llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp
Lucas Ramirez 96f3872dc9
[AMDGPU][Scheduler] Delete RegionsWithMinOcc bitvector from scheduler (NFC) (#142361)
The `GCNScheduleDAGMILive`'s `RegionsWithMinOcc` bitvector is only used
by the `UnclusteredHighRPStage`. Its presence in the scheduler's state
forces us to maintain its value throughout scheduling even though it is
of no use to the iterative scheduling process itself. At any point
during scheduling it is possible to cheaply compute the occupancy
induced by a particular register pressure. Furthermore, the field
doesn't appear to be updated correctly throughout scheduling i.e., bits
corresponding to regions at minimum occupancy are not always set in the
vector.

This removes the bitvector from `GCNScheduleDAGMILive`.
`UnclusteredHighRPStage::initGCNRegion` now directly computes the
occupancy of possibly reschedulable regions instead of querying the
vector. Since it is the most expensive check, it is done last in the
list.
2025-08-01 13:20:05 +02:00

2138 lines
81 KiB
C++

//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
///
/// This pass will apply multiple scheduling stages to the same function.
/// Regions are first recorded in GCNScheduleDAGMILive::schedule. The actual
/// entry point for the scheduling of those regions is
/// GCNScheduleDAGMILive::runSchedStages.
/// Generally, the reason for having multiple scheduling stages is to account
/// for the kernel-wide effect of register usage on occupancy. Usually, only a
/// few scheduling regions will have register pressure high enough to limit
/// occupancy for the kernel, so constraints can be relaxed to improve ILP in
/// other regions.
///
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "AMDGPUIGroupLP.h"
#include "GCNRegPressure.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/ErrorHandling.h"
#define DEBUG_TYPE "machine-scheduler"
using namespace llvm;
static cl::opt<bool> DisableUnclusterHighRP(
"amdgpu-disable-unclustered-high-rp-reschedule", cl::Hidden,
cl::desc("Disable unclustered high register pressure "
"reduction scheduling stage."),
cl::init(false));
static cl::opt<bool> DisableClusteredLowOccupancy(
"amdgpu-disable-clustered-low-occupancy-reschedule", cl::Hidden,
cl::desc("Disable clustered low occupancy "
"rescheduling for ILP scheduling stage."),
cl::init(false));
static cl::opt<unsigned> ScheduleMetricBias(
"amdgpu-schedule-metric-bias", cl::Hidden,
cl::desc(
"Sets the bias which adds weight to occupancy vs latency. Set it to "
"100 to chase the occupancy only."),
cl::init(10));
static cl::opt<bool>
RelaxedOcc("amdgpu-schedule-relaxed-occupancy", cl::Hidden,
cl::desc("Relax occupancy targets for kernels which are memory "
"bound (amdgpu-membound-threshold), or "
"Wave Limited (amdgpu-limit-wave-threshold)."),
cl::init(false));
static cl::opt<bool> GCNTrackers(
"amdgpu-use-amdgpu-trackers", cl::Hidden,
cl::desc("Use the AMDGPU specific RPTrackers during scheduling"),
cl::init(false));
const unsigned ScheduleMetrics::ScaleFactor = 100;
GCNSchedStrategy::GCNSchedStrategy(const MachineSchedContext *C)
: GenericScheduler(C), TargetOccupancy(0), MF(nullptr),
DownwardTracker(*C->LIS), UpwardTracker(*C->LIS), HasHighPressure(false) {
}
void GCNSchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
MF = &DAG->MF;
const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
SGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass);
VGPRExcessLimit =
Context->RegClassInfo->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass);
SIMachineFunctionInfo &MFI = *MF->getInfo<SIMachineFunctionInfo>();
// Set the initial TargetOccupnacy to the maximum occupancy that we can
// achieve for this function. This effectively sets a lower bound on the
// 'Critical' register limits in the scheduler.
// Allow for lower occupancy targets if kernel is wave limited or memory
// bound, and using the relaxed occupancy feature.
TargetOccupancy =
RelaxedOcc ? MFI.getMinAllowedOccupancy() : MFI.getOccupancy();
SGPRCriticalLimit =
std::min(ST.getMaxNumSGPRs(TargetOccupancy, true), SGPRExcessLimit);
if (!KnownExcessRP) {
VGPRCriticalLimit = std::min(
ST.getMaxNumVGPRs(TargetOccupancy, MFI.getDynamicVGPRBlockSize()),
VGPRExcessLimit);
} else {
// This is similar to ST.getMaxNumVGPRs(TargetOccupancy) result except
// returns a reasonably small number for targets with lots of VGPRs, such
// as GFX10 and GFX11.
LLVM_DEBUG(dbgs() << "Region is known to spill, use alternative "
"VGPRCriticalLimit calculation method.\n");
unsigned DynamicVGPRBlockSize = MFI.getDynamicVGPRBlockSize();
unsigned Granule =
AMDGPU::IsaInfo::getVGPRAllocGranule(&ST, DynamicVGPRBlockSize);
unsigned Addressable =
AMDGPU::IsaInfo::getAddressableNumVGPRs(&ST, DynamicVGPRBlockSize);
unsigned VGPRBudget = alignDown(Addressable / TargetOccupancy, Granule);
VGPRBudget = std::max(VGPRBudget, Granule);
VGPRCriticalLimit = std::min(VGPRBudget, VGPRExcessLimit);
}
// Subtract error margin and bias from register limits and avoid overflow.
SGPRCriticalLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRCriticalLimit);
VGPRCriticalLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRCriticalLimit);
SGPRExcessLimit -= std::min(SGPRLimitBias + ErrorMargin, SGPRExcessLimit);
VGPRExcessLimit -= std::min(VGPRLimitBias + ErrorMargin, VGPRExcessLimit);
LLVM_DEBUG(dbgs() << "VGPRCriticalLimit = " << VGPRCriticalLimit
<< ", VGPRExcessLimit = " << VGPRExcessLimit
<< ", SGPRCriticalLimit = " << SGPRCriticalLimit
<< ", SGPRExcessLimit = " << SGPRExcessLimit << "\n\n");
}
/// Checks whether \p SU can use the cached DAG pressure diffs to compute the
/// current register pressure.
///
/// This works for the common case, but it has a few exceptions that have been
/// observed through trial and error:
/// - Explicit physical register operands
/// - Subregister definitions
///
/// In both of those cases, PressureDiff doesn't represent the actual pressure,
/// and querying LiveIntervals through the RegPressureTracker is needed to get
/// an accurate value.
///
/// We should eventually only use PressureDiff for maximum performance, but this
/// already allows 80% of SUs to take the fast path without changing scheduling
/// at all. Further changes would either change scheduling, or require a lot
/// more logic to recover an accurate pressure estimate from the PressureDiffs.
static bool canUsePressureDiffs(const SUnit &SU) {
if (!SU.isInstr())
return false;
// Cannot use pressure diffs for subregister defs or with physregs, it's
// imprecise in both cases.
for (const auto &Op : SU.getInstr()->operands()) {
if (!Op.isReg() || Op.isImplicit())
continue;
if (Op.getReg().isPhysical() ||
(Op.isDef() && Op.getSubReg() != AMDGPU::NoSubRegister))
return false;
}
return true;
}
static void getRegisterPressures(
bool AtTop, const RegPressureTracker &RPTracker, SUnit *SU,
std::vector<unsigned> &Pressure, std::vector<unsigned> &MaxPressure,
GCNDownwardRPTracker &DownwardTracker, GCNUpwardRPTracker &UpwardTracker,
ScheduleDAGMI *DAG, const SIRegisterInfo *SRI) {
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker &>(RPTracker);
if (!GCNTrackers) {
AtTop
? TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure)
: TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
return;
}
// GCNTrackers
Pressure.resize(4, 0);
MachineInstr *MI = SU->getInstr();
GCNRegPressure NewPressure;
if (AtTop) {
GCNDownwardRPTracker TempDownwardTracker(DownwardTracker);
NewPressure = TempDownwardTracker.bumpDownwardPressure(MI, SRI);
} else {
GCNUpwardRPTracker TempUpwardTracker(UpwardTracker);
TempUpwardTracker.recede(*MI);
NewPressure = TempUpwardTracker.getPressure();
}
Pressure[AMDGPU::RegisterPressureSets::SReg_32] = NewPressure.getSGPRNum();
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] =
NewPressure.getArchVGPRNum();
Pressure[AMDGPU::RegisterPressureSets::AGPR_32] = NewPressure.getAGPRNum();
}
void GCNSchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop,
const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure, bool IsBottomUp) {
Cand.SU = SU;
Cand.AtTop = AtTop;
if (!DAG->isTrackingPressure())
return;
Pressure.clear();
MaxPressure.clear();
// We try to use the cached PressureDiffs in the ScheduleDAG whenever
// possible over querying the RegPressureTracker.
//
// RegPressureTracker will make a lot of LIS queries which are very
// expensive, it is considered a slow function in this context.
//
// PressureDiffs are precomputed and cached, and getPressureDiff is just a
// trivial lookup into an array. It is pretty much free.
//
// In EXPENSIVE_CHECKS, we always query RPTracker to verify the results of
// PressureDiffs.
if (AtTop || !canUsePressureDiffs(*SU) || GCNTrackers) {
getRegisterPressures(AtTop, RPTracker, SU, Pressure, MaxPressure,
DownwardTracker, UpwardTracker, DAG, SRI);
} else {
// Reserve 4 slots.
Pressure.resize(4, 0);
Pressure[AMDGPU::RegisterPressureSets::SReg_32] = SGPRPressure;
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] = VGPRPressure;
for (const auto &Diff : DAG->getPressureDiff(SU)) {
if (!Diff.isValid())
continue;
// PressureDiffs is always bottom-up so if we're working top-down we need
// to invert its sign.
Pressure[Diff.getPSet()] +=
(IsBottomUp ? Diff.getUnitInc() : -Diff.getUnitInc());
}
#ifdef EXPENSIVE_CHECKS
std::vector<unsigned> CheckPressure, CheckMaxPressure;
getRegisterPressures(AtTop, RPTracker, SU, CheckPressure, CheckMaxPressure,
DownwardTracker, UpwardTracker, DAG, SRI);
if (Pressure[AMDGPU::RegisterPressureSets::SReg_32] !=
CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] ||
Pressure[AMDGPU::RegisterPressureSets::VGPR_32] !=
CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32]) {
errs() << "Register Pressure is inaccurate when calculated through "
"PressureDiff\n"
<< "SGPR got " << Pressure[AMDGPU::RegisterPressureSets::SReg_32]
<< ", expected "
<< CheckPressure[AMDGPU::RegisterPressureSets::SReg_32] << "\n"
<< "VGPR got " << Pressure[AMDGPU::RegisterPressureSets::VGPR_32]
<< ", expected "
<< CheckPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n";
report_fatal_error("inaccurate register pressure calculation");
}
#endif
}
unsigned NewSGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
unsigned NewVGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// We only need to update the RPDelta for instructions that increase register
// pressure. Instructions that decrease or keep reg pressure the same will be
// marked as RegExcess in tryCandidate() when they are compared with
// instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
HasHighPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
HasHighPressure = true;
Cand.RPDelta.Excess = PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increasing SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
HasHighPressure = true;
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::SReg_32);
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax =
PressureChange(AMDGPU::RegisterPressureSets::VGPR_32);
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNSchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand,
bool IsBottomUp) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo *>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = 0;
unsigned VGPRPressure = 0;
if (DAG->isTrackingPressure()) {
if (!GCNTrackers) {
SGPRPressure = Pressure[AMDGPU::RegisterPressureSets::SReg_32];
VGPRPressure = Pressure[AMDGPU::RegisterPressureSets::VGPR_32];
} else {
GCNRPTracker *T = IsBottomUp
? static_cast<GCNRPTracker *>(&UpwardTracker)
: static_cast<GCNRPTracker *>(&DownwardTracker);
SGPRPressure = T->getPressure().getSGPRNum();
VGPRPressure = T->getPressure().getArchVGPRNum();
}
}
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI, SGPRPressure,
VGPRPressure, IsBottomUp);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
LLVM_DEBUG(traceCandidate(Cand));
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNSchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
LLVM_DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand,
/*IsBottomUp=*/true);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(BotCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), TCand,
/*IsBottomUp=*/true);
assert(TCand.SU == BotCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Check if the top Q has a better candidate.
LLVM_DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand,
/*IsBottomUp=*/false);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
LLVM_DEBUG(traceCandidate(TopCand));
#ifndef NDEBUG
if (VerifyScheduling) {
SchedCandidate TCand;
TCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TCand,
/*IsBottomUp=*/false);
assert(TCand.SU == TopCand.SU &&
"Last pick result should correspond to re-picking right now");
}
#endif
}
// Pick best from BotCand and TopCand.
LLVM_DEBUG(dbgs() << "Top Cand: "; traceCandidate(TopCand);
dbgs() << "Bot Cand: "; traceCandidate(BotCand););
SchedCandidate Cand = BotCand;
TopCand.Reason = NoCand;
tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
}
LLVM_DEBUG(dbgs() << "Picking: "; traceCandidate(Cand););
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNSchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand,
/*IsBottomUp=*/false);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand,
/*IsBottomUp=*/true);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
<< *SU->getInstr());
return SU;
}
void GCNSchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
if (GCNTrackers) {
MachineInstr *MI = SU->getInstr();
IsTopNode ? (void)DownwardTracker.advance(MI, false)
: UpwardTracker.recede(*MI);
}
return GenericScheduler::schedNode(SU, IsTopNode);
}
GCNSchedStageID GCNSchedStrategy::getCurrentStage() {
assert(CurrentStage && CurrentStage != SchedStages.end());
return *CurrentStage;
}
bool GCNSchedStrategy::advanceStage() {
assert(CurrentStage != SchedStages.end());
if (!CurrentStage)
CurrentStage = SchedStages.begin();
else
CurrentStage++;
return CurrentStage != SchedStages.end();
}
bool GCNSchedStrategy::hasNextStage() const {
assert(CurrentStage);
return std::next(CurrentStage) != SchedStages.end();
}
GCNSchedStageID GCNSchedStrategy::getNextStage() const {
assert(CurrentStage && std::next(CurrentStage) != SchedStages.end());
return *std::next(CurrentStage);
}
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C, bool IsLegacyScheduler)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::OccInitialSchedule);
SchedStages.push_back(GCNSchedStageID::UnclusteredHighRPReschedule);
SchedStages.push_back(GCNSchedStageID::ClusteredLowOccupancyReschedule);
SchedStages.push_back(GCNSchedStageID::PreRARematerialize);
GCNTrackers = GCNTrackers & !IsLegacyScheduler;
}
GCNMaxILPSchedStrategy::GCNMaxILPSchedStrategy(const MachineSchedContext *C)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::ILPInitialSchedule);
}
bool GCNMaxILPSchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary *Zone) const {
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
// Avoid spilling by exceeding the register limit.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
RegExcess, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Bias PhysReg Defs and copies to their uses and defined respectively.
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
return TryCand.Reason != NoCand;
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return TryCand.Reason != NoCand;
// Avoid critical resource consumption and balance the schedule.
TryCand.initResourceDelta(DAG, SchedModel);
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return TryCand.Reason != NoCand;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return TryCand.Reason != NoCand;
// Unconditionally try to reduce latency.
if (tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// Weak edges are for clustering and other constraints.
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
return TryCand.Reason != NoCand;
}
// Keep clustered nodes together to encourage downstream peephole
// optimizations which may reduce resource requirements.
//
// This is a best effort to set things up for a post-RA pass. Optimizations
// like generating loads of multiple registers should ideally be done within
// the scheduler pass by combining the loads during DAG postprocessing.
unsigned CandZoneCluster = Cand.AtTop ? TopClusterID : BotClusterID;
unsigned TryCandZoneCluster = TryCand.AtTop ? TopClusterID : BotClusterID;
bool CandIsClusterSucc =
isTheSameCluster(CandZoneCluster, Cand.SU->ParentClusterIdx);
bool TryCandIsClusterSucc =
isTheSameCluster(TryCandZoneCluster, TryCand.SU->ParentClusterIdx);
if (tryGreater(TryCandIsClusterSucc, CandIsClusterSucc, TryCand, Cand,
Cluster))
return TryCand.Reason != NoCand;
// Avoid increasing the max critical pressure in the scheduled region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Avoid increasing the max pressure of the entire region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
Cand, RegMax, TRI, DAG->MF))
return TryCand.Reason != NoCand;
if (SameBoundary) {
// Fall through to original instruction order.
if ((Zone->isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum) ||
(!Zone->isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
TryCand.Reason = NodeOrder;
return true;
}
}
return false;
}
GCNMaxMemoryClauseSchedStrategy::GCNMaxMemoryClauseSchedStrategy(
const MachineSchedContext *C)
: GCNSchedStrategy(C) {
SchedStages.push_back(GCNSchedStageID::MemoryClauseInitialSchedule);
}
/// GCNMaxMemoryClauseSchedStrategy tries best to clause memory instructions as
/// much as possible. This is achieved by:
// 1. Prioritize clustered operations before stall latency heuristic.
// 2. Prioritize long-latency-load before stall latency heuristic.
///
/// \param Cand provides the policy and current best candidate.
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
/// \param Zone describes the scheduled zone that we are extending, or nullptr
/// if Cand is from a different zone than TryCand.
/// \return \c true if TryCand is better than Cand (Reason is NOT NoCand)
bool GCNMaxMemoryClauseSchedStrategy::tryCandidate(SchedCandidate &Cand,
SchedCandidate &TryCand,
SchedBoundary *Zone) const {
// Initialize the candidate if needed.
if (!Cand.isValid()) {
TryCand.Reason = NodeOrder;
return true;
}
// Bias PhysReg Defs and copies to their uses and defined respectively.
if (tryGreater(biasPhysReg(TryCand.SU, TryCand.AtTop),
biasPhysReg(Cand.SU, Cand.AtTop), TryCand, Cand, PhysReg))
return TryCand.Reason != NoCand;
if (DAG->isTrackingPressure()) {
// Avoid exceeding the target's limit.
if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
RegExcess, TRI, DAG->MF))
return TryCand.Reason != NoCand;
// Avoid increasing the max critical pressure in the scheduled region.
if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
TryCand, Cand, RegCritical, TRI, DAG->MF))
return TryCand.Reason != NoCand;
}
// MaxMemoryClause-specific: We prioritize clustered instructions as we would
// get more benefit from clausing these memory instructions.
unsigned CandZoneCluster = Cand.AtTop ? TopClusterID : BotClusterID;
unsigned TryCandZoneCluster = TryCand.AtTop ? TopClusterID : BotClusterID;
bool CandIsClusterSucc =
isTheSameCluster(CandZoneCluster, Cand.SU->ParentClusterIdx);
bool TryCandIsClusterSucc =
isTheSameCluster(TryCandZoneCluster, TryCand.SU->ParentClusterIdx);
if (tryGreater(TryCandIsClusterSucc, CandIsClusterSucc, TryCand, Cand,
Cluster))
return TryCand.Reason != NoCand;
// We only compare a subset of features when comparing nodes between
// Top and Bottom boundary. Some properties are simply incomparable, in many
// other instances we should only override the other boundary if something
// is a clear good pick on one boundary. Skip heuristics that are more
// "tie-breaking" in nature.
bool SameBoundary = Zone != nullptr;
if (SameBoundary) {
// For loops that are acyclic path limited, aggressively schedule for
// latency. Within an single cycle, whenever CurrMOps > 0, allow normal
// heuristics to take precedence.
if (Rem.IsAcyclicLatencyLimited && !Zone->getCurrMOps() &&
tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// MaxMemoryClause-specific: Prioritize long latency memory load
// instructions in top-bottom order to hide more latency. The mayLoad check
// is used to exclude store-like instructions, which we do not want to
// scheduler them too early.
bool TryMayLoad =
TryCand.SU->isInstr() && TryCand.SU->getInstr()->mayLoad();
bool CandMayLoad = Cand.SU->isInstr() && Cand.SU->getInstr()->mayLoad();
if (TryMayLoad || CandMayLoad) {
bool TryLongLatency =
TryCand.SU->Latency > 10 * Cand.SU->Latency && TryMayLoad;
bool CandLongLatency =
10 * TryCand.SU->Latency < Cand.SU->Latency && CandMayLoad;
if (tryGreater(Zone->isTop() ? TryLongLatency : CandLongLatency,
Zone->isTop() ? CandLongLatency : TryLongLatency, TryCand,
Cand, Stall))
return TryCand.Reason != NoCand;
}
// Prioritize instructions that read unbuffered resources by stall cycles.
if (tryLess(Zone->getLatencyStallCycles(TryCand.SU),
Zone->getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
return TryCand.Reason != NoCand;
}
if (SameBoundary) {
// Weak edges are for clustering and other constraints.
if (tryLess(getWeakLeft(TryCand.SU, TryCand.AtTop),
getWeakLeft(Cand.SU, Cand.AtTop), TryCand, Cand, Weak))
return TryCand.Reason != NoCand;
}
// Avoid increasing the max pressure of the entire region.
if (DAG->isTrackingPressure() &&
tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax, TryCand,
Cand, RegMax, TRI, DAG->MF))
return TryCand.Reason != NoCand;
if (SameBoundary) {
// Avoid critical resource consumption and balance the schedule.
TryCand.initResourceDelta(DAG, SchedModel);
if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
TryCand, Cand, ResourceReduce))
return TryCand.Reason != NoCand;
if (tryGreater(TryCand.ResDelta.DemandedResources,
Cand.ResDelta.DemandedResources, TryCand, Cand,
ResourceDemand))
return TryCand.Reason != NoCand;
// Avoid serializing long latency dependence chains.
// For acyclic path limited loops, latency was already checked above.
if (!RegionPolicy.DisableLatencyHeuristic && TryCand.Policy.ReduceLatency &&
!Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, *Zone))
return TryCand.Reason != NoCand;
// Fall through to original instruction order.
if (Zone->isTop() == (TryCand.SU->NodeNum < Cand.SU->NodeNum)) {
assert(TryCand.SU->NodeNum != Cand.SU->NodeNum);
TryCand.Reason = NodeOrder;
return true;
}
}
return false;
}
GCNScheduleDAGMILive::GCNScheduleDAGMILive(
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S)
: ScheduleDAGMILive(C, std::move(S)), ST(MF.getSubtarget<GCNSubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()),
StartingOccupancy(MFI.getOccupancy()), MinOccupancy(StartingOccupancy),
RegionLiveOuts(this, /*IsLiveOut=*/true) {
// We want regions with a single MI to be scheduled so that we can reason
// about them correctly during scheduling stages that move MIs between regions
// (e.g., rematerialization).
ScheduleSingleMIRegions = true;
LLVM_DEBUG(dbgs() << "Starting occupancy is " << StartingOccupancy << ".\n");
if (RelaxedOcc) {
MinOccupancy = std::min(MFI.getMinAllowedOccupancy(), StartingOccupancy);
if (MinOccupancy != StartingOccupancy)
LLVM_DEBUG(dbgs() << "Allowing Occupancy drops to " << MinOccupancy
<< ".\n");
}
}
std::unique_ptr<GCNSchedStage>
GCNScheduleDAGMILive::createSchedStage(GCNSchedStageID SchedStageID) {
switch (SchedStageID) {
case GCNSchedStageID::OccInitialSchedule:
return std::make_unique<OccInitialScheduleStage>(SchedStageID, *this);
case GCNSchedStageID::UnclusteredHighRPReschedule:
return std::make_unique<UnclusteredHighRPStage>(SchedStageID, *this);
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
return std::make_unique<ClusteredLowOccStage>(SchedStageID, *this);
case GCNSchedStageID::PreRARematerialize:
return std::make_unique<PreRARematStage>(SchedStageID, *this);
case GCNSchedStageID::ILPInitialSchedule:
return std::make_unique<ILPInitialScheduleStage>(SchedStageID, *this);
case GCNSchedStageID::MemoryClauseInitialSchedule:
return std::make_unique<MemoryClauseInitialScheduleStage>(SchedStageID,
*this);
}
llvm_unreachable("Unknown SchedStageID.");
}
void GCNScheduleDAGMILive::schedule() {
// Collect all scheduling regions. The actual scheduling is performed in
// GCNScheduleDAGMILive::finalizeSchedule.
Regions.push_back(std::pair(RegionBegin, RegionEnd));
}
GCNRegPressure
GCNScheduleDAGMILive::getRealRegPressure(unsigned RegionIdx) const {
GCNDownwardRPTracker RPTracker(*LIS);
RPTracker.advance(Regions[RegionIdx].first, Regions[RegionIdx].second,
&LiveIns[RegionIdx]);
return RPTracker.moveMaxPressure();
}
static MachineInstr *getLastMIForRegion(MachineBasicBlock::iterator RegionBegin,
MachineBasicBlock::iterator RegionEnd) {
auto REnd = RegionEnd == RegionBegin->getParent()->end()
? std::prev(RegionEnd)
: RegionEnd;
return &*skipDebugInstructionsBackward(REnd, RegionBegin);
}
void GCNScheduleDAGMILive::computeBlockPressure(unsigned RegionIdx,
const MachineBasicBlock *MBB) {
GCNDownwardRPTracker RPTracker(*LIS);
// If the block has the only successor then live-ins of that successor are
// live-outs of the current block. We can reuse calculated live set if the
// successor will be sent to scheduling past current block.
// However, due to the bug in LiveInterval analysis it may happen that two
// predecessors of the same successor block have different lane bitmasks for
// a live-out register. Workaround that by sticking to one-to-one relationship
// i.e. one predecessor with one successor block.
const MachineBasicBlock *OnlySucc = nullptr;
if (MBB->succ_size() == 1) {
auto *Candidate = *MBB->succ_begin();
if (!Candidate->empty() && Candidate->pred_size() == 1) {
SlotIndexes *Ind = LIS->getSlotIndexes();
if (Ind->getMBBStartIdx(MBB) < Ind->getMBBStartIdx(Candidate))
OnlySucc = Candidate;
}
}
// Scheduler sends regions from the end of the block upwards.
size_t CurRegion = RegionIdx;
for (size_t E = Regions.size(); CurRegion != E; ++CurRegion)
if (Regions[CurRegion].first->getParent() != MBB)
break;
--CurRegion;
auto I = MBB->begin();
auto LiveInIt = MBBLiveIns.find(MBB);
auto &Rgn = Regions[CurRegion];
auto *NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
if (LiveInIt != MBBLiveIns.end()) {
auto LiveIn = std::move(LiveInIt->second);
RPTracker.reset(*MBB->begin(), &LiveIn);
MBBLiveIns.erase(LiveInIt);
} else {
I = Rgn.first;
auto LRS = BBLiveInMap.lookup(NonDbgMI);
#ifdef EXPENSIVE_CHECKS
assert(isEqual(getLiveRegsBefore(*NonDbgMI, *LIS), LRS));
#endif
RPTracker.reset(*I, &LRS);
}
for (;;) {
I = RPTracker.getNext();
if (Regions[CurRegion].first == I || NonDbgMI == I) {
LiveIns[CurRegion] = RPTracker.getLiveRegs();
RPTracker.clearMaxPressure();
}
if (Regions[CurRegion].second == I) {
Pressure[CurRegion] = RPTracker.moveMaxPressure();
if (CurRegion-- == RegionIdx)
break;
auto &Rgn = Regions[CurRegion];
NonDbgMI = &*skipDebugInstructionsForward(Rgn.first, Rgn.second);
}
RPTracker.advanceToNext();
RPTracker.advanceBeforeNext();
}
if (OnlySucc) {
if (I != MBB->end()) {
RPTracker.advanceToNext();
RPTracker.advance(MBB->end());
}
RPTracker.advanceBeforeNext();
MBBLiveIns[OnlySucc] = RPTracker.moveLiveRegs();
}
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveInMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> RegionFirstMIs;
RegionFirstMIs.reserve(Regions.size());
for (auto &[RegionBegin, RegionEnd] : reverse(Regions))
RegionFirstMIs.push_back(
&*skipDebugInstructionsForward(RegionBegin, RegionEnd));
return getLiveRegMap(RegionFirstMIs, /*After=*/false, *LIS);
}
DenseMap<MachineInstr *, GCNRPTracker::LiveRegSet>
GCNScheduleDAGMILive::getRegionLiveOutMap() const {
assert(!Regions.empty());
std::vector<MachineInstr *> RegionLastMIs;
RegionLastMIs.reserve(Regions.size());
for (auto &[RegionBegin, RegionEnd] : reverse(Regions))
RegionLastMIs.push_back(getLastMIForRegion(RegionBegin, RegionEnd));
return getLiveRegMap(RegionLastMIs, /*After=*/true, *LIS);
}
void RegionPressureMap::buildLiveRegMap() {
IdxToInstruction.clear();
RegionLiveRegMap =
IsLiveOut ? DAG->getRegionLiveOutMap() : DAG->getRegionLiveInMap();
for (unsigned I = 0; I < DAG->Regions.size(); I++) {
MachineInstr *RegionKey =
IsLiveOut
? getLastMIForRegion(DAG->Regions[I].first, DAG->Regions[I].second)
: &*DAG->Regions[I].first;
IdxToInstruction[I] = RegionKey;
}
}
void GCNScheduleDAGMILive::finalizeSchedule() {
// Start actual scheduling here. This function is called by the base
// MachineScheduler after all regions have been recorded by
// GCNScheduleDAGMILive::schedule().
LiveIns.resize(Regions.size());
Pressure.resize(Regions.size());
RegionsWithHighRP.resize(Regions.size());
RegionsWithExcessRP.resize(Regions.size());
RegionsWithIGLPInstrs.resize(Regions.size());
RegionsWithHighRP.reset();
RegionsWithExcessRP.reset();
RegionsWithIGLPInstrs.reset();
runSchedStages();
}
void GCNScheduleDAGMILive::runSchedStages() {
LLVM_DEBUG(dbgs() << "All regions recorded, starting actual scheduling.\n");
if (!Regions.empty()) {
BBLiveInMap = getRegionLiveInMap();
if (GCNTrackers)
RegionLiveOuts.buildLiveRegMap();
}
GCNSchedStrategy &S = static_cast<GCNSchedStrategy &>(*SchedImpl);
while (S.advanceStage()) {
auto Stage = createSchedStage(S.getCurrentStage());
if (!Stage->initGCNSchedStage())
continue;
for (auto Region : Regions) {
RegionBegin = Region.first;
RegionEnd = Region.second;
// Setup for scheduling the region and check whether it should be skipped.
if (!Stage->initGCNRegion()) {
Stage->advanceRegion();
exitRegion();
continue;
}
if (GCNTrackers) {
GCNDownwardRPTracker *DownwardTracker = S.getDownwardTracker();
GCNUpwardRPTracker *UpwardTracker = S.getUpwardTracker();
GCNRPTracker::LiveRegSet *RegionLiveIns =
&LiveIns[Stage->getRegionIdx()];
reinterpret_cast<GCNRPTracker *>(DownwardTracker)
->reset(MRI, *RegionLiveIns);
reinterpret_cast<GCNRPTracker *>(UpwardTracker)
->reset(MRI, RegionLiveOuts.getLiveRegsForRegionIdx(
Stage->getRegionIdx()));
}
ScheduleDAGMILive::schedule();
Stage->finalizeGCNRegion();
}
Stage->finalizeGCNSchedStage();
}
}
#ifndef NDEBUG
raw_ostream &llvm::operator<<(raw_ostream &OS, const GCNSchedStageID &StageID) {
switch (StageID) {
case GCNSchedStageID::OccInitialSchedule:
OS << "Max Occupancy Initial Schedule";
break;
case GCNSchedStageID::UnclusteredHighRPReschedule:
OS << "Unclustered High Register Pressure Reschedule";
break;
case GCNSchedStageID::ClusteredLowOccupancyReschedule:
OS << "Clustered Low Occupancy Reschedule";
break;
case GCNSchedStageID::PreRARematerialize:
OS << "Pre-RA Rematerialize";
break;
case GCNSchedStageID::ILPInitialSchedule:
OS << "Max ILP Initial Schedule";
break;
case GCNSchedStageID::MemoryClauseInitialSchedule:
OS << "Max memory clause Initial Schedule";
break;
}
return OS;
}
#endif
GCNSchedStage::GCNSchedStage(GCNSchedStageID StageID, GCNScheduleDAGMILive &DAG)
: DAG(DAG), S(static_cast<GCNSchedStrategy &>(*DAG.SchedImpl)), MF(DAG.MF),
MFI(DAG.MFI), ST(DAG.ST), StageID(StageID) {}
bool GCNSchedStage::initGCNSchedStage() {
if (!DAG.LIS)
return false;
LLVM_DEBUG(dbgs() << "Starting scheduling stage: " << StageID << "\n");
return true;
}
bool UnclusteredHighRPStage::initGCNSchedStage() {
if (DisableUnclusterHighRP)
return false;
if (!GCNSchedStage::initGCNSchedStage())
return false;
if (DAG.RegionsWithHighRP.none() && DAG.RegionsWithExcessRP.none())
return false;
SavedMutations.swap(DAG.Mutations);
DAG.addMutation(
createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PreRAReentry));
InitialOccupancy = DAG.MinOccupancy;
// Aggressivly try to reduce register pressure in the unclustered high RP
// stage. Temporarily increase occupancy target in the region.
S.SGPRLimitBias = S.HighRPSGPRBias;
S.VGPRLimitBias = S.HighRPVGPRBias;
if (MFI.getMaxWavesPerEU() > DAG.MinOccupancy)
MFI.increaseOccupancy(MF, ++DAG.MinOccupancy);
LLVM_DEBUG(
dbgs()
<< "Retrying function scheduling without clustering. "
"Aggressivly try to reduce register pressure to achieve occupancy "
<< DAG.MinOccupancy << ".\n");
return true;
}
bool ClusteredLowOccStage::initGCNSchedStage() {
if (DisableClusteredLowOccupancy)
return false;
if (!GCNSchedStage::initGCNSchedStage())
return false;
// Don't bother trying to improve ILP in lower RP regions if occupancy has not
// been dropped. All regions will have already been scheduled with the ideal
// occupancy targets.
if (DAG.StartingOccupancy <= DAG.MinOccupancy)
return false;
LLVM_DEBUG(
dbgs() << "Retrying function scheduling with lowest recorded occupancy "
<< DAG.MinOccupancy << ".\n");
return true;
}
/// Allows to easily filter for this stage's debug output.
#define REMAT_DEBUG(X) LLVM_DEBUG(dbgs() << "[PreRARemat] "; X;)
bool PreRARematStage::initGCNSchedStage() {
// FIXME: This pass will invalidate cached BBLiveInMap and MBBLiveIns for
// regions inbetween the defs and region we sinked the def to. Will need to be
// fixed if there is another pass after this pass.
assert(!S.hasNextStage());
if (!GCNSchedStage::initGCNSchedStage() || DAG.Regions.size() == 1)
return false;
// Before performing any IR modification record the parent region of each MI
// and the parent MBB of each region.
const unsigned NumRegions = DAG.Regions.size();
RegionBB.reserve(NumRegions);
for (unsigned I = 0; I < NumRegions; ++I) {
RegionBoundaries Region = DAG.Regions[I];
for (auto MI = Region.first; MI != Region.second; ++MI)
MIRegion.insert({&*MI, I});
RegionBB.push_back(Region.first->getParent());
}
if (!canIncreaseOccupancyOrReduceSpill())
return false;
// Rematerialize identified instructions and update scheduler's state.
rematerialize();
if (GCNTrackers)
DAG.RegionLiveOuts.buildLiveRegMap();
REMAT_DEBUG(
dbgs() << "Retrying function scheduling with new min. occupancy of "
<< AchievedOcc << " from rematerializing (original was "
<< DAG.MinOccupancy << ", target was " << TargetOcc << ")\n");
if (AchievedOcc > DAG.MinOccupancy) {
DAG.MinOccupancy = AchievedOcc;
SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
MFI.increaseOccupancy(MF, DAG.MinOccupancy);
}
return true;
}
void GCNSchedStage::finalizeGCNSchedStage() {
DAG.finishBlock();
LLVM_DEBUG(dbgs() << "Ending scheduling stage: " << StageID << "\n");
}
void UnclusteredHighRPStage::finalizeGCNSchedStage() {
SavedMutations.swap(DAG.Mutations);
S.SGPRLimitBias = S.VGPRLimitBias = 0;
if (DAG.MinOccupancy > InitialOccupancy) {
LLVM_DEBUG(dbgs() << StageID
<< " stage successfully increased occupancy to "
<< DAG.MinOccupancy << '\n');
}
GCNSchedStage::finalizeGCNSchedStage();
}
bool GCNSchedStage::initGCNRegion() {
// Check whether this new region is also a new block.
if (DAG.RegionBegin->getParent() != CurrentMBB)
setupNewBlock();
unsigned NumRegionInstrs = std::distance(DAG.begin(), DAG.end());
DAG.enterRegion(CurrentMBB, DAG.begin(), DAG.end(), NumRegionInstrs);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (DAG.begin() == DAG.end() || DAG.begin() == std::prev(DAG.end()))
return false;
LLVM_DEBUG(dbgs() << "********** MI Scheduling **********\n");
LLVM_DEBUG(dbgs() << MF.getName() << ":" << printMBBReference(*CurrentMBB)
<< " " << CurrentMBB->getName()
<< "\n From: " << *DAG.begin() << " To: ";
if (DAG.RegionEnd != CurrentMBB->end()) dbgs() << *DAG.RegionEnd;
else dbgs() << "End";
dbgs() << " RegionInstrs: " << NumRegionInstrs << '\n');
// Save original instruction order before scheduling for possible revert.
Unsched.clear();
Unsched.reserve(DAG.NumRegionInstrs);
if (StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule) {
const SIInstrInfo *SII = static_cast<const SIInstrInfo *>(DAG.TII);
for (auto &I : DAG) {
Unsched.push_back(&I);
if (SII->isIGLPMutationOnly(I.getOpcode()))
DAG.RegionsWithIGLPInstrs[RegionIdx] = true;
}
} else {
for (auto &I : DAG)
Unsched.push_back(&I);
}
PressureBefore = DAG.Pressure[RegionIdx];
LLVM_DEBUG(
dbgs() << "Pressure before scheduling:\nRegion live-ins:"
<< print(DAG.LiveIns[RegionIdx], DAG.MRI)
<< "Region live-in pressure: "
<< print(llvm::getRegPressure(DAG.MRI, DAG.LiveIns[RegionIdx]))
<< "Region register pressure: " << print(PressureBefore));
S.HasHighPressure = false;
S.KnownExcessRP = isRegionWithExcessRP();
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
StageID != GCNSchedStageID::UnclusteredHighRPReschedule) {
SavedMutations.clear();
SavedMutations.swap(DAG.Mutations);
bool IsInitialStage = StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule;
DAG.addMutation(createIGroupLPDAGMutation(
IsInitialStage ? AMDGPU::SchedulingPhase::Initial
: AMDGPU::SchedulingPhase::PreRAReentry));
}
return true;
}
bool UnclusteredHighRPStage::initGCNRegion() {
// Only reschedule regions that have excess register pressure (i.e. spilling)
// or had minimum occupancy at the beginning of the stage (as long as
// rescheduling of previous regions did not make occupancy drop back down to
// the initial minimum).
unsigned DynamicVGPRBlockSize = DAG.MFI.getDynamicVGPRBlockSize();
if (!DAG.RegionsWithExcessRP[RegionIdx] &&
(DAG.MinOccupancy <= InitialOccupancy ||
DAG.Pressure[RegionIdx].getOccupancy(ST, DynamicVGPRBlockSize) !=
InitialOccupancy))
return false;
return GCNSchedStage::initGCNRegion();
}
bool ClusteredLowOccStage::initGCNRegion() {
// We may need to reschedule this region if it wasn't rescheduled in the last
// stage, or if we found it was testing critical register pressure limits in
// the unclustered reschedule stage. The later is because we may not have been
// able to raise the min occupancy in the previous stage so the region may be
// overly constrained even if it was already rescheduled.
if (!DAG.RegionsWithHighRP[RegionIdx])
return false;
return GCNSchedStage::initGCNRegion();
}
bool PreRARematStage::initGCNRegion() {
return RescheduleRegions[RegionIdx] && GCNSchedStage::initGCNRegion();
}
void GCNSchedStage::setupNewBlock() {
if (CurrentMBB)
DAG.finishBlock();
CurrentMBB = DAG.RegionBegin->getParent();
DAG.startBlock(CurrentMBB);
// Get real RP for the region if it hasn't be calculated before. After the
// initial schedule stage real RP will be collected after scheduling.
if (StageID == GCNSchedStageID::OccInitialSchedule ||
StageID == GCNSchedStageID::ILPInitialSchedule ||
StageID == GCNSchedStageID::MemoryClauseInitialSchedule)
DAG.computeBlockPressure(RegionIdx, CurrentMBB);
}
void GCNSchedStage::finalizeGCNRegion() {
DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
if (S.HasHighPressure)
DAG.RegionsWithHighRP[RegionIdx] = true;
// Revert scheduling if we have dropped occupancy or there is some other
// reason that the original schedule is better.
checkScheduling();
if (DAG.RegionsWithIGLPInstrs[RegionIdx] &&
StageID != GCNSchedStageID::UnclusteredHighRPReschedule)
SavedMutations.swap(DAG.Mutations);
DAG.exitRegion();
advanceRegion();
}
void GCNSchedStage::checkScheduling() {
// Check the results of scheduling.
PressureAfter = DAG.getRealRegPressure(RegionIdx);
LLVM_DEBUG(dbgs() << "Pressure after scheduling: " << print(PressureAfter));
LLVM_DEBUG(dbgs() << "Region: " << RegionIdx << ".\n");
unsigned DynamicVGPRBlockSize = DAG.MFI.getDynamicVGPRBlockSize();
if (PressureAfter.getSGPRNum() <= S.SGPRCriticalLimit &&
PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) <= S.VGPRCriticalLimit) {
DAG.Pressure[RegionIdx] = PressureAfter;
// Early out if we have achieved the occupancy target.
LLVM_DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned TargetOccupancy = std::min(
S.getTargetOccupancy(), ST.getOccupancyWithWorkGroupSizes(MF).second);
unsigned WavesAfter = std::min(
TargetOccupancy, PressureAfter.getOccupancy(ST, DynamicVGPRBlockSize));
unsigned WavesBefore = std::min(
TargetOccupancy, PressureBefore.getOccupancy(ST, DynamicVGPRBlockSize));
LLVM_DEBUG(dbgs() << "Occupancy before scheduling: " << WavesBefore
<< ", after " << WavesAfter << ".\n");
// We may not be able to keep the current target occupancy because of the just
// scheduled region. We might still be able to revert scheduling if the
// occupancy before was higher, or if the current schedule has register
// pressure higher than the excess limits which could lead to more spilling.
unsigned NewOccupancy = std::max(WavesAfter, WavesBefore);
// Allow memory bound functions to drop to 4 waves if not limited by an
// attribute.
if (WavesAfter < WavesBefore && WavesAfter < DAG.MinOccupancy &&
WavesAfter >= MFI.getMinAllowedOccupancy()) {
LLVM_DEBUG(dbgs() << "Function is memory bound, allow occupancy drop up to "
<< MFI.getMinAllowedOccupancy() << " waves\n");
NewOccupancy = WavesAfter;
}
if (NewOccupancy < DAG.MinOccupancy) {
DAG.MinOccupancy = NewOccupancy;
MFI.limitOccupancy(DAG.MinOccupancy);
LLVM_DEBUG(dbgs() << "Occupancy lowered for the function to "
<< DAG.MinOccupancy << ".\n");
}
// The maximum number of arch VGPR on non-unified register file, or the
// maximum VGPR + AGPR in the unified register file case.
unsigned MaxVGPRs = ST.getMaxNumVGPRs(MF);
// The maximum number of arch VGPR for both unified and non-unified register
// file.
unsigned MaxArchVGPRs = std::min(MaxVGPRs, ST.getAddressableNumArchVGPRs());
unsigned MaxSGPRs = ST.getMaxNumSGPRs(MF);
if (PressureAfter.getVGPRNum(ST.hasGFX90AInsts()) > MaxVGPRs ||
PressureAfter.getArchVGPRNum() > MaxArchVGPRs ||
PressureAfter.getAGPRNum() > MaxArchVGPRs ||
PressureAfter.getSGPRNum() > MaxSGPRs) {
DAG.RegionsWithHighRP[RegionIdx] = true;
DAG.RegionsWithExcessRP[RegionIdx] = true;
}
// Revert if this region's schedule would cause a drop in occupancy or
// spilling.
if (shouldRevertScheduling(WavesAfter))
revertScheduling();
else
DAG.Pressure[RegionIdx] = PressureAfter;
}
unsigned
GCNSchedStage::computeSUnitReadyCycle(const SUnit &SU, unsigned CurrCycle,
DenseMap<unsigned, unsigned> &ReadyCycles,
const TargetSchedModel &SM) {
unsigned ReadyCycle = CurrCycle;
for (auto &D : SU.Preds) {
if (D.isAssignedRegDep()) {
MachineInstr *DefMI = D.getSUnit()->getInstr();
unsigned Latency = SM.computeInstrLatency(DefMI);
unsigned DefReady = ReadyCycles[DAG.getSUnit(DefMI)->NodeNum];
ReadyCycle = std::max(ReadyCycle, DefReady + Latency);
}
}
ReadyCycles[SU.NodeNum] = ReadyCycle;
return ReadyCycle;
}
#ifndef NDEBUG
struct EarlierIssuingCycle {
bool operator()(std::pair<MachineInstr *, unsigned> A,
std::pair<MachineInstr *, unsigned> B) const {
return A.second < B.second;
}
};
static void printScheduleModel(std::set<std::pair<MachineInstr *, unsigned>,
EarlierIssuingCycle> &ReadyCycles) {
if (ReadyCycles.empty())
return;
unsigned BBNum = ReadyCycles.begin()->first->getParent()->getNumber();
dbgs() << "\n################## Schedule time ReadyCycles for MBB : " << BBNum
<< " ##################\n# Cycle #\t\t\tInstruction "
" "
" \n";
unsigned IPrev = 1;
for (auto &I : ReadyCycles) {
if (I.second > IPrev + 1)
dbgs() << "****************************** BUBBLE OF " << I.second - IPrev
<< " CYCLES DETECTED ******************************\n\n";
dbgs() << "[ " << I.second << " ] : " << *I.first << "\n";
IPrev = I.second;
}
}
#endif
ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const std::vector<SUnit> &InputSchedule) {
#ifndef NDEBUG
std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
ReadyCyclesSorted;
#endif
const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
unsigned SumBubbles = 0;
DenseMap<unsigned, unsigned> ReadyCycles;
unsigned CurrCycle = 0;
for (auto &SU : InputSchedule) {
unsigned ReadyCycle =
computeSUnitReadyCycle(SU, CurrCycle, ReadyCycles, SM);
SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
ReadyCyclesSorted.insert(std::make_pair(SU.getInstr(), ReadyCycle));
#endif
CurrCycle = ++ReadyCycle;
}
#ifndef NDEBUG
LLVM_DEBUG(
printScheduleModel(ReadyCyclesSorted);
dbgs() << "\n\t"
<< "Metric: "
<< (SumBubbles
? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
: 1)
<< "\n\n");
#endif
return ScheduleMetrics(CurrCycle, SumBubbles);
}
ScheduleMetrics
GCNSchedStage::getScheduleMetrics(const GCNScheduleDAGMILive &DAG) {
#ifndef NDEBUG
std::set<std::pair<MachineInstr *, unsigned>, EarlierIssuingCycle>
ReadyCyclesSorted;
#endif
const TargetSchedModel &SM = ST.getInstrInfo()->getSchedModel();
unsigned SumBubbles = 0;
DenseMap<unsigned, unsigned> ReadyCycles;
unsigned CurrCycle = 0;
for (auto &MI : DAG) {
SUnit *SU = DAG.getSUnit(&MI);
if (!SU)
continue;
unsigned ReadyCycle =
computeSUnitReadyCycle(*SU, CurrCycle, ReadyCycles, SM);
SumBubbles += ReadyCycle - CurrCycle;
#ifndef NDEBUG
ReadyCyclesSorted.insert(std::make_pair(SU->getInstr(), ReadyCycle));
#endif
CurrCycle = ++ReadyCycle;
}
#ifndef NDEBUG
LLVM_DEBUG(
printScheduleModel(ReadyCyclesSorted);
dbgs() << "\n\t"
<< "Metric: "
<< (SumBubbles
? (SumBubbles * ScheduleMetrics::ScaleFactor) / CurrCycle
: 1)
<< "\n\n");
#endif
return ScheduleMetrics(CurrCycle, SumBubbles);
}
bool GCNSchedStage::shouldRevertScheduling(unsigned WavesAfter) {
if (WavesAfter < DAG.MinOccupancy)
return true;
// For dynamic VGPR mode, we don't want to waste any VGPR blocks.
if (DAG.MFI.isDynamicVGPREnabled()) {
unsigned BlocksBefore = AMDGPU::IsaInfo::getAllocatedNumVGPRBlocks(
&ST, DAG.MFI.getDynamicVGPRBlockSize(),
PressureBefore.getVGPRNum(false));
unsigned BlocksAfter = AMDGPU::IsaInfo::getAllocatedNumVGPRBlocks(
&ST, DAG.MFI.getDynamicVGPRBlockSize(),
PressureAfter.getVGPRNum(false));
if (BlocksAfter > BlocksBefore)
return true;
}
return false;
}
bool OccInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (PressureAfter == PressureBefore)
return false;
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool UnclusteredHighRPStage::shouldRevertScheduling(unsigned WavesAfter) {
// If RP is not reduced in the unclustered reschedule stage, revert to the
// old schedule.
if ((WavesAfter <=
PressureBefore.getOccupancy(ST, DAG.MFI.getDynamicVGPRBlockSize()) &&
mayCauseSpilling(WavesAfter)) ||
GCNSchedStage::shouldRevertScheduling(WavesAfter)) {
LLVM_DEBUG(dbgs() << "Unclustered reschedule did not help.\n");
return true;
}
// Do not attempt to relax schedule even more if we are already spilling.
if (isRegionWithExcessRP())
return false;
LLVM_DEBUG(
dbgs()
<< "\n\t *** In shouldRevertScheduling ***\n"
<< " *********** BEFORE UnclusteredHighRPStage ***********\n");
ScheduleMetrics MBefore = getScheduleMetrics(DAG.SUnits);
LLVM_DEBUG(
dbgs()
<< "\n *********** AFTER UnclusteredHighRPStage ***********\n");
ScheduleMetrics MAfter = getScheduleMetrics(DAG);
unsigned OldMetric = MBefore.getMetric();
unsigned NewMetric = MAfter.getMetric();
unsigned WavesBefore = std::min(
S.getTargetOccupancy(),
PressureBefore.getOccupancy(ST, DAG.MFI.getDynamicVGPRBlockSize()));
unsigned Profit =
((WavesAfter * ScheduleMetrics::ScaleFactor) / WavesBefore *
((OldMetric + ScheduleMetricBias) * ScheduleMetrics::ScaleFactor) /
NewMetric) /
ScheduleMetrics::ScaleFactor;
LLVM_DEBUG(dbgs() << "\tMetric before " << MBefore << "\tMetric after "
<< MAfter << "Profit: " << Profit << "\n");
return Profit < ScheduleMetrics::ScaleFactor;
}
bool ClusteredLowOccStage::shouldRevertScheduling(unsigned WavesAfter) {
if (PressureAfter == PressureBefore)
return false;
if (GCNSchedStage::shouldRevertScheduling(WavesAfter))
return true;
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool PreRARematStage::shouldRevertScheduling(unsigned WavesAfter) {
return GCNSchedStage::shouldRevertScheduling(WavesAfter) ||
mayCauseSpilling(WavesAfter) ||
(IncreaseOccupancy && WavesAfter < TargetOcc);
}
bool ILPInitialScheduleStage::shouldRevertScheduling(unsigned WavesAfter) {
if (mayCauseSpilling(WavesAfter))
return true;
return false;
}
bool MemoryClauseInitialScheduleStage::shouldRevertScheduling(
unsigned WavesAfter) {
return mayCauseSpilling(WavesAfter);
}
bool GCNSchedStage::mayCauseSpilling(unsigned WavesAfter) {
if (WavesAfter <= MFI.getMinWavesPerEU() && isRegionWithExcessRP() &&
!PressureAfter.less(MF, PressureBefore)) {
LLVM_DEBUG(dbgs() << "New pressure will result in more spilling.\n");
return true;
}
return false;
}
void GCNSchedStage::revertScheduling() {
LLVM_DEBUG(dbgs() << "Attempting to revert scheduling.\n");
DAG.RegionEnd = DAG.RegionBegin;
int SkippedDebugInstr = 0;
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr()) {
++SkippedDebugInstr;
continue;
}
if (MI->getIterator() != DAG.RegionEnd) {
DAG.BB->splice(DAG.RegionEnd, DAG.BB, MI);
if (!MI->isDebugInstr())
DAG.LIS->handleMove(*MI, true);
}
// Reset read-undef flags and update them later.
for (auto &Op : MI->all_defs())
Op.setIsUndef(false);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *DAG.TRI, DAG.MRI, DAG.ShouldTrackLaneMasks, false);
if (!MI->isDebugInstr()) {
if (DAG.ShouldTrackLaneMasks) {
// Adjust liveness and add missing dead+read-undef flags.
SlotIndex SlotIdx = DAG.LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*DAG.LIS, DAG.MRI, SlotIdx, MI);
} else {
// Adjust for missing dead-def flags.
RegOpers.detectDeadDefs(*MI, *DAG.LIS);
}
}
DAG.RegionEnd = MI->getIterator();
++DAG.RegionEnd;
LLVM_DEBUG(dbgs() << "Scheduling " << *MI);
}
// After reverting schedule, debug instrs will now be at the end of the block
// and RegionEnd will point to the first debug instr. Increment RegionEnd
// pass debug instrs to the actual end of the scheduling region.
while (SkippedDebugInstr-- > 0)
++DAG.RegionEnd;
// If Unsched.front() instruction is a debug instruction, this will actually
// shrink the region since we moved all debug instructions to the end of the
// block. Find the first instruction that is not a debug instruction.
DAG.RegionBegin = Unsched.front()->getIterator();
if (DAG.RegionBegin->isDebugInstr()) {
for (MachineInstr *MI : Unsched) {
if (MI->isDebugInstr())
continue;
DAG.RegionBegin = MI->getIterator();
break;
}
}
// Then move the debug instructions back into their correct place and set
// RegionBegin and RegionEnd if needed.
DAG.placeDebugValues();
DAG.Regions[RegionIdx] = std::pair(DAG.RegionBegin, DAG.RegionEnd);
}
bool PreRARematStage::allUsesAvailableAt(const MachineInstr *InstToRemat,
SlotIndex OriginalIdx,
SlotIndex RematIdx) const {
LiveIntervals *LIS = DAG.LIS;
MachineRegisterInfo &MRI = DAG.MRI;
OriginalIdx = OriginalIdx.getRegSlot(true);
RematIdx = std::max(RematIdx, RematIdx.getRegSlot(true));
for (const MachineOperand &MO : InstToRemat->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
continue;
if (!MO.getReg().isVirtual()) {
// Do not attempt to reason about PhysRegs
// TODO: better analysis of PhysReg livness
if (!DAG.MRI.isConstantPhysReg(MO.getReg()) &&
!DAG.TII->isIgnorableUse(MO))
return false;
// Constant PhysRegs and IgnorableUses are okay
continue;
}
LiveInterval &LI = LIS->getInterval(MO.getReg());
const VNInfo *OVNI = LI.getVNInfoAt(OriginalIdx);
assert(OVNI);
// Don't allow rematerialization immediately after the original def.
// It would be incorrect if InstToRemat redefines the register.
// See PR14098.
if (SlotIndex::isSameInstr(OriginalIdx, RematIdx))
return false;
if (OVNI != LI.getVNInfoAt(RematIdx))
return false;
// Check that subrange is live at RematIdx.
if (LI.hasSubRanges()) {
const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
unsigned SubReg = MO.getSubReg();
LaneBitmask LM = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
: MRI.getMaxLaneMaskForVReg(MO.getReg());
for (LiveInterval::SubRange &SR : LI.subranges()) {
if ((SR.LaneMask & LM).none())
continue;
if (!SR.liveAt(RematIdx))
return false;
// Early exit if all used lanes are checked. No need to continue.
LM &= ~SR.LaneMask;
if (LM.none())
break;
}
}
}
return true;
}
bool PreRARematStage::canIncreaseOccupancyOrReduceSpill() {
REMAT_DEBUG({
dbgs() << "Collecting rematerializable instructions in ";
MF.getFunction().printAsOperand(dbgs(), false);
dbgs() << '\n';
});
// Maps optimizable regions (i.e., regions at minimum and register-limited
// occupancy, or regions with spilling) to the target RP we would like to
// reach.
DenseMap<unsigned, GCNRPTarget> OptRegions;
const Function &F = MF.getFunction();
unsigned DynamicVGPRBlockSize =
MF.getInfo<SIMachineFunctionInfo>()->getDynamicVGPRBlockSize();
std::pair<unsigned, unsigned> WavesPerEU = ST.getWavesPerEU(F);
const unsigned MaxSGPRsNoSpill = ST.getMaxNumSGPRs(F);
const unsigned MaxVGPRsNoSpill = ST.getMaxNumVGPRs(F);
const unsigned MaxSGPRsIncOcc =
ST.getMaxNumSGPRs(DAG.MinOccupancy + 1, false);
const unsigned MaxVGPRsIncOcc =
ST.getMaxNumVGPRs(DAG.MinOccupancy + 1, DynamicVGPRBlockSize);
IncreaseOccupancy = WavesPerEU.second > DAG.MinOccupancy;
// Collect optimizable regions. If there is spilling in any region we will
// just try to reduce spilling. Otherwise we will try to increase occupancy by
// one in the whole function.
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
GCNRegPressure &RP = DAG.Pressure[I];
// We allow ArchVGPR or AGPR savings to count as savings of the other kind
// of VGPR only when trying to eliminate spilling. We cannot do this when
// trying to increase occupancy since VGPR class swaps only occur later in
// the register allocator i.e., the scheduler will not be able to reason
// about these savings and will not report an increase in the achievable
// occupancy, triggering rollbacks.
GCNRPTarget Target(MaxSGPRsNoSpill, MaxVGPRsNoSpill, MF, RP,
/*CombineVGPRSavings=*/true);
if (!Target.satisfied() && IncreaseOccupancy) {
// There is spilling in the region and we were so far trying to increase
// occupancy. Strop trying that and focus on reducing spilling.
IncreaseOccupancy = false;
OptRegions.clear();
} else if (IncreaseOccupancy) {
// There is no spilling in the region, try to increase occupancy.
Target = GCNRPTarget(MaxSGPRsIncOcc, MaxVGPRsIncOcc, MF, RP,
/*CombineVGPRSavings=*/false);
}
if (!Target.satisfied())
OptRegions.insert({I, Target});
}
if (OptRegions.empty())
return false;
#ifndef NDEBUG
if (IncreaseOccupancy) {
REMAT_DEBUG(dbgs() << "Occupancy minimal (" << DAG.MinOccupancy
<< ") in regions:\n");
} else {
REMAT_DEBUG(dbgs() << "Spilling w.r.t. minimum target occupancy ("
<< WavesPerEU.first << ") in regions:\n");
}
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
if (auto OptIt = OptRegions.find(I); OptIt != OptRegions.end())
REMAT_DEBUG(dbgs() << " [" << I << "] " << OptIt->getSecond() << '\n');
}
#endif
// When we are reducing spilling, the target is the minimum target number of
// waves/EU determined by the subtarget. In cases where either one of
// "amdgpu-num-sgpr" or "amdgpu-num-vgpr" are set on the function, the current
// minimum region occupancy may be higher than the latter.
TargetOcc = IncreaseOccupancy ? DAG.MinOccupancy + 1
: std::max(DAG.MinOccupancy, WavesPerEU.first);
// Accounts for a reduction in RP in an optimizable region. Returns whether we
// estimate that we have identified enough rematerialization opportunities to
// achieve our goal, and sets Progress to true when this particular reduction
// in pressure was helpful toward that goal.
auto ReduceRPInRegion = [&](auto OptIt, Register Reg, LaneBitmask Mask,
bool &Progress) -> bool {
GCNRPTarget &Target = OptIt->getSecond();
if (!Target.isSaveBeneficial(Reg, DAG.MRI))
return false;
Progress = true;
Target.saveReg(Reg, Mask, DAG.MRI);
if (Target.satisfied())
OptRegions.erase(OptIt->getFirst());
return OptRegions.empty();
};
// We need up-to-date live-out info. to query live-out register masks in
// regions containing rematerializable instructions.
DAG.RegionLiveOuts.buildLiveRegMap();
// Cache set of registers that are going to be rematerialized.
DenseSet<unsigned> RematRegs;
// Identify rematerializable instructions in the function.
for (unsigned I = 0, E = DAG.Regions.size(); I != E; ++I) {
auto Region = DAG.Regions[I];
for (auto MI = Region.first; MI != Region.second; ++MI) {
// The instruction must be trivially rematerializable.
MachineInstr &DefMI = *MI;
if (!isTriviallyReMaterializable(DefMI))
continue;
// We only support rematerializing virtual registers with one definition.
Register Reg = DefMI.getOperand(0).getReg();
if (!Reg.isVirtual() || !DAG.MRI.hasOneDef(Reg))
continue;
// We only care to rematerialize the instruction if it has a single
// non-debug user in a different region. The using MI may not belong to a
// region if it is a lone region terminator.
MachineInstr *UseMI = DAG.MRI.getOneNonDBGUser(Reg);
if (!UseMI)
continue;
auto UseRegion = MIRegion.find(UseMI);
if (UseRegion != MIRegion.end() && UseRegion->second == I)
continue;
// Do not rematerialize an instruction if it uses or is used by an
// instruction that we have designated for rematerialization.
// FIXME: Allow for rematerialization chains: this requires 1. updating
// remat points to account for uses that are rematerialized, and 2. either
// rematerializing the candidates in careful ordering, or deferring the
// MBB RP walk until the entire chain has been rematerialized.
if (Rematerializations.contains(UseMI) ||
llvm::any_of(DefMI.operands(), [&RematRegs](MachineOperand &MO) {
return MO.isReg() && RematRegs.contains(MO.getReg());
}))
continue;
// Do not rematerialize an instruction it it uses registers that aren't
// available at its use. This ensures that we are not extending any live
// range while rematerializing.
SlotIndex DefIdx = DAG.LIS->getInstructionIndex(DefMI);
SlotIndex UseIdx = DAG.LIS->getInstructionIndex(*UseMI).getRegSlot(true);
if (!allUsesAvailableAt(&DefMI, DefIdx, UseIdx))
continue;
REMAT_DEBUG(dbgs() << "Region " << I << ": remat instruction " << DefMI);
RematInstruction &Remat =
Rematerializations.try_emplace(&DefMI, UseMI).first->second;
bool RematUseful = false;
if (auto It = OptRegions.find(I); It != OptRegions.end()) {
// Optimistically consider that moving the instruction out of its
// defining region will reduce RP in the latter; this assumes that
// maximum RP in the region is reached somewhere between the defining
// instruction and the end of the region.
REMAT_DEBUG(dbgs() << " Defining region is optimizable\n");
LaneBitmask Mask = DAG.RegionLiveOuts.getLiveRegsForRegionIdx(I)[Reg];
if (ReduceRPInRegion(It, Reg, Mask, RematUseful))
return true;
}
for (unsigned LIRegion = 0; LIRegion != E; ++LIRegion) {
// We are only collecting regions in which the register is a live-in
// (and may be live-through).
auto It = DAG.LiveIns[LIRegion].find(Reg);
if (It == DAG.LiveIns[LIRegion].end() || It->second.none())
continue;
Remat.LiveInRegions.insert(LIRegion);
// Account for the reduction in RP due to the rematerialization in an
// optimizable region in which the defined register is a live-in. This
// is exact for live-through region but optimistic in the using region,
// where RP is actually reduced only if maximum RP is reached somewhere
// between the beginning of the region and the rematerializable
// instruction's use.
if (auto It = OptRegions.find(LIRegion); It != OptRegions.end()) {
REMAT_DEBUG(dbgs() << " Live-in in region " << LIRegion << '\n');
if (ReduceRPInRegion(It, Reg, DAG.LiveIns[LIRegion][Reg],
RematUseful))
return true;
}
}
// If the instruction is not a live-in or live-out in any optimizable
// region then there is no point in rematerializing it.
if (!RematUseful) {
Rematerializations.pop_back();
REMAT_DEBUG(dbgs() << " No impact, not rematerializing instruction\n");
} else {
RematRegs.insert(Reg);
}
}
}
if (IncreaseOccupancy) {
// We were trying to increase occupancy but failed, abort the stage.
REMAT_DEBUG(dbgs() << "Cannot increase occupancy\n");
Rematerializations.clear();
return false;
}
REMAT_DEBUG(dbgs() << "Can reduce but not eliminate spilling\n");
return !Rematerializations.empty();
}
void PreRARematStage::rematerialize() {
const SIInstrInfo *TII = MF.getSubtarget<GCNSubtarget>().getInstrInfo();
// Collect regions whose RP changes in unpredictable way; we will have to
// fully recompute their RP after all rematerailizations.
DenseSet<unsigned> RecomputeRP;
// Rematerialize all instructions.
for (auto &[DefMI, Remat] : Rematerializations) {
MachineBasicBlock::iterator InsertPos(Remat.UseMI);
Register Reg = DefMI->getOperand(0).getReg();
unsigned DefRegion = MIRegion.at(DefMI);
// Rematerialize DefMI to its use block.
TII->reMaterialize(*InsertPos->getParent(), InsertPos, Reg,
AMDGPU::NoSubRegister, *DefMI, *DAG.TRI);
Remat.RematMI = &*std::prev(InsertPos);
DAG.LIS->InsertMachineInstrInMaps(*Remat.RematMI);
// Update region boundaries in regions we sinked from (remove defining MI)
// and to (insert MI rematerialized in use block). Only then we can erase
// the original MI.
DAG.updateRegionBoundaries(DAG.Regions[DefRegion], DefMI, nullptr);
auto UseRegion = MIRegion.find(Remat.UseMI);
if (UseRegion != MIRegion.end()) {
DAG.updateRegionBoundaries(DAG.Regions[UseRegion->second], InsertPos,
Remat.RematMI);
}
DAG.LIS->RemoveMachineInstrFromMaps(*DefMI);
DefMI->eraseFromParent();
// Collect all regions impacted by the rematerialization and update their
// live-in/RP information.
for (unsigned I : Remat.LiveInRegions) {
ImpactedRegions.insert({I, DAG.Pressure[I]});
GCNRPTracker::LiveRegSet &RegionLiveIns = DAG.LiveIns[I];
#ifdef EXPENSIVE_CHECKS
// All uses are known to be available / live at the remat point. Thus, the
// uses should already be live in to the region.
for (MachineOperand &MO : DefMI->operands()) {
if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
continue;
Register UseReg = MO.getReg();
if (!UseReg.isVirtual())
continue;
LiveInterval &LI = DAG.LIS->getInterval(UseReg);
LaneBitmask LM = DAG.MRI.getMaxLaneMaskForVReg(MO.getReg());
if (LI.hasSubRanges() && MO.getSubReg())
LM = DAG.TRI->getSubRegIndexLaneMask(MO.getSubReg());
LaneBitmask LiveInMask = RegionLiveIns.at(UseReg);
LaneBitmask UncoveredLanes = LM & ~(LiveInMask & LM);
// If this register has lanes not covered by the LiveIns, be sure they
// do not map to any subrange. ref:
// machine-scheduler-sink-trivial-remats.mir::omitted_subrange
if (UncoveredLanes.any()) {
assert(LI.hasSubRanges());
for (LiveInterval::SubRange &SR : LI.subranges())
assert((SR.LaneMask & UncoveredLanes).none());
}
}
#endif
// The register is no longer a live-in in all regions but the one that
// contains the single use. In live-through regions, maximum register
// pressure decreases predictably so we can directly update it. In the
// using region, maximum RP may or may not decrease, so we will mark it
// for re-computation after all materializations have taken place.
LaneBitmask PrevMask = RegionLiveIns[Reg];
RegionLiveIns.erase(Reg);
RegMasks.insert({{I, Remat.RematMI->getOperand(0).getReg()}, PrevMask});
if (Remat.UseMI->getParent() != DAG.Regions[I].first->getParent())
DAG.Pressure[I].inc(Reg, PrevMask, LaneBitmask::getNone(), DAG.MRI);
else
RecomputeRP.insert(I);
}
// RP in the region from which the instruction was rematerialized may or may
// not decrease.
ImpactedRegions.insert({DefRegion, DAG.Pressure[DefRegion]});
RecomputeRP.insert(DefRegion);
// Recompute live interval to reflect the register's rematerialization.
Register RematReg = Remat.RematMI->getOperand(0).getReg();
DAG.LIS->removeInterval(RematReg);
DAG.LIS->createAndComputeVirtRegInterval(RematReg);
}
// All regions impacted by at least one rematerialization must be rescheduled.
// Maximum pressure must also be recomputed for all regions where it changed
// non-predictably and checked against the target occupancy.
AchievedOcc = TargetOcc;
for (auto &[I, OriginalRP] : ImpactedRegions) {
bool IsEmptyRegion = DAG.Regions[I].first == DAG.Regions[I].second;
RescheduleRegions[I] = !IsEmptyRegion;
if (!RecomputeRP.contains(I))
continue;
GCNRegPressure RP;
if (IsEmptyRegion) {
RP = getRegPressure(DAG.MRI, DAG.LiveIns[I]);
} else {
GCNDownwardRPTracker RPT(*DAG.LIS);
auto *NonDbgMI = &*skipDebugInstructionsForward(DAG.Regions[I].first,
DAG.Regions[I].second);
if (NonDbgMI == DAG.Regions[I].second) {
// Region is non-empty but contains only debug instructions.
RP = getRegPressure(DAG.MRI, DAG.LiveIns[I]);
} else {
RPT.reset(*NonDbgMI, &DAG.LiveIns[I]);
RPT.advance(DAG.Regions[I].second);
RP = RPT.moveMaxPressure();
}
}
DAG.Pressure[I] = RP;
AchievedOcc = std::min(
AchievedOcc, RP.getOccupancy(ST, MF.getInfo<SIMachineFunctionInfo>()
->getDynamicVGPRBlockSize()));
}
REMAT_DEBUG(dbgs() << "Achieved occupancy " << AchievedOcc << "\n");
}
// Copied from MachineLICM
bool PreRARematStage::isTriviallyReMaterializable(const MachineInstr &MI) {
if (!DAG.TII->isTriviallyReMaterializable(MI))
return false;
for (const MachineOperand &MO : MI.all_uses()) {
// We can't remat physreg uses, unless it is a constant or an ignorable
// use (e.g. implicit exec use on VALU instructions)
if (MO.getReg().isPhysical()) {
if (DAG.MRI.isConstantPhysReg(MO.getReg()) || DAG.TII->isIgnorableUse(MO))
continue;
return false;
}
}
return true;
}
void PreRARematStage::finalizeGCNSchedStage() {
// We consider that reducing spilling is always beneficial so we never
// rollback rematerializations in such cases. It's also possible that
// rescheduling lowers occupancy over the one achieved just through remats, in
// which case we do not want to rollback either (the rescheduling was already
// reverted in PreRARematStage::shouldRevertScheduling in such cases).
unsigned MaxOcc = std::max(AchievedOcc, DAG.MinOccupancy);
if (!IncreaseOccupancy || MaxOcc >= TargetOcc)
return;
REMAT_DEBUG(dbgs() << "Rolling back all rematerializations\n");
const SIInstrInfo *TII = MF.getSubtarget<GCNSubtarget>().getInstrInfo();
// Rollback the rematerializations.
for (const auto &[DefMI, Remat] : Rematerializations) {
MachineInstr &RematMI = *Remat.RematMI;
unsigned DefRegion = MIRegion.at(DefMI);
MachineBasicBlock::iterator InsertPos(DAG.Regions[DefRegion].second);
MachineBasicBlock *MBB = RegionBB[DefRegion];
Register Reg = RematMI.getOperand(0).getReg();
// Re-rematerialize MI at the end of its original region. Note that it may
// not be rematerialized exactly in the same position as originally within
// the region, but it should not matter much.
TII->reMaterialize(*MBB, InsertPos, Reg, AMDGPU::NoSubRegister, RematMI,
*DAG.TRI);
MachineInstr *NewMI = &*std::prev(InsertPos);
DAG.LIS->InsertMachineInstrInMaps(*NewMI);
auto UseRegion = MIRegion.find(Remat.UseMI);
if (UseRegion != MIRegion.end()) {
DAG.updateRegionBoundaries(DAG.Regions[UseRegion->second], RematMI,
nullptr);
}
DAG.updateRegionBoundaries(DAG.Regions[DefRegion], InsertPos, NewMI);
// Erase rematerialized MI.
DAG.LIS->RemoveMachineInstrFromMaps(RematMI);
RematMI.eraseFromParent();
// Recompute live interval for the re-rematerialized register
DAG.LIS->removeInterval(Reg);
DAG.LIS->createAndComputeVirtRegInterval(Reg);
// Re-add the register as a live-in in all regions it used to be one in.
for (unsigned LIRegion : Remat.LiveInRegions)
DAG.LiveIns[LIRegion].insert({Reg, RegMasks.at({LIRegion, Reg})});
}
// Reset RP in all impacted regions.
for (auto &[I, OriginalRP] : ImpactedRegions)
DAG.Pressure[I] = OriginalRP;
GCNSchedStage::finalizeGCNSchedStage();
}
void GCNScheduleDAGMILive::updateRegionBoundaries(
RegionBoundaries &RegionBounds, MachineBasicBlock::iterator MI,
MachineInstr *NewMI) {
assert((!NewMI || NewMI != RegionBounds.second) &&
"cannot remove at region end");
if (RegionBounds.first == RegionBounds.second) {
assert(NewMI && "cannot remove from an empty region");
RegionBounds.first = NewMI;
return;
}
// We only care for modifications at the beginning of a non-empty region since
// the upper region boundary is exclusive.
if (MI != RegionBounds.first)
return;
if (!NewMI)
RegionBounds.first = std::next(MI); // Removal
else
RegionBounds.first = NewMI; // Insertion
}
static bool hasIGLPInstrs(ScheduleDAGInstrs *DAG) {
const SIInstrInfo *SII = static_cast<const SIInstrInfo *>(DAG->TII);
return any_of(*DAG, [SII](MachineBasicBlock::iterator MI) {
return SII->isIGLPMutationOnly(MI->getOpcode());
});
}
GCNPostScheduleDAGMILive::GCNPostScheduleDAGMILive(
MachineSchedContext *C, std::unique_ptr<MachineSchedStrategy> S,
bool RemoveKillFlags)
: ScheduleDAGMI(C, std::move(S), RemoveKillFlags) {}
void GCNPostScheduleDAGMILive::schedule() {
HasIGLPInstrs = hasIGLPInstrs(this);
if (HasIGLPInstrs) {
SavedMutations.clear();
SavedMutations.swap(Mutations);
addMutation(createIGroupLPDAGMutation(AMDGPU::SchedulingPhase::PostRA));
}
ScheduleDAGMI::schedule();
}
void GCNPostScheduleDAGMILive::finalizeSchedule() {
if (HasIGLPInstrs)
SavedMutations.swap(Mutations);
ScheduleDAGMI::finalizeSchedule();
}