SemaSwift::handleBridge(Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef BT;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, BT))
return;
// Warn about duplicate attributes if they have different arguments, but drop
// any duplicate attributes regardless.
if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
if (Other->getSwiftType() != BT)
Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
D->addAttr(::new (getASTContext()) SwiftBridgeAttr(getASTContext(), AL, BT));
}
static bool isErrorParameter(Sema &S, QualType QT) {
const auto *PT = QT->getAs<PointerType>();
if (!PT)
return false;
QualType Pointee = PT->getPointeeType();
// Check for NSError**.
if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
if (const auto *ID = OPT->getInterfaceDecl())
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent())
return true;
// Check for CFError**.
if (const auto *PT = Pointee->getAs<PointerType>())
if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
if (S.ObjC().isCFError(RT->getOriginalDecl()->getDefinitionOrSelf()))
return true;
return false;
}
void SemaSwift::handleError(Decl *D, const ParsedAttr &AL) {
auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
return true;
}
S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
<< AL << isa<ObjCMethodDecl>(D);
return false;
};
auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
// - C, ObjC, and block pointers are definitely okay.
// - References are definitely not okay.
// - nullptr_t is weird, but acceptable.
QualType RT = getFunctionOrMethodResultType(D);
if (RT->hasPointerRepresentation() && !RT->isReferenceType())
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->getIdentifierInfo()->getName()
<< isa<ObjCMethodDecl>(D) << /*pointer*/ 1;
return false;
};
auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
QualType RT = getFunctionOrMethodResultType(D);
if (RT->isIntegralType(S.Context))
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->getIdentifierInfo()->getName()
<< isa<ObjCMethodDecl>(D) << /*integral*/ 0;
return false;
};
if (D->isInvalidDecl())
return;
IdentifierLoc *Loc = AL.getArgAsIdent(0);
SwiftErrorAttr::ConventionKind Convention;
if (!SwiftErrorAttr::ConvertStrToConventionKind(
Loc->getIdentifierInfo()->getName(), Convention)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << Loc->getIdentifierInfo();
return;
}
switch (Convention) {
case SwiftErrorAttr::None:
// No additional validation required.
break;
case SwiftErrorAttr::NonNullError:
if (!hasErrorParameter(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NullResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasPointerResult(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NonZeroResult:
case SwiftErrorAttr::ZeroResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasIntegerResult(SemaRef, D, AL))
return;
break;
}
D->addAttr(::new (getASTContext())
SwiftErrorAttr(getASTContext(), AL, Convention));
}
static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
const SwiftAsyncErrorAttr *ErrorAttr,
const SwiftAsyncAttr *AsyncAttr) {
if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
S.Diag(AsyncAttr->getLocation(),
diag::err_swift_async_error_without_swift_async)
<< AsyncAttr << isa<ObjCMethodDecl>(D);
}
return;
}
const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
// handleSwiftAsyncAttr already verified the type is correct, so no need to
// double-check it here.
const auto *FuncTy = HandlerParam->getType()
->castAs<BlockPointerType>()
->getPointeeType()
->getAs<FunctionProtoType>();
ArrayRef<QualType> BlockParams;
if (FuncTy)
BlockParams = FuncTy->getParamTypes();
switch (ErrorAttr->getConvention()) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
S.Diag(ErrorAttr->getLocation(),
diag::err_attribute_argument_out_of_bounds)
<< ErrorAttr << 2;
return;
}
QualType ErrorParam = BlockParams[ParamIdx - 1];
if (!ErrorParam->isIntegralType(S.Context)) {
StringRef ConvStr =
ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
? "zero_argument"
: "nonzero_argument";
S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
<< ErrorAttr << ConvStr << ParamIdx << ErrorParam;
return;
}
break;
}
case SwiftAsyncErrorAttr::NonNullError: {
bool AnyErrorParams = false;
for (QualType Param : BlockParams) {
// Check for NSError *.
if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent()) {
AnyErrorParams = true;
break;
}
}
}
// Check for CFError *.
if (const auto *PtrTy = Param->getAs<PointerType>()) {
if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
if (S.ObjC().isCFError(
RT->getOriginalDecl()->getDefinitionOrSelf())) {
AnyErrorParams = true;
break;
}
}
}
}
if (!AnyErrorParams) {
S.Diag(ErrorAttr->getLocation(),
diag::err_swift_async_error_no_error_parameter)
<< ErrorAttr << isa<ObjCMethodDecl>(D);
return;
}
break;
}
case SwiftAsyncErrorAttr::None:
break;
}
}
void SemaSwift::handleAsyncError(Decl *D, const ParsedAttr &AL) {
IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
SwiftAsyncErrorAttr::ConventionKind ConvKind;
if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(
IDLoc->getIdentifierInfo()->getName(), ConvKind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << IDLoc->getIdentifierInfo();
return;
}
uint32_t ParamIdx = 0;
switch (ConvKind) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *IdxExpr = AL.getArgAsExpr(1);
if (!SemaRef.checkUInt32Argument(AL, IdxExpr, ParamIdx))
return;
break;
}
case SwiftAsyncErrorAttr::NonNullError:
case SwiftAsyncErrorAttr::None: {
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
break;
}
}
auto *ErrorAttr = ::new (getASTContext())
SwiftAsyncErrorAttr(getASTContext(), AL, ConvKind, ParamIdx);
D->addAttr(ErrorAttr);
if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
// For a function, this will validate a compound Swift name, e.g.
// <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
// the function will output the number of parameter names, and whether this is a
// single-arg initializer.
//
// For a type, enum constant, property, or variable declaration, this will
// validate either a simple identifier, or a qualified
// <code>context.identifier</code> name.
static bool validateSwiftFunctionName(Sema &S, const ParsedAttr &AL,
SourceLocation Loc, StringRef Name,
unsigned &SwiftParamCount,
bool &IsSingleParamInit) {
SwiftParamCount = 0;
IsSingleParamInit = false;
// Check whether this will be mapped to a getter or setter of a property.
bool IsGetter = false, IsSetter = false;
if (Name.consume_front("getter:"))
IsGetter = true;
else if (Name.consume_front("setter:"))
IsSetter = true;
if (Name.back() != ')') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
bool IsMember = false;
StringRef ContextName, BaseName, Parameters;
std::tie(BaseName, Parameters) = Name.split('(');
// Split at the first '.', if it exists, which separates the context name
// from the base name.
std::tie(ContextName, BaseName) = BaseName.rsplit('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (ContextName.empty() || !isValidSwiftContextName(ContextName)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
} else {
IsMember = true;
}
if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
bool IsSubscript = BaseName == "subscript";
// A subscript accessor must be a getter or setter.
if (IsSubscript && !IsGetter && !IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* getter or setter */ 0;
return false;
}
if (Parameters.empty()) {
S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
return false;
}
assert(Parameters.back() == ')' && "expected ')'");
Parameters = Parameters.drop_back(); // ')'
if (Parameters.empty()) {
// Setters and subscripts must have at least one parameter.
if (IsSubscript) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* have at least one parameter */ 1;
return false;
}
if (IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
return false;
}
return true;
}
if (Parameters.back() != ':') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
StringRef CurrentParam;
std::optional<unsigned> SelfLocation;
unsigned NewValueCount = 0;
std::optional<unsigned> NewValueLocation;
do {
std::tie(CurrentParam, Parameters) = Parameters.split(':');
if (!isValidAsciiIdentifier(CurrentParam)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*parameter*/ 2;
return false;
}
if (IsMember && CurrentParam == "self") {
// "self" indicates the "self" argument for a member.
// More than one "self"?
if (SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
return false;
}
// The "self" location is the current parameter.
SelfLocation = SwiftParamCount;
} else if (CurrentParam == "newValue") {
// "newValue" indicates the "newValue" argument for a setter.
// There should only be one 'newValue', but it's only significant for
// subscript accessors, so don't error right away.
++NewValueCount;
NewValueLocation = SwiftParamCount;
}
++SwiftParamCount;
} while (!Parameters.empty());
// Only instance subscripts are currently supported.
if (IsSubscript && !SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /*have a 'self:' parameter*/ 2;
return false;
}
IsSingleParamInit =
SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
// Check the number of parameters for a getter/setter.
if (IsGetter || IsSetter) {
// Setters have one parameter for the new value.
unsigned NumExpectedParams = IsGetter ? 0 : 1;
unsigned ParamDiag = IsGetter
? diag::warn_attr_swift_name_getter_parameters
: diag::warn_attr_swift_name_setter_parameters;
// Instance methods have one parameter for "self".
if (SelfLocation)
++NumExpectedParams;
// Subscripts may have additional parameters beyond the expected params for
// the index.
if (IsSubscript) {
if (SwiftParamCount < NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
// A subscript setter must explicitly label its newValue parameter to
// distinguish it from index parameters.
if (IsSetter) {
if (!NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
<< AL;
return false;
}
if (NewValueCount > 1) {
S.Diag(Loc,
diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
<< AL;
return false;
}
} else {
// Subscript getters should have no 'newValue:' parameter.
if (NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
<< AL;
return false;
}
}
} else {
// Property accessors must have exactly the number of expected params.
if (SwiftParamCount != NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
}
}
return true;
}
bool SemaSwift::DiagnoseName(Decl *D, StringRef Name, SourceLocation Loc,
const ParsedAttr &AL, bool IsAsync) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
ArrayRef<ParmVarDecl *> Params;
unsigned ParamCount;
if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
ParamCount = Method->getSelector().getNumArgs();
Params = Method->parameters().slice(0, ParamCount);
} else {
const auto *F = cast<FunctionDecl>(D);
ParamCount = F->getNumParams();
Params = F->parameters();
if (!F->hasWrittenPrototype()) {
Diag(Loc, diag::warn_attribute_wrong_decl_type)
<< AL << AL.isRegularKeywordAttribute()
<< ExpectedFunctionWithProtoType;
return false;
}
}
// The async name drops the last callback parameter.
if (IsAsync) {
if (ParamCount == 0) {
Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
<< AL << isa<ObjCMethodDecl>(D);
return false;
}
ParamCount -= 1;
}
unsigned SwiftParamCount;
bool IsSingleParamInit;
if (!validateSwiftFunctionName(SemaRef, AL, Loc, Name, SwiftParamCount,
IsSingleParamInit))
return false;
bool ParamCountValid;
if (SwiftParamCount == ParamCount) {
ParamCountValid = true;
} else if (SwiftParamCount > ParamCount) {
ParamCountValid = IsSingleParamInit && ParamCount == 0;
} else {
// We have fewer Swift parameters than Objective-C parameters, but that
// might be because we've transformed some of them. Check for potential
// "out" parameters and err on the side of not warning.
unsigned MaybeOutParamCount =
llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
QualType ParamTy = Param->getType();
if (ParamTy->isReferenceType() || ParamTy->isPointerType())
return !ParamTy->getPointeeType().isConstQualified();
return false;
});
ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
}
if (!ParamCountValid) {
Diag(Loc, diag::warn_attr_swift_name_num_params)
<< (SwiftParamCount > ParamCount) << AL << ParamCount
<< SwiftParamCount;
return false;
}
} else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
!IsAsync) {
StringRef ContextName, BaseName;
std::tie(ContextName, BaseName) = Name.rsplit('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (!isValidSwiftContextName(ContextName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
}
if (!isValidAsciiIdentifier(BaseName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
} else {
Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
return false;
}
return true;
}
void SemaSwift::handleName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/false))
return;
D->addAttr(::new (getASTContext()) SwiftNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleAsyncName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/true))
return;
D->addAttr(::new (getASTContext())
SwiftAsyncNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleNewType(Decl *D, const ParsedAttr &AL) {
// Make sure that there is an identifier as the annotation's single argument.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
SwiftNewTypeAttr::NewtypeKind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->getIdentifierInfo();
if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
if (!isa<TypedefNameDecl>(D)) {
Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << AL.isRegularKeywordAttribute() << ExpectedTypedef;
return;
}
D->addAttr(::new (getASTContext())
SwiftNewTypeAttr(getASTContext(), AL, Kind));
}
void SemaSwift::handleAsyncAttr(Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
SwiftAsyncAttr::Kind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->getIdentifierInfo();
if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
return;
}
ParamIdx Idx;
if (Kind == SwiftAsyncAttr::None) {
// If this is 'none', then there shouldn't be any additional arguments.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
} else {
// Non-none swift_async requires a completion handler index argument.
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *HandlerIdx = AL.getArgAsExpr(1);
if (!SemaRef.checkFunctionOrMethodParameterIndex(D, AL, 2, HandlerIdx, Idx))
return;
const ParmVarDecl *CompletionBlock =
getFunctionOrMethodParam(D, Idx.getASTIndex());
QualType CompletionBlockType = CompletionBlock->getType();
if (!CompletionBlockType->isBlockPointerType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
QualType BlockTy =
CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
}
auto *AsyncAttr =
::new (getASTContext()) SwiftAsyncAttr(getASTContext(), AL, Kind, Idx);
D->addAttr(AsyncAttr);
if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
void SemaSwift::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
ParameterABI abi) {
ASTContext &Context = getASTContext();
QualType type = cast<ParmVarDecl>(D)->getType();
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
if (existingAttr->getABI() != abi) {
Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
<< getParameterABISpelling(abi) << existingAttr
<< (CI.isRegularKeywordAttribute() ||
existingAttr->isRegularKeywordAttribute());
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
return;
}
}
switch (abi) {
case ParameterABI::HLSLOut:
case ParameterABI::HLSLInOut:
llvm_unreachable("explicit attribute for non-swift parameter ABI?");
case ParameterABI::Ordinary:
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
case ParameterABI::SwiftContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
return;
case ParameterABI::SwiftAsyncContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
return;
case ParameterABI::SwiftErrorResult:
if (!isValidSwiftErrorResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
}
D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
return;
case ParameterABI::SwiftIndirectResult:
if (!isValidSwiftIndirectResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer*/ 0 << type;
}
D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
return;
}
llvm_unreachable("bad parameter ABI attribute");
}
} // namespace clang