gysit cf05668c17 [mlir][OpDSL] Rename PrimFn to ArithFn.
The revision renames `PrimFn` to `ArithFn`. The name resembles the newly introduced arith dialect that implements most of the arithmetic functions. An exception are log/exp that are part of the math dialect.

Depends On D115239

Reviewed By: stellaraccident

Differential Revision: https://reviews.llvm.org/D115240
2022-01-07 12:38:03 +00:00

89 lines
2.4 KiB
Python

# RUN: %PYTHON -m mlir.dialects.linalg.opdsl.dump_oplib --file %s | FileCheck %s
from mlir.dialects.linalg.opdsl.lang import *
# CHECK: ---
# CHECK-LABEL: matmul
# CHECK: assignments:
# CHECK: -
# CHECK: arg: C
# CHECK: value:
# CHECK: arith_fn:
# CHECK: fn_name: add
# CHECK: operands:
# CHECK: arith_fn:
# CHECK: fn_name: mul
# CHECK: operands:
# CHECK: type_fn:
# CHECK: type_var: U
# CHECK: operands:
# CHECK: scalar_arg: A
# CHECK: type_fn:
# CHECK: type_var: U
# CHECK: operands:
# CHECK: scalar_arg: B
@linalg_structured_op
def matmul(
A=TensorDef(T, S.M, S.K),
B=TensorDef(T, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True)):
C[D.m, D.n] += TypeFn.cast(U, A[D.m, D.k]) * TypeFn.cast(U, B[D.k, D.n])
# CHECK: ---
# CHECK-LABEL: constants
# CHECK: assignments:
# CHECK: -
# CHECK: arg: O
# CHECK: arith_fn:
# CHECK: fn_name: sub
# CHECK: operands:
# CHECK: arith_fn:
# CHECK: fn_name: add
# CHECK: operands:
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '3.1415926535897931 : f64'
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '42 : i64'
# CHECK: type_fn:
# CHECK: type_var: T
# CHECK: operands:
# CHECK: scalar_const: '1.{{[0]*}}e+03 : f64'
@linalg_structured_op
def constants(O=TensorDef(T, S.M, S.K, output=True)):
pi = TypeFn.cast(T, const(3.1415926535897931))
cst42 = TypeFn.cast(T, const(42))
cst1000 = TypeFn.cast(T, const(1e+3))
O[D.m, D.n] = pi + cst42 - cst1000
# CHECK: ---
# CHECK-LABEL: indices
# CHECK: assignments:
# CHECK: -
# CHECK: arg: O
# CHECK: arith_fn:
# CHECK: fn_name: add
# CHECK: operands:
# CHECK: scalar_index: 1
# CHECK: scalar_index: 0
@linalg_structured_op
def indices(O=TensorDef(T, S.M, S.K, output=True)):
O[D.m, D.n] = index(D.n) + index(D.m)
# CHECK: ---
# CHECK-LABEL: fill
# CHECK: assignments:
# CHECK: -
# CHECK: arg: O
# CHECK: scalar_arg: value
@linalg_structured_op
def fill(value=ScalarDef(T), O=TensorDef(T, S.M, S.K, output=True)):
O[D.m, D.n] = value