
The revision renames `PrimFn` to `ArithFn`. The name resembles the newly introduced arith dialect that implements most of the arithmetic functions. An exception are log/exp that are part of the math dialect. Depends On D115239 Reviewed By: stellaraccident Differential Revision: https://reviews.llvm.org/D115240
89 lines
2.4 KiB
Python
89 lines
2.4 KiB
Python
# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s
|
|
|
|
from mlir.dialects.linalg.opdsl.lang import *
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: matmul
|
|
# CHECK: assignments:
|
|
# CHECK: -
|
|
# CHECK: arg: C
|
|
# CHECK: value:
|
|
# CHECK: arith_fn:
|
|
# CHECK: fn_name: add
|
|
# CHECK: operands:
|
|
# CHECK: arith_fn:
|
|
# CHECK: fn_name: mul
|
|
# CHECK: operands:
|
|
# CHECK: type_fn:
|
|
# CHECK: type_var: U
|
|
# CHECK: operands:
|
|
# CHECK: scalar_arg: A
|
|
# CHECK: type_fn:
|
|
# CHECK: type_var: U
|
|
# CHECK: operands:
|
|
# CHECK: scalar_arg: B
|
|
@linalg_structured_op
|
|
def matmul(
|
|
A=TensorDef(T, S.M, S.K),
|
|
B=TensorDef(T, S.K, S.N),
|
|
C=TensorDef(U, S.M, S.N, output=True)):
|
|
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: constants
|
|
# CHECK: assignments:
|
|
# CHECK: -
|
|
# CHECK: arg: O
|
|
# CHECK: arith_fn:
|
|
# CHECK: fn_name: sub
|
|
# CHECK: operands:
|
|
# CHECK: arith_fn:
|
|
# CHECK: fn_name: add
|
|
# CHECK: operands:
|
|
# CHECK: type_fn:
|
|
# CHECK: type_var: T
|
|
# CHECK: operands:
|
|
# CHECK: scalar_const: '3.1415926535897931 : f64'
|
|
# CHECK: type_fn:
|
|
# CHECK: type_var: T
|
|
# CHECK: operands:
|
|
# CHECK: scalar_const: '42 : i64'
|
|
# CHECK: type_fn:
|
|
# CHECK: type_var: T
|
|
# CHECK: operands:
|
|
# CHECK: scalar_const: '1.{{[0]*}}e+03 : f64'
|
|
@linalg_structured_op
|
|
def constants(O=TensorDef(T, S.M, S.K, output=True)):
|
|
pi = TypeFn.cast(T, const(3.1415926535897931))
|
|
cst42 = TypeFn.cast(T, const(42))
|
|
cst1000 = TypeFn.cast(T, const(1e+3))
|
|
O[D.m, D.n] = pi + cst42 - cst1000
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: indices
|
|
# CHECK: assignments:
|
|
# CHECK: -
|
|
# CHECK: arg: O
|
|
# CHECK: arith_fn:
|
|
# CHECK: fn_name: add
|
|
# CHECK: operands:
|
|
# CHECK: scalar_index: 1
|
|
# CHECK: scalar_index: 0
|
|
@linalg_structured_op
|
|
def indices(O=TensorDef(T, S.M, S.K, output=True)):
|
|
O[D.m, D.n] = index(D.n) + index(D.m)
|
|
|
|
|
|
# CHECK: ---
|
|
# CHECK-LABEL: fill
|
|
# CHECK: assignments:
|
|
# CHECK: -
|
|
# CHECK: arg: O
|
|
# CHECK: scalar_arg: value
|
|
@linalg_structured_op
|
|
def fill(value=ScalarDef(T), O=TensorDef(T, S.M, S.K, output=True)):
|
|
O[D.m, D.n] = value
|