llvm-project/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorRewriting.cpp
Jacques Pienaar d2c0572b2e [mlir] Flip LinAlg dialect to _Both
This one required more changes than ideal due to overlapping generated name
with different return types. Changed getIndexingMaps to getIndexingMapsArray to
move it out of the way/highlight that it returns (more expensively) a
SmallVector and uses the prefixed name for the Attribute.

Differential Revision: https://reviews.llvm.org/D129919
2022-07-19 14:42:58 -07:00

247 lines
10 KiB
C++

//===- SparseTensorRewriting.cpp - Sparse tensor rewriting rules ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements rewriting rules that are specific to sparse tensors.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Support/LLVM.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::linalg;
using namespace mlir::sparse_tensor;
//===---------------------------------------------------------------------===//
// Helper methods for the actual rewriting rules.
//===---------------------------------------------------------------------===//
// Helper to detect a sparse tensor type operand.
static bool isSparseTensor(OpOperand *op) {
if (auto enc = getSparseTensorEncoding(op->get().getType())) {
ArrayRef<SparseTensorEncodingAttr::DimLevelType> dimTypes =
enc.getDimLevelType();
for (auto dimType : dimTypes)
if (dimType == SparseTensorEncodingAttr::DimLevelType::Compressed)
return true; // at least one compressed
}
return false;
}
// Helper method to find zero or empty initialization.
static bool isEmptyInit(OpOperand *op) {
Value val = op->get();
return matchPattern(val, m_Zero()) || matchPattern(val, m_AnyZeroFloat()) ||
val.getDefiningOp<InitTensorOp>() ||
val.getDefiningOp<AllocTensorOp>();
}
// Helper to detect sampling operation.
static bool isSampling(GenericOp op) {
auto yieldOp = cast<linalg::YieldOp>(op.region().front().getTerminator());
if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def)) {
// Both scalar input arguments used exactly once.
Value s1 = op.getBlock()->getArgument(0);
Value s2 = op.getBlock()->getArgument(1);
return (def->getOperand(0) == s1 && def->getOperand(1) == s2) ||
(def->getOperand(1) == s1 && def->getOperand(0) == s2);
}
}
return false;
}
// Helper to detect chain of multiplications that do not involve x.
static bool isMulChain(Value val, Value x) {
if (auto arg = val.dyn_cast<BlockArgument>())
return arg != x;
if (auto *def = val.getDefiningOp()) {
if (isa<arith::MulFOp>(def) || isa<arith::MulIOp>(def))
return isMulChain(def->getOperand(0), x) &&
isMulChain(def->getOperand(1), x);
}
return false;
}
// Helper to detect x = x + <multiplications>.
static bool isSumOfMul(GenericOp op) {
auto yieldOp = cast<linalg::YieldOp>(op.region().front().getTerminator());
if (auto *def = yieldOp.getOperand(0).getDefiningOp()) {
if (isa<arith::AddFOp>(def) || isa<arith::AddIOp>(def)) {
Value x = op.getBlock()->getArguments().back();
return (def->getOperand(0) == x && isMulChain(def->getOperand(1), x)) ||
(def->getOperand(1) == x && isMulChain(def->getOperand(0), x));
}
}
return false;
}
//===---------------------------------------------------------------------===//
// The actual sparse tensor rewriting rules.
//===---------------------------------------------------------------------===//
namespace {
/// Rewriting rule that converts two kernels:
///
/// T(i,j) = SUM(k, A(i,j,k) * B(i,j,k) * ... )
/// X(i,j) = S(i,j) * T(i,j)
///
/// into a single kernel, using distributive law:
///
/// X(i,j) = SUM(k, S(i,j) * A(i,j,k) * B(i,j,k) * ... )
///
/// This kind of fusion (merging two ops into one but using arithmetic
/// equalities that may not hold for floating-point computations) would
/// be undesirable in the dense case, since we distribute the multiplication
/// into the reduction loop. However, for sparse sampling tensor S, such
/// a fusion may actually reduce the asymptotic complexity of the kernel,
/// since intermediate results may be nullified.
struct FuseSparseMultiplyOverAdd : public OpRewritePattern<GenericOp> {
public:
using OpRewritePattern<GenericOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenericOp op,
PatternRewriter &rewriter) const override {
// Check consumer.
if (!op.hasTensorSemantics() || op.getNumInputs() != 2 ||
op.getNumResults() != 1 ||
op.getNumParallelLoops() != op.getNumLoops() ||
!op.getTiedIndexingMap(op.getOutputOperand(0)).isIdentity() ||
!op.getTiedIndexingMap(op.getInputOperand(0)).isIdentity() ||
!op.getTiedIndexingMap(op.getInputOperand(1)).isIdentity())
return failure();
// Find consuming OP2(sparse, other) or OP2(other, sparse). The other
// operand can be sparse or dense, since the point of this rewriting rule
// is detecting a situation in which *more* sparsity is introduced into
// a computation, be it already sparse or still dense.
unsigned other = 0;
if (isSparseTensor(op.getInputOperand(0)))
other = 1;
else if (!isSparseTensor(op.getInputOperand(1)))
return failure();
// Check producer.
auto prod = dyn_cast_or_null<GenericOp>(
op.getInputOperand(other)->get().getDefiningOp());
if (!prod || !prod.hasTensorSemantics() || prod.getNumResults() != 1 ||
!prod.getResult(0).hasOneUse())
return failure();
// Sampling consumer and sum of multiplication chain producer.
if (!isEmptyInit(op.getOutputOperand(0)) ||
!isEmptyInit(prod.getOutputOperand(0)) || !isSampling(op) ||
!isSumOfMul(prod))
return failure();
// Modify operand structure of producer and consumer.
Location loc = prod.getLoc();
SmallVector<Value> inputOps = prod.getInputOperands();
SmallVector<Value> outputOps = op.getOutputOperands();
SmallVector<AffineMap> fusedIndexMaps = prod.getIndexingMapsArray();
inputOps.push_back(op.getInputOperand(1 - other)->get());
fusedIndexMaps.push_back(fusedIndexMaps.back()); // mimic other
// Fuse producer and consumer into a new generic op.
auto fusedOp = rewriter.create<GenericOp>(
loc, op.getResult(0).getType(), inputOps, outputOps,
rewriter.getAffineMapArrayAttr(fusedIndexMaps), prod.iterator_types(),
/*doc=*/nullptr, /*library_call=*/nullptr);
Block &prodBlock = prod.region().front();
Block &consBlock = op.region().front();
BlockAndValueMapping mapper;
Block *fusedBlock = new Block();
fusedOp.region().push_back(fusedBlock);
unsigned num = prodBlock.getNumArguments();
for (unsigned i = 0; i < num - 1; i++)
addArg(mapper, fusedBlock, prodBlock.getArgument(i));
addArg(mapper, fusedBlock, consBlock.getArgument(1 - other));
addArg(mapper, fusedBlock, prodBlock.getArgument(num - 1));
// Clone bodies of the producer and consumer in new evaluation order.
auto *acc = prodBlock.getTerminator()->getOperand(0).getDefiningOp();
auto *sampler = consBlock.getTerminator()->getOperand(0).getDefiningOp();
rewriter.setInsertionPointToStart(fusedBlock);
Value last;
for (auto &op : prodBlock.without_terminator())
if (&op != acc) {
last = op.getResult(0);
rewriter.clone(op, mapper);
}
mapper.map(consBlock.getArgument(other), fusedBlock->back().getResult(0));
mapper.map(last, rewriter.clone(*sampler, mapper)->getResult(0));
last = rewriter.clone(*acc, mapper)->getResult(0);
rewriter.create<linalg::YieldOp>(loc, last);
// Replace consumer with fused operation. Old producer
// and consumer ops will be removed by DCE.
rewriter.replaceOp(op, fusedOp->getResults());
return success();
}
private:
// Helper to add argument and record the mapping.
static void addArg(BlockAndValueMapping &mapper, Block *b, BlockArgument a) {
mapper.map(a, b->addArgument(a.getType(), a.getLoc()));
}
};
/// Sparse rewriting rule for reshape operator.
template <typename ReshapeOp>
struct ReshapeRewriter : public OpRewritePattern<ReshapeOp> {
public:
using OpRewritePattern<ReshapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ReshapeOp op,
PatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto encDst = getSparseTensorEncoding(op.getResult().getType());
auto encSrc = getSparseTensorEncoding(op.getSrc().getType());
// Since a pure dense expansion is very cheap (change of view), for
// a sparse2dense or dense2sparse, we can simply unfuse a sparse
// conversion from the reshape operation itself.
// All other cases are handled elsewhere.
if (encDst && encSrc) {
return failure();
} else if (encSrc) {
RankedTensorType rtp =
op.getSrc().getType().template cast<RankedTensorType>();
auto denseTp =
RankedTensorType::get(rtp.getShape(), rtp.getElementType());
auto convert = rewriter.create<ConvertOp>(loc, denseTp, op.getSrc());
op->setOperand(0, convert);
return success();
} else if (encDst) {
RankedTensorType rtp =
op.getResult().getType().template cast<RankedTensorType>();
auto denseTp =
RankedTensorType::get(rtp.getShape(), rtp.getElementType());
auto reshape = rewriter.create<ReshapeOp>(loc, denseTp, op.getSrc(),
op.getReassociation());
Value convert = rewriter.create<ConvertOp>(loc, rtp, reshape);
rewriter.replaceOp(op, convert);
return success();
}
return failure();
}
};
} // namespace
//===---------------------------------------------------------------------===//
// Methods that add patterns described in this file to a pattern list.
//===---------------------------------------------------------------------===//
void mlir::populateSparseTensorRewriting(RewritePatternSet &patterns) {
// TODO(springerm): enable FuseSparseMultiplyOverAdd
patterns.add<ReshapeRewriter<tensor::ExpandShapeOp>,
ReshapeRewriter<tensor::CollapseShapeOp>>(patterns.getContext());
}