llvm-project/libcxx/test/benchmarks/algorithms/set_intersection.bench.cpp
Louis Dionne 439bef9751
[libc++] Refactor the sequence container benchmarks (#119763)
Rewrite the sequence container benchmarks to only rely on the actual
operations specified in SequenceContainer requirements and add
benchmarks for std::list, which is also considered a sequence container.

One of the major goals of this refactoring is also to make these
container benchmarks run faster so that they can be run more frequently.
The existing benchmarks have the significant problem that they take so
long to run that they must basically be run overnight. This patch
reduces the size of inputs such that the rewritten benchmarks each take
at most a minute to run.

This patch doesn't touch the string benchmarks, which were not using the
generic container benchmark functions previously.
2025-01-30 15:02:34 -05:00

187 lines
6.4 KiB
C++

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
#include <algorithm>
#include <cstdlib>
#include <iterator>
#include <set>
#include <vector>
#include "common.h"
#include "test_iterators.h"
namespace {
// types of containers we'll want to test, covering interesting iterator types
struct VectorContainer {
template <typename... Args>
using type = std::vector<Args...>;
static constexpr const char* Name = "Vector";
};
struct SetContainer {
template <typename... Args>
using type = std::set<Args...>;
static constexpr const char* Name = "Set";
};
using AllContainerTypes = std::tuple<VectorContainer, SetContainer>;
// set_intersection performance may depend on where matching values lie
enum class OverlapPosition {
None,
Front,
// performance-wise, matches at the back are identical to ones at the front
Interlaced,
};
struct AllOverlapPositions : EnumValuesAsTuple<AllOverlapPositions, OverlapPosition, 3> {
static constexpr const char* Names[] = {"None", "Front", "Interlaced"};
};
// forward_iterator wrapping which, for each increment, moves the underlying iterator forward Stride elements
template <typename Wrapped>
struct StridedFwdIt {
Wrapped base_;
unsigned stride_;
using iterator_category = std::forward_iterator_tag;
using difference_type = typename Wrapped::difference_type;
using value_type = typename Wrapped::value_type;
using pointer = typename Wrapped::pointer;
using reference = typename Wrapped::reference;
StridedFwdIt(Wrapped base, unsigned stride) : base_(base), stride_(stride) { assert(stride_ != 0); }
StridedFwdIt operator++() {
for (unsigned i = 0; i < stride_; ++i)
++base_;
return *this;
}
StridedFwdIt operator++(int) {
auto tmp = *this;
++*this;
return tmp;
}
value_type& operator*() { return *base_; }
const value_type& operator*() const { return *base_; }
value_type& operator->() { return *base_; }
const value_type& operator->() const { return *base_; }
bool operator==(const StridedFwdIt& o) const { return base_ == o.base_; }
bool operator!=(const StridedFwdIt& o) const { return !operator==(o); }
};
template <typename Wrapped>
StridedFwdIt(Wrapped, unsigned) -> StridedFwdIt<Wrapped>;
template <typename T>
std::vector<T> getVectorOfRandom(size_t N) {
std::vector<T> v;
fillValues(v, N, Order::Random);
sortValues(v, Order::Random);
return std::vector<T>(v);
}
// Realistically, data won't all be nicely contiguous in a container,
// we'll go through some effort to ensure that it's shuffled through memory
// this is especially important for containers with non-contiguous element
// storage, but it will affect even a std::vector, because when you copy a
// std::vector<std::string> the underlying data storage position for the char
// arrays of the copy are likely to have high locality
template <class Container>
std::pair<Container, Container> genCacheUnfriendlyData(size_t size1, size_t size2, OverlapPosition pos) {
using ValueType = typename Container::value_type;
auto move_into = [](auto first, auto last) {
Container out;
std::move(first, last, std::inserter(out, out.begin()));
return out;
};
const auto src_size = pos == OverlapPosition::None ? size1 + size2 : std::max(size1, size2);
std::vector<ValueType> src = getVectorOfRandom<ValueType>(src_size);
if (pos == OverlapPosition::None) {
std::sort(src.begin(), src.end());
return std::make_pair(move_into(src.begin(), src.begin() + size1), move_into(src.begin() + size1, src.end()));
}
// All other overlap types will have to copy some part of the data, but if
// we copy after sorting it will likely have high locality, so we sort
// each copy separately
auto copy = src;
std::sort(src.begin(), src.end());
std::sort(copy.begin(), copy.end());
switch (pos) {
case OverlapPosition::None:
// we like -Wswitch :)
break;
case OverlapPosition::Front:
return std::make_pair(move_into(src.begin(), src.begin() + size1), move_into(copy.begin(), copy.begin() + size2));
case OverlapPosition::Interlaced:
const auto stride1 = size1 < size2 ? size2 / size1 : 1;
const auto stride2 = size2 < size1 ? size1 / size2 : 1;
return std::make_pair(move_into(StridedFwdIt(src.begin(), stride1), StridedFwdIt(src.end(), stride1)),
move_into(StridedFwdIt(copy.begin(), stride2), StridedFwdIt(copy.end(), stride2)));
}
std::abort(); // would be std::unreachable() if it could
return std::pair<Container, Container>();
}
template <class ValueType, class Container, class Overlap>
struct SetIntersection {
using ContainerType = typename Container::template type<Value<ValueType>>;
size_t size1_;
size_t size2_;
SetIntersection(size_t size1, size_t size2) : size1_(size1), size2_(size2) {}
bool skip() const noexcept {
// let's save some time and skip simmetrical runs
return size1_ < size2_;
}
void run(benchmark::State& state) const {
auto input = genCacheUnfriendlyData<ContainerType>(size1_, size2_, Overlap());
std::vector<Value<ValueType>> out(std::min(size1_, size2_));
const auto BATCH_SIZE = std::max(size_t{512}, (2 * TestSetElements) / (size1_ + size2_));
for (const auto& _ : state) {
while (state.KeepRunningBatch(BATCH_SIZE)) {
for (unsigned i = 0; i < BATCH_SIZE; ++i) {
const auto& [c1, c2] = input;
auto res = std::set_intersection(c1.begin(), c1.end(), c2.begin(), c2.end(), out.begin());
benchmark::DoNotOptimize(res);
}
}
}
}
std::string name() const {
return std::string("SetIntersection") + Overlap::name() + '_' + Container::Name + ValueType::name() + '_' +
std::to_string(size1_) + '_' + std::to_string(size2_);
}
};
} // namespace
int main(int argc, char** argv) { /**/
benchmark::Initialize(&argc, argv);
if (benchmark::ReportUnrecognizedArguments(argc, argv))
return 1;
makeCartesianProductBenchmark<SetIntersection, AllValueTypes, AllContainerTypes, AllOverlapPositions>(
Quantities, Quantities);
benchmark::RunSpecifiedBenchmarks();
return 0;
}