
The if-check above deleted part guarantees that StoreOffset <= LoadOffset and that StoreOffset + StoreSize >= LoadOffset + LoadSize, and given that LoadOffset + LoadSize > LoadOffset when LoadSize > 0. Thus, this shows StoreOffset + StoreSize > LoadOffset is guaranteed given LoadSize > 0, while it could be meaningless to have a type with nonpositive size, so that the check could be removed. The values are converted to signed types to avoid unsigned operation with negative offsets. Part of revision D100179 Reapply commit c35e8185d8c170c20e28956e0c9f3c1be895fefb with fixing problem reported by mstorsjo
596 lines
24 KiB
C++
596 lines
24 KiB
C++
#include "llvm/Transforms/Utils/VNCoercion.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "vncoerce"
|
|
|
|
namespace llvm {
|
|
namespace VNCoercion {
|
|
|
|
static bool isFirstClassAggregateOrScalableType(Type *Ty) {
|
|
return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
|
|
}
|
|
|
|
/// Return true if coerceAvailableValueToLoadType will succeed.
|
|
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
|
|
const DataLayout &DL) {
|
|
Type *StoredTy = StoredVal->getType();
|
|
|
|
if (StoredTy == LoadTy)
|
|
return true;
|
|
|
|
// If the loaded/stored value is a first class array/struct, or scalable type,
|
|
// don't try to transform them. We need to be able to bitcast to integer.
|
|
if (isFirstClassAggregateOrScalableType(LoadTy) ||
|
|
isFirstClassAggregateOrScalableType(StoredTy))
|
|
return false;
|
|
|
|
uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
|
|
|
|
// The store size must be byte-aligned to support future type casts.
|
|
if (llvm::alignTo(StoreSize, 8) != StoreSize)
|
|
return false;
|
|
|
|
// The store has to be at least as big as the load.
|
|
if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
|
|
return false;
|
|
|
|
bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
|
|
bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
|
|
// Don't coerce non-integral pointers to integers or vice versa.
|
|
if (StoredNI != LoadNI) {
|
|
// As a special case, allow coercion of memset used to initialize
|
|
// an array w/null. Despite non-integral pointers not generally having a
|
|
// specific bit pattern, we do assume null is zero.
|
|
if (auto *CI = dyn_cast<Constant>(StoredVal))
|
|
return CI->isNullValue();
|
|
return false;
|
|
} else if (StoredNI && LoadNI &&
|
|
StoredTy->getPointerAddressSpace() !=
|
|
LoadTy->getPointerAddressSpace()) {
|
|
return false;
|
|
}
|
|
|
|
|
|
// The implementation below uses inttoptr for vectors of unequal size; we
|
|
// can't allow this for non integral pointers. We could teach it to extract
|
|
// exact subvectors if desired.
|
|
if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
|
|
HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
|
|
"precondition violation - materialization can't fail");
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
// If this is already the right type, just return it.
|
|
Type *StoredValTy = StoredVal->getType();
|
|
|
|
uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
|
|
uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
|
|
|
|
// If the store and reload are the same size, we can always reuse it.
|
|
if (StoredValSize == LoadedValSize) {
|
|
// Pointer to Pointer -> use bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
} else {
|
|
// Convert source pointers to integers, which can be bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
Type *TypeToCastTo = LoadedTy;
|
|
if (TypeToCastTo->isPtrOrPtrVectorTy())
|
|
TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
|
|
|
|
if (StoredValTy != TypeToCastTo)
|
|
StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
|
|
|
|
// Cast to pointer if the load needs a pointer type.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
// If the loaded value is smaller than the available value, then we can
|
|
// extract out a piece from it. If the available value is too small, then we
|
|
// can't do anything.
|
|
assert(StoredValSize >= LoadedValSize &&
|
|
"canCoerceMustAliasedValueToLoad fail");
|
|
|
|
// Convert source pointers to integers, which can be manipulated.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// Convert vectors and fp to integer, which can be manipulated.
|
|
if (!StoredValTy->isIntegerTy()) {
|
|
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
|
|
StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// If this is a big-endian system, we need to shift the value down to the low
|
|
// bits so that a truncate will work.
|
|
if (DL.isBigEndian()) {
|
|
uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
|
|
DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
|
|
StoredVal = Helper.CreateLShr(
|
|
StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
|
|
}
|
|
|
|
// Truncate the integer to the right size now.
|
|
Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
|
|
StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
|
|
|
|
if (LoadedTy != NewIntTy) {
|
|
// If the result is a pointer, inttoptr.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
else
|
|
// Otherwise, bitcast.
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
|
|
/// If we saw a store of a value to memory, and
|
|
/// then a load from a must-aliased pointer of a different type, try to coerce
|
|
/// the stored value. LoadedTy is the type of the load we want to replace.
|
|
/// IRB is IRBuilder used to insert new instructions.
|
|
///
|
|
/// If we can't do it, return null.
|
|
Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
|
|
IRBuilderBase &IRB,
|
|
const DataLayout &DL) {
|
|
return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering memory write (store, memset, memcpy, memmove). This
|
|
/// means that the write *may* provide bits used by the load but we can't be
|
|
/// sure because the pointers don't must-alias.
|
|
///
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up. This returns -1 if we have to give up, or a byte number in the stored
|
|
/// value of the piece that feeds the load.
|
|
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
|
|
Value *WritePtr,
|
|
uint64_t WriteSizeInBits,
|
|
const DataLayout &DL) {
|
|
// If the loaded/stored value is a first class array/struct, or scalable type,
|
|
// don't try to transform them. We need to be able to bitcast to integer.
|
|
if (isFirstClassAggregateOrScalableType(LoadTy))
|
|
return -1;
|
|
|
|
int64_t StoreOffset = 0, LoadOffset = 0;
|
|
Value *StoreBase =
|
|
GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
|
|
Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
|
|
if (StoreBase != LoadBase)
|
|
return -1;
|
|
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
|
|
|
|
if ((WriteSizeInBits & 7) | (LoadSize & 7))
|
|
return -1;
|
|
uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
|
|
LoadSize /= 8;
|
|
|
|
// If the Load isn't completely contained within the stored bits, we don't
|
|
// have all the bits to feed it. We could do something crazy in the future
|
|
// (issue a smaller load then merge the bits in) but this seems unlikely to be
|
|
// valuable.
|
|
if (StoreOffset > LoadOffset ||
|
|
StoreOffset + int64_t(StoreSize) < LoadOffset + int64_t(LoadSize))
|
|
return -1;
|
|
|
|
// Okay, we can do this transformation. Return the number of bytes into the
|
|
// store that the load is.
|
|
return LoadOffset - StoreOffset;
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering store.
|
|
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
|
|
StoreInst *DepSI, const DataLayout &DL) {
|
|
auto *StoredVal = DepSI->getValueOperand();
|
|
|
|
// Cannot handle reading from store of first-class aggregate or scalable type.
|
|
if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
|
|
return -1;
|
|
|
|
Value *StorePtr = DepSI->getPointerOperand();
|
|
uint64_t StoreSize =
|
|
DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
|
|
DL);
|
|
}
|
|
|
|
/// Looks at a memory location for a load (specified by MemLocBase, Offs, and
|
|
/// Size) and compares it against a load.
|
|
///
|
|
/// If the specified load could be safely widened to a larger integer load
|
|
/// that is 1) still efficient, 2) safe for the target, and 3) would provide
|
|
/// the specified memory location value, then this function returns the size
|
|
/// in bytes of the load width to use. If not, this returns zero.
|
|
static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
|
|
int64_t MemLocOffs,
|
|
unsigned MemLocSize,
|
|
const LoadInst *LI) {
|
|
// We can only extend simple integer loads.
|
|
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
|
|
return 0;
|
|
|
|
// Load widening is hostile to ThreadSanitizer: it may cause false positives
|
|
// or make the reports more cryptic (access sizes are wrong).
|
|
if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
|
|
return 0;
|
|
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
|
|
// Get the base of this load.
|
|
int64_t LIOffs = 0;
|
|
const Value *LIBase =
|
|
GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
|
|
|
|
// If the two pointers are not based on the same pointer, we can't tell that
|
|
// they are related.
|
|
if (LIBase != MemLocBase)
|
|
return 0;
|
|
|
|
// Okay, the two values are based on the same pointer, but returned as
|
|
// no-alias. This happens when we have things like two byte loads at "P+1"
|
|
// and "P+3". Check to see if increasing the size of the "LI" load up to its
|
|
// alignment (or the largest native integer type) will allow us to load all
|
|
// the bits required by MemLoc.
|
|
|
|
// If MemLoc is before LI, then no widening of LI will help us out.
|
|
if (MemLocOffs < LIOffs)
|
|
return 0;
|
|
|
|
// Get the alignment of the load in bytes. We assume that it is safe to load
|
|
// any legal integer up to this size without a problem. For example, if we're
|
|
// looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
|
|
// widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
|
|
// to i16.
|
|
unsigned LoadAlign = LI->getAlignment();
|
|
|
|
int64_t MemLocEnd = MemLocOffs + MemLocSize;
|
|
|
|
// If no amount of rounding up will let MemLoc fit into LI, then bail out.
|
|
if (LIOffs + LoadAlign < MemLocEnd)
|
|
return 0;
|
|
|
|
// This is the size of the load to try. Start with the next larger power of
|
|
// two.
|
|
unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
|
|
NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
|
|
|
|
while (true) {
|
|
// If this load size is bigger than our known alignment or would not fit
|
|
// into a native integer register, then we fail.
|
|
if (NewLoadByteSize > LoadAlign ||
|
|
!DL.fitsInLegalInteger(NewLoadByteSize * 8))
|
|
return 0;
|
|
|
|
if (LIOffs + NewLoadByteSize > MemLocEnd &&
|
|
(LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeAddress) ||
|
|
LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeHWAddress)))
|
|
// We will be reading past the location accessed by the original program.
|
|
// While this is safe in a regular build, Address Safety analysis tools
|
|
// may start reporting false warnings. So, don't do widening.
|
|
return 0;
|
|
|
|
// If a load of this width would include all of MemLoc, then we succeed.
|
|
if (LIOffs + NewLoadByteSize >= MemLocEnd)
|
|
return NewLoadByteSize;
|
|
|
|
NewLoadByteSize <<= 1;
|
|
}
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being clobbered by another load. See if
|
|
/// the other load can feed into the second load.
|
|
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
|
|
const DataLayout &DL) {
|
|
// Cannot handle reading from store of first-class aggregate yet.
|
|
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
|
|
return -1;
|
|
|
|
Value *DepPtr = DepLI->getPointerOperand();
|
|
uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
|
|
int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
|
|
if (R != -1)
|
|
return R;
|
|
|
|
// If we have a load/load clobber an DepLI can be widened to cover this load,
|
|
// then we should widen it!
|
|
int64_t LoadOffs = 0;
|
|
const Value *LoadBase =
|
|
GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
|
|
unsigned Size =
|
|
getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
|
|
if (Size == 0)
|
|
return -1;
|
|
|
|
// Check non-obvious conditions enforced by MDA which we rely on for being
|
|
// able to materialize this potentially available value
|
|
assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
|
|
assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
|
|
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
|
|
}
|
|
|
|
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
|
|
MemIntrinsic *MI, const DataLayout &DL) {
|
|
// If the mem operation is a non-constant size, we can't handle it.
|
|
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (!SizeCst)
|
|
return -1;
|
|
uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
|
|
|
|
// If this is memset, we just need to see if the offset is valid in the size
|
|
// of the memset..
|
|
if (MI->getIntrinsicID() == Intrinsic::memset) {
|
|
if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
|
|
auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
|
|
if (!CI || !CI->isZero())
|
|
return -1;
|
|
}
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
}
|
|
|
|
// If we have a memcpy/memmove, the only case we can handle is if this is a
|
|
// copy from constant memory. In that case, we can read directly from the
|
|
// constant memory.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(MI);
|
|
|
|
Constant *Src = dyn_cast<Constant>(MTI->getSource());
|
|
if (!Src)
|
|
return -1;
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
|
|
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
|
|
return -1;
|
|
|
|
// See if the access is within the bounds of the transfer.
|
|
int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
if (Offset == -1)
|
|
return Offset;
|
|
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
|
|
if (ConstantFoldLoadFromConstPtr(Src, LoadTy, APInt(IndexSize, Offset), DL))
|
|
return Offset;
|
|
return -1;
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
|
|
HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = SrcVal->getType()->getContext();
|
|
|
|
// If two pointers are in the same address space, they have the same size,
|
|
// so we don't need to do any truncation, etc. This avoids introducing
|
|
// ptrtoint instructions for pointers that may be non-integral.
|
|
if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
|
|
cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
|
|
cast<PointerType>(LoadTy)->getAddressSpace()) {
|
|
return SrcVal;
|
|
}
|
|
|
|
uint64_t StoreSize =
|
|
(DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
|
|
uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
|
|
// Compute which bits of the stored value are being used by the load. Convert
|
|
// to an integer type to start with.
|
|
if (SrcVal->getType()->isPtrOrPtrVectorTy())
|
|
SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
|
|
if (!SrcVal->getType()->isIntegerTy())
|
|
SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
|
|
|
|
// Shift the bits to the least significant depending on endianness.
|
|
unsigned ShiftAmt;
|
|
if (DL.isLittleEndian())
|
|
ShiftAmt = Offset * 8;
|
|
else
|
|
ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
|
|
if (ShiftAmt)
|
|
SrcVal = Helper.CreateLShr(SrcVal,
|
|
ConstantInt::get(SrcVal->getType(), ShiftAmt));
|
|
|
|
if (LoadSize != StoreSize)
|
|
SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
|
|
IntegerType::get(Ctx, LoadSize * 8));
|
|
return SrcVal;
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering store. This means that the store provides bits used by
|
|
/// the load but the pointers don't must-alias. Check this case to see if
|
|
/// there is anything more we can do before we give up.
|
|
Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
|
|
Instruction *InsertPt, const DataLayout &DL) {
|
|
|
|
IRBuilder<> Builder(InsertPt);
|
|
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
|
|
return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
|
|
}
|
|
|
|
Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
ConstantFolder F;
|
|
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
|
|
return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering load. This means that the load *may* provide bits used
|
|
/// by the load but we can't be sure because the pointers don't must-alias.
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up.
|
|
Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
|
|
Instruction *InsertPt, const DataLayout &DL) {
|
|
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
|
|
// widen SrcVal out to a larger load.
|
|
unsigned SrcValStoreSize =
|
|
DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
if (Offset + LoadSize > SrcValStoreSize) {
|
|
assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
|
|
assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
|
|
// If we have a load/load clobber an DepLI can be widened to cover this
|
|
// load, then we should widen it to the next power of 2 size big enough!
|
|
unsigned NewLoadSize = Offset + LoadSize;
|
|
if (!isPowerOf2_32(NewLoadSize))
|
|
NewLoadSize = NextPowerOf2(NewLoadSize);
|
|
|
|
Value *PtrVal = SrcVal->getPointerOperand();
|
|
// Insert the new load after the old load. This ensures that subsequent
|
|
// memdep queries will find the new load. We can't easily remove the old
|
|
// load completely because it is already in the value numbering table.
|
|
IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
|
|
Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
|
|
Type *DestPTy =
|
|
PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
|
|
Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
|
|
PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
|
|
LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
|
|
NewLoad->takeName(SrcVal);
|
|
NewLoad->setAlignment(SrcVal->getAlign());
|
|
|
|
LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
|
|
LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
|
|
|
|
// Replace uses of the original load with the wider load. On a big endian
|
|
// system, we need to shift down to get the relevant bits.
|
|
Value *RV = NewLoad;
|
|
if (DL.isBigEndian())
|
|
RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
|
|
RV = Builder.CreateTrunc(RV, SrcVal->getType());
|
|
SrcVal->replaceAllUsesWith(RV);
|
|
|
|
SrcVal = NewLoad;
|
|
}
|
|
|
|
return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
|
|
}
|
|
|
|
Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
unsigned SrcValStoreSize =
|
|
DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
if (Offset + LoadSize > SrcValStoreSize)
|
|
return nullptr;
|
|
return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = LoadTy->getContext();
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
|
|
|
|
// We know that this method is only called when the mem transfer fully
|
|
// provides the bits for the load.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
|
|
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
|
|
// independently of what the offset is.
|
|
T *Val = cast<T>(MSI->getValue());
|
|
if (LoadSize != 1)
|
|
Val =
|
|
Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
|
|
T *OneElt = Val;
|
|
|
|
// Splat the value out to the right number of bits.
|
|
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
|
|
// If we can double the number of bytes set, do it.
|
|
if (NumBytesSet * 2 <= LoadSize) {
|
|
T *ShVal = Helper.CreateShl(
|
|
Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
|
|
Val = Helper.CreateOr(Val, ShVal);
|
|
NumBytesSet <<= 1;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise insert one byte at a time.
|
|
T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
|
|
Val = Helper.CreateOr(OneElt, ShVal);
|
|
++NumBytesSet;
|
|
}
|
|
|
|
return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
|
|
}
|
|
|
|
// Otherwise, this is a memcpy/memmove from a constant global.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
|
|
Constant *Src = cast<Constant>(MTI->getSource());
|
|
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
unsigned IndexSize = DL.getIndexTypeSizeInBits(Src->getType());
|
|
return ConstantFoldLoadFromConstPtr(
|
|
Src, LoadTy, APInt(IndexSize, Offset), DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering mem intrinsic.
|
|
Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, Instruction *InsertPt,
|
|
const DataLayout &DL) {
|
|
IRBuilder<> Builder(InsertPt);
|
|
return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
|
|
LoadTy, Builder, DL);
|
|
}
|
|
|
|
Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
// The only case analyzeLoadFromClobberingMemInst cannot be converted to a
|
|
// constant is when it's a memset of a non-constant.
|
|
if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
|
|
if (!isa<Constant>(MSI->getValue()))
|
|
return nullptr;
|
|
ConstantFolder F;
|
|
return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
|
|
LoadTy, F, DL);
|
|
}
|
|
} // namespace VNCoercion
|
|
} // namespace llvm
|