llvm-project/llvm/lib/Analysis/BasicAliasAnalysis.cpp
Nikita Popov 7c38ee26d4
[FunctionAttrs][IR] Fix memory attr inference for volatile mem intrinsics (#122926)
Per LangRef volatile operations can read and write inaccessible memory:

> any volatile operation can read and/or modify state which is not
> accessible via a regular load or store in this module

Model this by adding inaccessible memory effects in getMemoryEffects()
if the operation is volatile.

In the future, we should model volatile using operand bundles instead.

Fixes https://github.com/llvm/llvm-project/issues/120932.
2025-06-25 09:29:37 +02:00

2033 lines
79 KiB
C++

//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/SaveAndRestore.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <optional>
#include <utility>
#define DEBUG_TYPE "basicaa"
using namespace llvm;
/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden,
cl::init(true));
static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage",
cl::Hidden, cl::init(true));
/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
"decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");
bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
// We don't care if this analysis itself is preserved, it has no state. But
// we need to check that the analyses it depends on have been. Note that we
// may be created without handles to some analyses and in that case don't
// depend on them.
if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) ||
(DT_ && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA)))
return true;
// Otherwise this analysis result remains valid.
return false;
}
//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//
/// Returns the size of the object specified by V or UnknownSize if unknown.
static std::optional<TypeSize> getObjectSize(const Value *V,
const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool NullIsValidLoc,
bool RoundToAlign = false) {
uint64_t Size;
ObjectSizeOpts Opts;
Opts.RoundToAlign = RoundToAlign;
Opts.NullIsUnknownSize = NullIsValidLoc;
if (getObjectSize(V, Size, DL, &TLI, Opts))
return TypeSize::getFixed(Size);
return std::nullopt;
}
/// Returns true if we can prove that the object specified by V is smaller than
/// Size. Bails out early unless the root object is passed as the first
/// parameter.
static bool isObjectSmallerThan(const Value *V, TypeSize Size,
const DataLayout &DL,
const TargetLibraryInfo &TLI,
bool NullIsValidLoc) {
// Note that the meanings of the "object" are slightly different in the
// following contexts:
// c1: llvm::getObjectSize()
// c2: llvm.objectsize() intrinsic
// c3: isObjectSmallerThan()
// c1 and c2 share the same meaning; however, the meaning of "object" in c3
// refers to the "entire object".
//
// Consider this example:
// char *p = (char*)malloc(100)
// char *q = p+80;
//
// In the context of c1 and c2, the "object" pointed by q refers to the
// stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
//
// In the context of c3, the "object" refers to the chunk of memory being
// allocated. So, the "object" has 100 bytes, and q points to the middle the
// "object". However, unless p, the root object, is passed as the first
// parameter, the call to isIdentifiedObject() makes isObjectSmallerThan()
// bail out early.
if (!isIdentifiedObject(V))
return false;
// This function needs to use the aligned object size because we allow
// reads a bit past the end given sufficient alignment.
std::optional<TypeSize> ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc,
/*RoundToAlign*/ true);
return ObjectSize && TypeSize::isKnownLT(*ObjectSize, Size);
}
/// Return the minimal extent from \p V to the end of the underlying object,
/// assuming the result is used in an aliasing query. E.g., we do use the query
/// location size and the fact that null pointers cannot alias here.
static TypeSize getMinimalExtentFrom(const Value &V,
const LocationSize &LocSize,
const DataLayout &DL,
bool NullIsValidLoc) {
// If we have dereferenceability information we know a lower bound for the
// extent as accesses for a lower offset would be valid. We need to exclude
// the "or null" part if null is a valid pointer. We can ignore frees, as an
// access after free would be undefined behavior.
bool CanBeNull, CanBeFreed;
uint64_t DerefBytes =
V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed);
DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes;
// If queried with a precise location size, we assume that location size to be
// accessed, thus valid.
if (LocSize.isPrecise())
DerefBytes = std::max(DerefBytes, LocSize.getValue().getKnownMinValue());
return TypeSize::getFixed(DerefBytes);
}
/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, TypeSize Size, const DataLayout &DL,
const TargetLibraryInfo &TLI, bool NullIsValidLoc) {
std::optional<TypeSize> ObjectSize =
getObjectSize(V, DL, TLI, NullIsValidLoc);
return ObjectSize && *ObjectSize == Size;
}
/// Return true if both V1 and V2 are VScale
static bool areBothVScale(const Value *V1, const Value *V2) {
return PatternMatch::match(V1, PatternMatch::m_VScale()) &&
PatternMatch::match(V2, PatternMatch::m_VScale());
}
//===----------------------------------------------------------------------===//
// CaptureAnalysis implementations
//===----------------------------------------------------------------------===//
CaptureAnalysis::~CaptureAnalysis() = default;
CaptureComponents SimpleCaptureAnalysis::getCapturesBefore(const Value *Object,
const Instruction *I,
bool OrAt) {
if (!isIdentifiedFunctionLocal(Object))
return CaptureComponents::Provenance;
auto [CacheIt, Inserted] =
IsCapturedCache.insert({Object, CaptureComponents::Provenance});
if (!Inserted)
return CacheIt->second;
CaptureComponents Ret = PointerMayBeCaptured(
Object, /*ReturnCaptures=*/false, CaptureComponents::Provenance,
[](CaptureComponents CC) { return capturesFullProvenance(CC); });
CacheIt->second = Ret;
return Ret;
}
static bool isNotInCycle(const Instruction *I, const DominatorTree *DT,
const LoopInfo *LI) {
BasicBlock *BB = const_cast<BasicBlock *>(I->getParent());
SmallVector<BasicBlock *> Succs(successors(BB));
return Succs.empty() ||
!isPotentiallyReachableFromMany(Succs, BB, nullptr, DT, LI);
}
CaptureComponents
EarliestEscapeAnalysis::getCapturesBefore(const Value *Object,
const Instruction *I, bool OrAt) {
if (!isIdentifiedFunctionLocal(Object))
return CaptureComponents::Provenance;
auto Iter = EarliestEscapes.try_emplace(Object);
if (Iter.second) {
std::pair<Instruction *, CaptureComponents> EarliestCapture =
FindEarliestCapture(
Object, *const_cast<Function *>(DT.getRoot()->getParent()),
/*ReturnCaptures=*/false, DT, CaptureComponents::Provenance);
if (EarliestCapture.first)
Inst2Obj[EarliestCapture.first].push_back(Object);
Iter.first->second = EarliestCapture;
}
auto IsNotCapturedBefore = [&]() {
// No capturing instruction.
Instruction *CaptureInst = Iter.first->second.first;
if (!CaptureInst)
return true;
// No context instruction means any use is capturing.
if (!I)
return false;
if (I == CaptureInst) {
if (OrAt)
return false;
return isNotInCycle(I, &DT, LI);
}
return !isPotentiallyReachable(CaptureInst, I, nullptr, &DT, LI);
};
if (IsNotCapturedBefore())
return CaptureComponents::None;
return Iter.first->second.second;
}
void EarliestEscapeAnalysis::removeInstruction(Instruction *I) {
auto Iter = Inst2Obj.find(I);
if (Iter != Inst2Obj.end()) {
for (const Value *Obj : Iter->second)
EarliestEscapes.erase(Obj);
Inst2Obj.erase(I);
}
}
//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//
namespace {
/// Represents zext(sext(trunc(V))).
struct CastedValue {
const Value *V;
unsigned ZExtBits = 0;
unsigned SExtBits = 0;
unsigned TruncBits = 0;
/// Whether trunc(V) is non-negative.
bool IsNonNegative = false;
explicit CastedValue(const Value *V) : V(V) {}
explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits,
unsigned TruncBits, bool IsNonNegative)
: V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits),
IsNonNegative(IsNonNegative) {}
unsigned getBitWidth() const {
return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits +
SExtBits;
}
CastedValue withValue(const Value *NewV, bool PreserveNonNeg) const {
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits,
IsNonNegative && PreserveNonNeg);
}
/// Replace V with zext(NewV)
CastedValue withZExtOfValue(const Value *NewV, bool ZExtNonNegative) const {
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
NewV->getType()->getPrimitiveSizeInBits();
if (ExtendBy <= TruncBits)
// zext<nneg>(trunc(zext(NewV))) == zext<nneg>(trunc(NewV))
// The nneg can be preserved on the outer zext here.
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
IsNonNegative);
// zext(sext(zext(NewV))) == zext(zext(zext(NewV)))
ExtendBy -= TruncBits;
// zext<nneg>(zext(NewV)) == zext(NewV)
// zext(zext<nneg>(NewV)) == zext<nneg>(NewV)
// The nneg can be preserved from the inner zext here but must be dropped
// from the outer.
return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0,
ZExtNonNegative);
}
/// Replace V with sext(NewV)
CastedValue withSExtOfValue(const Value *NewV) const {
unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() -
NewV->getType()->getPrimitiveSizeInBits();
if (ExtendBy <= TruncBits)
// zext<nneg>(trunc(sext(NewV))) == zext<nneg>(trunc(NewV))
// The nneg can be preserved on the outer zext here
return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy,
IsNonNegative);
// zext(sext(sext(NewV)))
ExtendBy -= TruncBits;
// zext<nneg>(sext(sext(NewV))) = zext<nneg>(sext(NewV))
// The nneg can be preserved on the outer zext here
return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0, IsNonNegative);
}
APInt evaluateWith(APInt N) const {
assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
"Incompatible bit width");
if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits);
if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits);
if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits);
return N;
}
ConstantRange evaluateWith(ConstantRange N) const {
assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&
"Incompatible bit width");
if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits);
if (IsNonNegative && !N.isAllNonNegative())
N = N.intersectWith(
ConstantRange(APInt::getZero(N.getBitWidth()),
APInt::getSignedMinValue(N.getBitWidth())));
if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits);
if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits);
return N;
}
bool canDistributeOver(bool NUW, bool NSW) const {
// zext(x op<nuw> y) == zext(x) op<nuw> zext(y)
// sext(x op<nsw> y) == sext(x) op<nsw> sext(y)
// trunc(x op y) == trunc(x) op trunc(y)
return (!ZExtBits || NUW) && (!SExtBits || NSW);
}
bool hasSameCastsAs(const CastedValue &Other) const {
if (V->getType() != Other.V->getType())
return false;
if (ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits &&
TruncBits == Other.TruncBits)
return true;
// If either CastedValue has a nneg zext then the sext/zext bits are
// interchangable for that value.
if (IsNonNegative || Other.IsNonNegative)
return (ZExtBits + SExtBits == Other.ZExtBits + Other.SExtBits &&
TruncBits == Other.TruncBits);
return false;
}
};
/// Represents zext(sext(trunc(V))) * Scale + Offset.
struct LinearExpression {
CastedValue Val;
APInt Scale;
APInt Offset;
/// True if all operations in this expression are NUW.
bool IsNUW;
/// True if all operations in this expression are NSW.
bool IsNSW;
LinearExpression(const CastedValue &Val, const APInt &Scale,
const APInt &Offset, bool IsNUW, bool IsNSW)
: Val(Val), Scale(Scale), Offset(Offset), IsNUW(IsNUW), IsNSW(IsNSW) {}
LinearExpression(const CastedValue &Val)
: Val(Val), IsNUW(true), IsNSW(true) {
unsigned BitWidth = Val.getBitWidth();
Scale = APInt(BitWidth, 1);
Offset = APInt(BitWidth, 0);
}
LinearExpression mul(const APInt &Other, bool MulIsNUW, bool MulIsNSW) const {
// The check for zero offset is necessary, because generally
// (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z).
bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero()));
bool NUW = IsNUW && (Other.isOne() || MulIsNUW);
return LinearExpression(Val, Scale * Other, Offset * Other, NUW, NSW);
}
};
}
/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
static LinearExpression GetLinearExpression(
const CastedValue &Val, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, DominatorTree *DT) {
// Limit our recursion depth.
if (Depth == 6)
return Val;
if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V))
return LinearExpression(Val, APInt(Val.getBitWidth(), 0),
Val.evaluateWith(Const->getValue()), true, true);
if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) {
if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
APInt RHS = Val.evaluateWith(RHSC->getValue());
// The only non-OBO case we deal with is or, and only limited to the
// case where it is both nuw and nsw.
bool NUW = true, NSW = true;
if (isa<OverflowingBinaryOperator>(BOp)) {
NUW &= BOp->hasNoUnsignedWrap();
NSW &= BOp->hasNoSignedWrap();
}
if (!Val.canDistributeOver(NUW, NSW))
return Val;
// While we can distribute over trunc, we cannot preserve nowrap flags
// in that case.
if (Val.TruncBits)
NUW = NSW = false;
LinearExpression E(Val);
switch (BOp->getOpcode()) {
default:
// We don't understand this instruction, so we can't decompose it any
// further.
return Val;
case Instruction::Or:
// X|C == X+C if it is disjoint. Otherwise we can't analyze it.
if (!cast<PossiblyDisjointInst>(BOp)->isDisjoint())
return Val;
[[fallthrough]];
case Instruction::Add: {
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
Depth + 1, AC, DT);
E.Offset += RHS;
E.IsNUW &= NUW;
E.IsNSW &= NSW;
break;
}
case Instruction::Sub: {
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
Depth + 1, AC, DT);
E.Offset -= RHS;
E.IsNUW = false; // sub nuw x, y is not add nuw x, -y.
E.IsNSW &= NSW;
break;
}
case Instruction::Mul:
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), false), DL,
Depth + 1, AC, DT)
.mul(RHS, NUW, NSW);
break;
case Instruction::Shl:
// We're trying to linearize an expression of the kind:
// shl i8 -128, 36
// where the shift count exceeds the bitwidth of the type.
// We can't decompose this further (the expression would return
// a poison value).
if (RHS.getLimitedValue() > Val.getBitWidth())
return Val;
E = GetLinearExpression(Val.withValue(BOp->getOperand(0), NSW), DL,
Depth + 1, AC, DT);
E.Offset <<= RHS.getLimitedValue();
E.Scale <<= RHS.getLimitedValue();
E.IsNUW &= NUW;
E.IsNSW &= NSW;
break;
}
return E;
}
}
if (const auto *ZExt = dyn_cast<ZExtInst>(Val.V))
return GetLinearExpression(
Val.withZExtOfValue(ZExt->getOperand(0), ZExt->hasNonNeg()), DL,
Depth + 1, AC, DT);
if (isa<SExtInst>(Val.V))
return GetLinearExpression(
Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)),
DL, Depth + 1, AC, DT);
return Val;
}
namespace {
// A linear transformation of a Value; this class represents
// ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale.
struct VariableGEPIndex {
CastedValue Val;
APInt Scale;
// Context instruction to use when querying information about this index.
const Instruction *CxtI;
/// True if all operations in this expression are NSW.
bool IsNSW;
/// True if the index should be subtracted rather than added. We don't simply
/// negate the Scale, to avoid losing the NSW flag: X - INT_MIN*1 may be
/// non-wrapping, while X + INT_MIN*(-1) wraps.
bool IsNegated;
bool hasNegatedScaleOf(const VariableGEPIndex &Other) const {
if (IsNegated == Other.IsNegated)
return Scale == -Other.Scale;
return Scale == Other.Scale;
}
void dump() const {
print(dbgs());
dbgs() << "\n";
}
void print(raw_ostream &OS) const {
OS << "(V=" << Val.V->getName()
<< ", zextbits=" << Val.ZExtBits
<< ", sextbits=" << Val.SExtBits
<< ", truncbits=" << Val.TruncBits
<< ", scale=" << Scale
<< ", nsw=" << IsNSW
<< ", negated=" << IsNegated << ")";
}
};
}
// Represents the internal structure of a GEP, decomposed into a base pointer,
// constant offsets, and variable scaled indices.
struct BasicAAResult::DecomposedGEP {
// Base pointer of the GEP
const Value *Base;
// Total constant offset from base.
APInt Offset;
// Scaled variable (non-constant) indices.
SmallVector<VariableGEPIndex, 4> VarIndices;
// Nowrap flags common to all GEP operations involved in expression.
GEPNoWrapFlags NWFlags = GEPNoWrapFlags::all();
void dump() const {
print(dbgs());
dbgs() << "\n";
}
void print(raw_ostream &OS) const {
OS << ", inbounds=" << (NWFlags.isInBounds() ? "1" : "0")
<< ", nuw=" << (NWFlags.hasNoUnsignedWrap() ? "1" : "0")
<< "(DecomposedGEP Base=" << Base->getName() << ", Offset=" << Offset
<< ", VarIndices=[";
for (size_t i = 0; i < VarIndices.size(); i++) {
if (i != 0)
OS << ", ";
VarIndices[i].print(OS);
}
OS << "])";
}
};
/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
BasicAAResult::DecomposedGEP
BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL,
AssumptionCache *AC, DominatorTree *DT) {
// Limit recursion depth to limit compile time in crazy cases.
unsigned MaxLookup = MaxLookupSearchDepth;
SearchTimes++;
const Instruction *CxtI = dyn_cast<Instruction>(V);
unsigned IndexSize = DL.getIndexTypeSizeInBits(V->getType());
DecomposedGEP Decomposed;
Decomposed.Offset = APInt(IndexSize, 0);
do {
// See if this is a bitcast or GEP.
const Operator *Op = dyn_cast<Operator>(V);
if (!Op) {
// The only non-operator case we can handle are GlobalAliases.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable()) {
V = GA->getAliasee();
continue;
}
}
Decomposed.Base = V;
return Decomposed;
}
if (Op->getOpcode() == Instruction::BitCast ||
Op->getOpcode() == Instruction::AddrSpaceCast) {
Value *NewV = Op->getOperand(0);
// Don't look through casts between address spaces with differing index
// widths.
if (DL.getIndexTypeSizeInBits(NewV->getType()) != IndexSize) {
Decomposed.Base = V;
return Decomposed;
}
V = NewV;
continue;
}
const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
if (!GEPOp) {
if (const auto *PHI = dyn_cast<PHINode>(V)) {
// Look through single-arg phi nodes created by LCSSA.
if (PHI->getNumIncomingValues() == 1) {
V = PHI->getIncomingValue(0);
continue;
}
} else if (const auto *Call = dyn_cast<CallBase>(V)) {
// CaptureTracking can know about special capturing properties of some
// intrinsics like launder.invariant.group, that can't be expressed with
// the attributes, but have properties like returning aliasing pointer.
// Because some analysis may assume that nocaptured pointer is not
// returned from some special intrinsic (because function would have to
// be marked with returns attribute), it is crucial to use this function
// because it should be in sync with CaptureTracking. Not using it may
// cause weird miscompilations where 2 aliasing pointers are assumed to
// noalias.
if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
V = RP;
continue;
}
}
Decomposed.Base = V;
return Decomposed;
}
// Track the common nowrap flags for all GEPs we see.
Decomposed.NWFlags &= GEPOp->getNoWrapFlags();
assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized");
// Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
gep_type_iterator GTI = gep_type_begin(GEPOp);
for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
I != E; ++I, ++GTI) {
const Value *Index = *I;
// Compute the (potentially symbolic) offset in bytes for this index.
if (StructType *STy = GTI.getStructTypeOrNull()) {
// For a struct, add the member offset.
unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
if (FieldNo == 0)
continue;
Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo);
continue;
}
// For an array/pointer, add the element offset, explicitly scaled.
if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
if (CIdx->isZero())
continue;
// Don't attempt to analyze GEPs if the scalable index is not zero.
TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
if (AllocTypeSize.isScalable()) {
Decomposed.Base = V;
return Decomposed;
}
Decomposed.Offset += AllocTypeSize.getFixedValue() *
CIdx->getValue().sextOrTrunc(IndexSize);
continue;
}
TypeSize AllocTypeSize = GTI.getSequentialElementStride(DL);
if (AllocTypeSize.isScalable()) {
Decomposed.Base = V;
return Decomposed;
}
// If the integer type is smaller than the index size, it is implicitly
// sign extended or truncated to index size.
bool NUSW = GEPOp->hasNoUnsignedSignedWrap();
bool NUW = GEPOp->hasNoUnsignedWrap();
bool NonNeg = NUSW && NUW;
unsigned Width = Index->getType()->getIntegerBitWidth();
unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0;
unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0;
LinearExpression LE = GetLinearExpression(
CastedValue(Index, 0, SExtBits, TruncBits, NonNeg), DL, 0, AC, DT);
// Scale by the type size.
unsigned TypeSize = AllocTypeSize.getFixedValue();
LE = LE.mul(APInt(IndexSize, TypeSize), NUW, NUSW);
Decomposed.Offset += LE.Offset;
APInt Scale = LE.Scale;
if (!LE.IsNUW)
Decomposed.NWFlags = Decomposed.NWFlags.withoutNoUnsignedWrap();
// If we already had an occurrence of this index variable, merge this
// scale into it. For example, we want to handle:
// A[x][x] -> x*16 + x*4 -> x*20
// This also ensures that 'x' only appears in the index list once.
for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
if ((Decomposed.VarIndices[i].Val.V == LE.Val.V ||
areBothVScale(Decomposed.VarIndices[i].Val.V, LE.Val.V)) &&
Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) {
Scale += Decomposed.VarIndices[i].Scale;
// We cannot guarantee no-wrap for the merge.
LE.IsNSW = LE.IsNUW = false;
Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
break;
}
}
if (!!Scale) {
VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW,
/* IsNegated */ false};
Decomposed.VarIndices.push_back(Entry);
}
}
// Analyze the base pointer next.
V = GEPOp->getOperand(0);
} while (--MaxLookup);
// If the chain of expressions is too deep, just return early.
Decomposed.Base = V;
SearchLimitReached++;
return Decomposed;
}
ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc,
AAQueryInfo &AAQI,
bool IgnoreLocals) {
assert(Visited.empty() && "Visited must be cleared after use!");
auto _ = make_scope_exit([&] { Visited.clear(); });
unsigned MaxLookup = 8;
SmallVector<const Value *, 16> Worklist;
Worklist.push_back(Loc.Ptr);
ModRefInfo Result = ModRefInfo::NoModRef;
do {
const Value *V = getUnderlyingObject(Worklist.pop_back_val());
if (!Visited.insert(V).second)
continue;
// Ignore allocas if we were instructed to do so.
if (IgnoreLocals && isa<AllocaInst>(V))
continue;
// If the location points to memory that is known to be invariant for
// the life of the underlying SSA value, then we can exclude Mod from
// the set of valid memory effects.
//
// An argument that is marked readonly and noalias is known to be
// invariant while that function is executing.
if (const Argument *Arg = dyn_cast<Argument>(V)) {
if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) {
Result |= ModRefInfo::Ref;
continue;
}
}
// A global constant can't be mutated.
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
// Note: this doesn't require GV to be "ODR" because it isn't legal for a
// global to be marked constant in some modules and non-constant in
// others. GV may even be a declaration, not a definition.
if (!GV->isConstant())
return ModRefInfo::ModRef;
continue;
}
// If both select values point to local memory, then so does the select.
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
// If all values incoming to a phi node point to local memory, then so does
// the phi.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
// Don't bother inspecting phi nodes with many operands.
if (PN->getNumIncomingValues() > MaxLookup)
return ModRefInfo::ModRef;
append_range(Worklist, PN->incoming_values());
continue;
}
// Otherwise be conservative.
return ModRefInfo::ModRef;
} while (!Worklist.empty() && --MaxLookup);
// If we hit the maximum number of instructions to examine, be conservative.
if (!Worklist.empty())
return ModRefInfo::ModRef;
return Result;
}
static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call);
return II && II->getIntrinsicID() == IID;
}
/// Returns the behavior when calling the given call site.
MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call,
AAQueryInfo &AAQI) {
MemoryEffects Min = Call->getAttributes().getMemoryEffects();
if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) {
MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F);
// Operand bundles on the call may also read or write memory, in addition
// to the behavior of the called function.
if (Call->hasReadingOperandBundles())
FuncME |= MemoryEffects::readOnly();
if (Call->hasClobberingOperandBundles())
FuncME |= MemoryEffects::writeOnly();
if (Call->isVolatile()) {
// Volatile operations also access inaccessible memory.
FuncME |= MemoryEffects::inaccessibleMemOnly();
}
Min &= FuncME;
}
return Min;
}
/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::experimental_guard:
case Intrinsic::experimental_deoptimize:
// These intrinsics can read arbitrary memory, and additionally modref
// inaccessible memory to model control dependence.
return MemoryEffects::readOnly() |
MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef);
}
return F->getMemoryEffects();
}
ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call,
unsigned ArgIdx) {
if (Call->doesNotAccessMemory(ArgIdx))
return ModRefInfo::NoModRef;
if (Call->onlyWritesMemory(ArgIdx))
return ModRefInfo::Mod;
if (Call->onlyReadsMemory(ArgIdx))
return ModRefInfo::Ref;
return ModRefInfo::ModRef;
}
#ifndef NDEBUG
static const Function *getParent(const Value *V) {
if (const Instruction *inst = dyn_cast<Instruction>(V)) {
if (!inst->getParent())
return nullptr;
return inst->getParent()->getParent();
}
if (const Argument *arg = dyn_cast<Argument>(V))
return arg->getParent();
return nullptr;
}
static bool notDifferentParent(const Value *O1, const Value *O2) {
const Function *F1 = getParent(O1);
const Function *F2 = getParent(O2);
return !F1 || !F2 || F1 == F2;
}
#endif
AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB, AAQueryInfo &AAQI,
const Instruction *CtxI) {
assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
"BasicAliasAnalysis doesn't support interprocedural queries.");
return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI);
}
/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query. We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call,
const MemoryLocation &Loc,
AAQueryInfo &AAQI) {
assert(notDifferentParent(Call, Loc.Ptr) &&
"AliasAnalysis query involving multiple functions!");
const Value *Object = getUnderlyingObject(Loc.Ptr);
// Calls marked 'tail' cannot read or write allocas from the current frame
// because the current frame might be destroyed by the time they run. However,
// a tail call may use an alloca with byval. Calling with byval copies the
// contents of the alloca into argument registers or stack slots, so there is
// no lifetime issue.
if (isa<AllocaInst>(Object))
if (const CallInst *CI = dyn_cast<CallInst>(Call))
if (CI->isTailCall() &&
!CI->getAttributes().hasAttrSomewhere(Attribute::ByVal))
return ModRefInfo::NoModRef;
// Stack restore is able to modify unescaped dynamic allocas. Assume it may
// modify them even though the alloca is not escaped.
if (auto *AI = dyn_cast<AllocaInst>(Object))
if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore))
return ModRefInfo::Mod;
// We can completely ignore inaccessible memory here, because MemoryLocations
// can only reference accessible memory.
auto ME = AAQI.AAR.getMemoryEffects(Call, AAQI)
.getWithoutLoc(IRMemLocation::InaccessibleMem);
if (ME.doesNotAccessMemory())
return ModRefInfo::NoModRef;
ModRefInfo ArgMR = ME.getModRef(IRMemLocation::ArgMem);
ModRefInfo OtherMR = ME.getWithoutLoc(IRMemLocation::ArgMem).getModRef();
// An identified function-local object that does not escape can only be
// accessed via call arguments. Reduce OtherMR (which includes accesses to
// escaped memory) based on that.
//
// We model calls that can return twice (setjmp) as clobbering non-escaping
// objects, to model any accesses that may occur prior to the second return.
// As an exception, ignore allocas, as setjmp is not required to preserve
// non-volatile stores for them.
if (isModOrRefSet(OtherMR) && !isa<Constant>(Object) && Call != Object &&
(isa<AllocaInst>(Object) || !Call->hasFnAttr(Attribute::ReturnsTwice))) {
CaptureComponents CC =
AAQI.CA->getCapturesBefore(Object, Call, /*OrAt=*/false);
if (capturesNothing(CC))
OtherMR = ModRefInfo::NoModRef;
else if (capturesReadProvenanceOnly(CC))
OtherMR = ModRefInfo::Ref;
}
// Refine the modref info for argument memory. We only bother to do this
// if ArgMR is not a subset of OtherMR, otherwise this won't have an impact
// on the final result.
if ((ArgMR | OtherMR) != OtherMR) {
ModRefInfo NewArgMR = ModRefInfo::NoModRef;
for (const Use &U : Call->data_ops()) {
const Value *Arg = U;
if (!Arg->getType()->isPointerTy())
continue;
unsigned ArgIdx = Call->getDataOperandNo(&U);
MemoryLocation ArgLoc =
Call->isArgOperand(&U)
? MemoryLocation::getForArgument(Call, ArgIdx, TLI)
: MemoryLocation::getBeforeOrAfter(Arg);
AliasResult ArgAlias = AAQI.AAR.alias(ArgLoc, Loc, AAQI, Call);
if (ArgAlias != AliasResult::NoAlias)
NewArgMR |= ArgMR & AAQI.AAR.getArgModRefInfo(Call, ArgIdx);
// Exit early if we cannot improve over the original ArgMR.
if (NewArgMR == ArgMR)
break;
}
ArgMR = NewArgMR;
}
ModRefInfo Result = ArgMR | OtherMR;
if (!isModAndRefSet(Result))
return Result;
// If the call is malloc/calloc like, we can assume that it doesn't
// modify any IR visible value. This is only valid because we assume these
// routines do not read values visible in the IR. TODO: Consider special
// casing realloc and strdup routines which access only their arguments as
// well. Or alternatively, replace all of this with inaccessiblememonly once
// that's implemented fully.
if (isMallocOrCallocLikeFn(Call, &TLI)) {
// Be conservative if the accessed pointer may alias the allocation -
// fallback to the generic handling below.
if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) ==
AliasResult::NoAlias)
return ModRefInfo::NoModRef;
}
// Like assumes, invariant.start intrinsics were also marked as arbitrarily
// writing so that proper control dependencies are maintained but they never
// mod any particular memory location visible to the IR.
// *Unlike* assumes (which are now modeled as NoModRef), invariant.start
// intrinsic is now modeled as reading memory. This prevents hoisting the
// invariant.start intrinsic over stores. Consider:
// *ptr = 40;
// *ptr = 50;
// invariant_start(ptr)
// int val = *ptr;
// print(val);
//
// This cannot be transformed to:
//
// *ptr = 40;
// invariant_start(ptr)
// *ptr = 50;
// int val = *ptr;
// print(val);
//
// The transformation will cause the second store to be ignored (based on
// rules of invariant.start) and print 40, while the first program always
// prints 50.
if (isIntrinsicCall(Call, Intrinsic::invariant_start))
return ModRefInfo::Ref;
// Be conservative.
return ModRefInfo::ModRef;
}
ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1,
const CallBase *Call2,
AAQueryInfo &AAQI) {
// Guard intrinsics are marked as arbitrarily writing so that proper control
// dependencies are maintained but they never mods any particular memory
// location.
//
// *Unlike* assumes, guard intrinsics are modeled as reading memory since the
// heap state at the point the guard is issued needs to be consistent in case
// the guard invokes the "deopt" continuation.
// NB! This function is *not* commutative, so we special case two
// possibilities for guard intrinsics.
if (isIntrinsicCall(Call1, Intrinsic::experimental_guard))
return isModSet(getMemoryEffects(Call2, AAQI).getModRef())
? ModRefInfo::Ref
: ModRefInfo::NoModRef;
if (isIntrinsicCall(Call2, Intrinsic::experimental_guard))
return isModSet(getMemoryEffects(Call1, AAQI).getModRef())
? ModRefInfo::Mod
: ModRefInfo::NoModRef;
// Be conservative.
return ModRefInfo::ModRef;
}
/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(
const GEPOperator *GEP1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) {
auto BaseObjectsAlias = [&]() {
AliasResult BaseAlias =
AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1),
MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI);
return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias
: AliasResult::MayAlias;
};
if (!V1Size.hasValue() && !V2Size.hasValue()) {
// TODO: This limitation exists for compile-time reasons. Relax it if we
// can avoid exponential pathological cases.
if (!isa<GEPOperator>(V2))
return AliasResult::MayAlias;
// If both accesses have unknown size, we can only check whether the base
// objects don't alias.
return BaseObjectsAlias();
}
DominatorTree *DT = getDT(AAQI);
DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT);
DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT);
// Bail if we were not able to decompose anything.
if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2)
return AliasResult::MayAlias;
// Fall back to base objects if pointers have different index widths.
if (DecompGEP1.Offset.getBitWidth() != DecompGEP2.Offset.getBitWidth())
return BaseObjectsAlias();
// Swap GEP1 and GEP2 if GEP2 has more variable indices.
if (DecompGEP1.VarIndices.size() < DecompGEP2.VarIndices.size()) {
std::swap(DecompGEP1, DecompGEP2);
std::swap(V1Size, V2Size);
std::swap(UnderlyingV1, UnderlyingV2);
}
// Subtract the GEP2 pointer from the GEP1 pointer to find out their
// symbolic difference.
subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI);
// If an inbounds GEP would have to start from an out of bounds address
// for the two to alias, then we can assume noalias.
// TODO: Remove !isScalable() once BasicAA fully support scalable location
// size
if (DecompGEP1.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() &&
V2Size.hasValue() && !V2Size.isScalable() &&
DecompGEP1.Offset.sge(V2Size.getValue()) &&
isBaseOfObject(DecompGEP2.Base))
return AliasResult::NoAlias;
// Symmetric case to above.
if (DecompGEP2.NWFlags.isInBounds() && DecompGEP1.VarIndices.empty() &&
V1Size.hasValue() && !V1Size.isScalable() &&
DecompGEP1.Offset.sle(-V1Size.getValue()) &&
isBaseOfObject(DecompGEP1.Base))
return AliasResult::NoAlias;
// For GEPs with identical offsets, we can preserve the size and AAInfo
// when performing the alias check on the underlying objects.
if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty())
return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size),
MemoryLocation(DecompGEP2.Base, V2Size), AAQI);
// Do the base pointers alias?
AliasResult BaseAlias =
AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base),
MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI);
// If we get a No or May, then return it immediately, no amount of analysis
// will improve this situation.
if (BaseAlias != AliasResult::MustAlias) {
assert(BaseAlias == AliasResult::NoAlias ||
BaseAlias == AliasResult::MayAlias);
return BaseAlias;
}
// If there is a constant difference between the pointers, but the difference
// is less than the size of the associated memory object, then we know
// that the objects are partially overlapping. If the difference is
// greater, we know they do not overlap.
if (DecompGEP1.VarIndices.empty()) {
APInt &Off = DecompGEP1.Offset;
// Initialize for Off >= 0 (V2 <= GEP1) case.
LocationSize VLeftSize = V2Size;
LocationSize VRightSize = V1Size;
const bool Swapped = Off.isNegative();
if (Swapped) {
// Swap if we have the situation where:
// + +
// | BaseOffset |
// ---------------->|
// |-->V1Size |-------> V2Size
// GEP1 V2
std::swap(VLeftSize, VRightSize);
Off = -Off;
}
if (!VLeftSize.hasValue())
return AliasResult::MayAlias;
const TypeSize LSize = VLeftSize.getValue();
if (!LSize.isScalable()) {
if (Off.ult(LSize)) {
// Conservatively drop processing if a phi was visited and/or offset is
// too big.
AliasResult AR = AliasResult::PartialAlias;
if (VRightSize.hasValue() && !VRightSize.isScalable() &&
Off.ule(INT32_MAX) && (Off + VRightSize.getValue()).ule(LSize)) {
// Memory referenced by right pointer is nested. Save the offset in
// cache. Note that originally offset estimated as GEP1-V2, but
// AliasResult contains the shift that represents GEP1+Offset=V2.
AR.setOffset(-Off.getSExtValue());
AR.swap(Swapped);
}
return AR;
}
return AliasResult::NoAlias;
} else {
// We can use the getVScaleRange to prove that Off >= (CR.upper * LSize).
ConstantRange CR = getVScaleRange(&F, Off.getBitWidth());
bool Overflow;
APInt UpperRange = CR.getUnsignedMax().umul_ov(
APInt(Off.getBitWidth(), LSize.getKnownMinValue()), Overflow);
if (!Overflow && Off.uge(UpperRange))
return AliasResult::NoAlias;
}
}
// VScale Alias Analysis - Given one scalable offset between accesses and a
// scalable typesize, we can divide each side by vscale, treating both values
// as a constant. We prove that Offset/vscale >= TypeSize/vscale.
if (DecompGEP1.VarIndices.size() == 1 &&
DecompGEP1.VarIndices[0].Val.TruncBits == 0 &&
DecompGEP1.Offset.isZero() &&
PatternMatch::match(DecompGEP1.VarIndices[0].Val.V,
PatternMatch::m_VScale())) {
const VariableGEPIndex &ScalableVar = DecompGEP1.VarIndices[0];
APInt Scale =
ScalableVar.IsNegated ? -ScalableVar.Scale : ScalableVar.Scale;
LocationSize VLeftSize = Scale.isNegative() ? V1Size : V2Size;
// Check if the offset is known to not overflow, if it does then attempt to
// prove it with the known values of vscale_range.
bool Overflows = !DecompGEP1.VarIndices[0].IsNSW;
if (Overflows) {
ConstantRange CR = getVScaleRange(&F, Scale.getBitWidth());
(void)CR.getSignedMax().smul_ov(Scale, Overflows);
}
if (!Overflows) {
// Note that we do not check that the typesize is scalable, as vscale >= 1
// so noalias still holds so long as the dependency distance is at least
// as big as the typesize.
if (VLeftSize.hasValue() &&
Scale.abs().uge(VLeftSize.getValue().getKnownMinValue()))
return AliasResult::NoAlias;
}
}
// If the difference between pointers is Offset +<nuw> Indices then we know
// that the addition does not wrap the pointer index type (add nuw) and the
// constant Offset is a lower bound on the distance between the pointers. We
// can then prove NoAlias via Offset u>= VLeftSize.
// + + +
// | BaseOffset | +<nuw> Indices |
// ---------------->|-------------------->|
// |-->V2Size | |-------> V1Size
// LHS RHS
if (!DecompGEP1.VarIndices.empty() &&
DecompGEP1.NWFlags.hasNoUnsignedWrap() && V2Size.hasValue() &&
!V2Size.isScalable() && DecompGEP1.Offset.uge(V2Size.getValue()))
return AliasResult::NoAlias;
// Bail on analysing scalable LocationSize
if (V1Size.isScalable() || V2Size.isScalable())
return AliasResult::MayAlias;
// We need to know both access sizes for all the following heuristics. Don't
// try to reason about sizes larger than the index space.
unsigned BW = DecompGEP1.Offset.getBitWidth();
if (!V1Size.hasValue() || !V2Size.hasValue() ||
!isUIntN(BW, V1Size.getValue()) || !isUIntN(BW, V2Size.getValue()))
return AliasResult::MayAlias;
APInt GCD;
ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset);
for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {
const VariableGEPIndex &Index = DecompGEP1.VarIndices[i];
const APInt &Scale = Index.Scale;
APInt ScaleForGCD = Scale;
if (!Index.IsNSW)
ScaleForGCD =
APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero());
if (i == 0)
GCD = ScaleForGCD.abs();
else
GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs());
ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false,
true, &AC, Index.CxtI);
KnownBits Known = computeKnownBits(Index.Val.V, DL, &AC, Index.CxtI, DT);
CR = CR.intersectWith(
ConstantRange::fromKnownBits(Known, /* Signed */ true),
ConstantRange::Signed);
CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth());
assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&
"Bit widths are normalized to MaxIndexSize");
if (Index.IsNSW)
CR = CR.smul_sat(ConstantRange(Scale));
else
CR = CR.smul_fast(ConstantRange(Scale));
if (Index.IsNegated)
OffsetRange = OffsetRange.sub(CR);
else
OffsetRange = OffsetRange.add(CR);
}
// We now have accesses at two offsets from the same base:
// 1. (...)*GCD + DecompGEP1.Offset with size V1Size
// 2. 0 with size V2Size
// Using arithmetic modulo GCD, the accesses are at
// [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits
// into the range [V2Size..GCD), then we know they cannot overlap.
APInt ModOffset = DecompGEP1.Offset.srem(GCD);
if (ModOffset.isNegative())
ModOffset += GCD; // We want mod, not rem.
if (ModOffset.uge(V2Size.getValue()) &&
(GCD - ModOffset).uge(V1Size.getValue()))
return AliasResult::NoAlias;
// Compute ranges of potentially accessed bytes for both accesses. If the
// interseciton is empty, there can be no overlap.
ConstantRange Range1 = OffsetRange.add(
ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue())));
ConstantRange Range2 =
ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue()));
if (Range1.intersectWith(Range2).isEmptySet())
return AliasResult::NoAlias;
// Check if abs(V*Scale) >= abs(Scale) holds in the presence of
// potentially wrapping math.
auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) {
if (Var.IsNSW)
return true;
int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits();
// If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds.
// The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a
// constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap.
int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW;
if (MaxScaleValueBW <= 0)
return false;
return Var.Scale.ule(
APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth()));
};
// Try to determine the range of values for VarIndex such that
// VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex.
std::optional<APInt> MinAbsVarIndex;
if (DecompGEP1.VarIndices.size() == 1) {
// VarIndex = Scale*V.
const VariableGEPIndex &Var = DecompGEP1.VarIndices[0];
if (Var.Val.TruncBits == 0 &&
isKnownNonZero(Var.Val.V, SimplifyQuery(DL, DT, &AC, Var.CxtI))) {
// Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the
// presence of potentially wrapping math.
if (MultiplyByScaleNoWrap(Var)) {
// If V != 0 then abs(VarIndex) >= abs(Scale).
MinAbsVarIndex = Var.Scale.abs();
}
}
} else if (DecompGEP1.VarIndices.size() == 2) {
// VarIndex = Scale*V0 + (-Scale)*V1.
// If V0 != V1 then abs(VarIndex) >= abs(Scale).
// Check that MayBeCrossIteration is false, to avoid reasoning about
// inequality of values across loop iterations.
const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0];
const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1];
if (Var0.hasNegatedScaleOf(Var1) && Var0.Val.TruncBits == 0 &&
Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration &&
MultiplyByScaleNoWrap(Var0) && MultiplyByScaleNoWrap(Var1) &&
isKnownNonEqual(Var0.Val.V, Var1.Val.V,
SimplifyQuery(DL, DT, &AC, /*CxtI=*/Var0.CxtI
? Var0.CxtI
: Var1.CxtI)))
MinAbsVarIndex = Var0.Scale.abs();
}
if (MinAbsVarIndex) {
// The constant offset will have added at least +/-MinAbsVarIndex to it.
APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex;
APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex;
// We know that Offset <= OffsetLo || Offset >= OffsetHi
if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) &&
OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue()))
return AliasResult::NoAlias;
}
if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI))
return AliasResult::NoAlias;
// Statically, we can see that the base objects are the same, but the
// pointers have dynamic offsets which we can't resolve. And none of our
// little tricks above worked.
return AliasResult::MayAlias;
}
static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
// If the results agree, take it.
if (A == B)
return A;
// A mix of PartialAlias and MustAlias is PartialAlias.
if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) ||
(B == AliasResult::PartialAlias && A == AliasResult::MustAlias))
return AliasResult::PartialAlias;
// Otherwise, we don't know anything.
return AliasResult::MayAlias;
}
/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult
BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
// If the values are Selects with the same condition, we can do a more precise
// check: just check for aliases between the values on corresponding arms.
if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(),
AAQI)) {
AliasResult Alias =
AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
MemoryLocation(SI2->getTrueValue(), V2Size), AAQI);
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
AliasResult ThisAlias =
AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
MemoryLocation(SI2->getFalseValue(), V2Size), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
// If both arms of the Select node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize),
MemoryLocation(V2, V2Size), AAQI);
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
AliasResult ThisAlias =
AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize),
MemoryLocation(V2, V2Size), AAQI);
return MergeAliasResults(ThisAlias, Alias);
}
/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI) {
if (!PN->getNumIncomingValues())
return AliasResult::NoAlias;
// If the values are PHIs in the same block, we can do a more precise
// as well as efficient check: just check for aliases between the values
// on corresponding edges. Don't do this if we are analyzing across
// iterations, as we may pick a different phi entry in different iterations.
if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
if (PN2->getParent() == PN->getParent() && !AAQI.MayBeCrossIteration) {
std::optional<AliasResult> Alias;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
AliasResult ThisAlias = AAQI.AAR.alias(
MemoryLocation(PN->getIncomingValue(i), PNSize),
MemoryLocation(
PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size),
AAQI);
if (Alias)
*Alias = MergeAliasResults(*Alias, ThisAlias);
else
Alias = ThisAlias;
if (*Alias == AliasResult::MayAlias)
break;
}
return *Alias;
}
SmallVector<Value *, 4> V1Srcs;
// If a phi operand recurses back to the phi, we can still determine NoAlias
// if we don't alias the underlying objects of the other phi operands, as we
// know that the recursive phi needs to be based on them in some way.
bool isRecursive = false;
auto CheckForRecPhi = [&](Value *PV) {
if (!EnableRecPhiAnalysis)
return false;
if (getUnderlyingObject(PV) == PN) {
isRecursive = true;
return true;
}
return false;
};
SmallPtrSet<Value *, 4> UniqueSrc;
Value *OnePhi = nullptr;
for (Value *PV1 : PN->incoming_values()) {
// Skip the phi itself being the incoming value.
if (PV1 == PN)
continue;
if (isa<PHINode>(PV1)) {
if (OnePhi && OnePhi != PV1) {
// To control potential compile time explosion, we choose to be
// conserviate when we have more than one Phi input. It is important
// that we handle the single phi case as that lets us handle LCSSA
// phi nodes and (combined with the recursive phi handling) simple
// pointer induction variable patterns.
return AliasResult::MayAlias;
}
OnePhi = PV1;
}
if (CheckForRecPhi(PV1))
continue;
if (UniqueSrc.insert(PV1).second)
V1Srcs.push_back(PV1);
}
if (OnePhi && UniqueSrc.size() > 1)
// Out of an abundance of caution, allow only the trivial lcssa and
// recursive phi cases.
return AliasResult::MayAlias;
// If V1Srcs is empty then that means that the phi has no underlying non-phi
// value. This should only be possible in blocks unreachable from the entry
// block, but return MayAlias just in case.
if (V1Srcs.empty())
return AliasResult::MayAlias;
// If this PHI node is recursive, indicate that the pointer may be moved
// across iterations. We can only prove NoAlias if different underlying
// objects are involved.
if (isRecursive)
PNSize = LocationSize::beforeOrAfterPointer();
// In the recursive alias queries below, we may compare values from two
// different loop iterations.
SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true);
AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize),
MemoryLocation(V2, V2Size), AAQI);
// Early exit if the check of the first PHI source against V2 is MayAlias.
// Other results are not possible.
if (Alias == AliasResult::MayAlias)
return AliasResult::MayAlias;
// With recursive phis we cannot guarantee that MustAlias/PartialAlias will
// remain valid to all elements and needs to conservatively return MayAlias.
if (isRecursive && Alias != AliasResult::NoAlias)
return AliasResult::MayAlias;
// If all sources of the PHI node NoAlias or MustAlias V2, then returns
// NoAlias / MustAlias. Otherwise, returns MayAlias.
for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
Value *V = V1Srcs[i];
AliasResult ThisAlias = AAQI.AAR.alias(
MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI);
Alias = MergeAliasResults(ThisAlias, Alias);
if (Alias == AliasResult::MayAlias)
break;
}
return Alias;
}
// Return true for an Argument or extractvalue(Argument). These are all known
// to not alias with FunctionLocal objects and can come up from coerced function
// arguments.
static bool isArgumentOrArgumentLike(const Value *V) {
if (isa<Argument>(V))
return true;
auto *E = dyn_cast<ExtractValueInst>(V);
return E && isa<Argument>(E->getOperand(0));
}
/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI,
const Instruction *CtxI) {
// If either of the memory references is empty, it doesn't matter what the
// pointer values are.
if (V1Size.isZero() || V2Size.isZero())
return AliasResult::NoAlias;
// Strip off any casts if they exist.
V1 = V1->stripPointerCastsForAliasAnalysis();
V2 = V2->stripPointerCastsForAliasAnalysis();
// If V1 or V2 is undef, the result is NoAlias because we can always pick a
// value for undef that aliases nothing in the program.
if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
return AliasResult::NoAlias;
// Are we checking for alias of the same value?
// Because we look 'through' phi nodes, we could look at "Value" pointers from
// different iterations. We must therefore make sure that this is not the
// case. The function isValueEqualInPotentialCycles ensures that this cannot
// happen by looking at the visited phi nodes and making sure they cannot
// reach the value.
if (isValueEqualInPotentialCycles(V1, V2, AAQI))
return AliasResult::MustAlias;
// Figure out what objects these things are pointing to if we can.
const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth);
const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth);
// Null values in the default address space don't point to any object, so they
// don't alias any other pointer.
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
return AliasResult::NoAlias;
if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace()))
return AliasResult::NoAlias;
if (O1 != O2) {
// If V1/V2 point to two different objects, we know that we have no alias.
if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
return AliasResult::NoAlias;
// Function arguments can't alias with things that are known to be
// unambigously identified at the function level.
if ((isArgumentOrArgumentLike(O1) && isIdentifiedFunctionLocal(O2)) ||
(isArgumentOrArgumentLike(O2) && isIdentifiedFunctionLocal(O1)))
return AliasResult::NoAlias;
// If one pointer is the result of a call/invoke or load and the other is a
// non-escaping local object within the same function, then we know the
// object couldn't escape to a point where the call could return it.
//
// Note that if the pointers are in different functions, there are a
// variety of complications. A call with a nocapture argument may still
// temporary store the nocapture argument's value in a temporary memory
// location if that memory location doesn't escape. Or it may pass a
// nocapture value to other functions as long as they don't capture it.
if (isEscapeSource(O1) &&
capturesNothing(AAQI.CA->getCapturesBefore(
O2, dyn_cast<Instruction>(O1), /*OrAt*/ true)))
return AliasResult::NoAlias;
if (isEscapeSource(O2) &&
capturesNothing(AAQI.CA->getCapturesBefore(
O1, dyn_cast<Instruction>(O2), /*OrAt*/ true)))
return AliasResult::NoAlias;
}
// If the size of one access is larger than the entire object on the other
// side, then we know such behavior is undefined and can assume no alias.
bool NullIsValidLocation = NullPointerIsDefined(&F);
if ((isObjectSmallerThan(
O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL,
TLI, NullIsValidLocation)) ||
(isObjectSmallerThan(
O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL,
TLI, NullIsValidLocation)))
return AliasResult::NoAlias;
if (EnableSeparateStorageAnalysis) {
for (AssumptionCache::ResultElem &Elem : AC.assumptionsFor(O1)) {
if (!Elem || Elem.Index == AssumptionCache::ExprResultIdx)
continue;
AssumeInst *Assume = cast<AssumeInst>(Elem);
OperandBundleUse OBU = Assume->getOperandBundleAt(Elem.Index);
if (OBU.getTagName() == "separate_storage") {
assert(OBU.Inputs.size() == 2);
const Value *Hint1 = OBU.Inputs[0].get();
const Value *Hint2 = OBU.Inputs[1].get();
// This is often a no-op; instcombine rewrites this for us. No-op
// getUnderlyingObject calls are fast, though.
const Value *HintO1 = getUnderlyingObject(Hint1);
const Value *HintO2 = getUnderlyingObject(Hint2);
DominatorTree *DT = getDT(AAQI);
auto ValidAssumeForPtrContext = [&](const Value *Ptr) {
if (const Instruction *PtrI = dyn_cast<Instruction>(Ptr)) {
return isValidAssumeForContext(Assume, PtrI, DT,
/* AllowEphemerals */ true);
}
if (const Argument *PtrA = dyn_cast<Argument>(Ptr)) {
const Instruction *FirstI =
&*PtrA->getParent()->getEntryBlock().begin();
return isValidAssumeForContext(Assume, FirstI, DT,
/* AllowEphemerals */ true);
}
return false;
};
if ((O1 == HintO1 && O2 == HintO2) || (O1 == HintO2 && O2 == HintO1)) {
// Note that we go back to V1 and V2 for the
// ValidAssumeForPtrContext checks; they're dominated by O1 and O2,
// so strictly more assumptions are valid for them.
if ((CtxI && isValidAssumeForContext(Assume, CtxI, DT,
/* AllowEphemerals */ true)) ||
ValidAssumeForPtrContext(V1) || ValidAssumeForPtrContext(V2)) {
return AliasResult::NoAlias;
}
}
}
}
}
// If one the accesses may be before the accessed pointer, canonicalize this
// by using unknown after-pointer sizes for both accesses. This is
// equivalent, because regardless of which pointer is lower, one of them
// will always came after the other, as long as the underlying objects aren't
// disjoint. We do this so that the rest of BasicAA does not have to deal
// with accesses before the base pointer, and to improve cache utilization by
// merging equivalent states.
if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) {
V1Size = LocationSize::afterPointer();
V2Size = LocationSize::afterPointer();
}
// FIXME: If this depth limit is hit, then we may cache sub-optimal results
// for recursive queries. For this reason, this limit is chosen to be large
// enough to be very rarely hit, while still being small enough to avoid
// stack overflows.
if (AAQI.Depth >= 512)
return AliasResult::MayAlias;
// Check the cache before climbing up use-def chains. This also terminates
// otherwise infinitely recursive queries. Include MayBeCrossIteration in the
// cache key, because some cases where MayBeCrossIteration==false returns
// MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true.
AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration},
{V2, V2Size, AAQI.MayBeCrossIteration});
const bool Swapped = V1 > V2;
if (Swapped)
std::swap(Locs.first, Locs.second);
const auto &Pair = AAQI.AliasCache.try_emplace(
Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0});
if (!Pair.second) {
auto &Entry = Pair.first->second;
if (!Entry.isDefinitive()) {
// Remember that we used an assumption. This may either be a direct use
// of an assumption, or a use of an entry that may itself be based on an
// assumption.
++AAQI.NumAssumptionUses;
if (Entry.isAssumption())
++Entry.NumAssumptionUses;
}
// Cache contains sorted {V1,V2} pairs but we should return original order.
auto Result = Entry.Result;
Result.swap(Swapped);
return Result;
}
int OrigNumAssumptionUses = AAQI.NumAssumptionUses;
unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size();
AliasResult Result =
aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2);
auto It = AAQI.AliasCache.find(Locs);
assert(It != AAQI.AliasCache.end() && "Must be in cache");
auto &Entry = It->second;
// Check whether a NoAlias assumption has been used, but disproven.
bool AssumptionDisproven =
Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias;
if (AssumptionDisproven)
Result = AliasResult::MayAlias;
// This is a definitive result now, when considered as a root query.
AAQI.NumAssumptionUses -= Entry.NumAssumptionUses;
Entry.Result = Result;
// Cache contains sorted {V1,V2} pairs.
Entry.Result.swap(Swapped);
// If the assumption has been disproven, remove any results that may have
// been based on this assumption. Do this after the Entry updates above to
// avoid iterator invalidation.
if (AssumptionDisproven)
while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults)
AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val());
// The result may still be based on assumptions higher up in the chain.
// Remember it, so it can be purged from the cache later.
if (OrigNumAssumptionUses != AAQI.NumAssumptionUses &&
Result != AliasResult::MayAlias) {
AAQI.AssumptionBasedResults.push_back(Locs);
Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::AssumptionBased;
} else {
Entry.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
}
// Depth is incremented before this function is called, so Depth==1 indicates
// a root query.
if (AAQI.Depth == 1) {
// Any remaining assumption based results must be based on proven
// assumptions, so convert them to definitive results.
for (const auto &Loc : AAQI.AssumptionBasedResults) {
auto It = AAQI.AliasCache.find(Loc);
if (It != AAQI.AliasCache.end())
It->second.NumAssumptionUses = AAQueryInfo::CacheEntry::Definitive;
}
AAQI.AssumptionBasedResults.clear();
AAQI.NumAssumptionUses = 0;
}
return Result;
}
AliasResult BasicAAResult::aliasCheckRecursive(
const Value *V1, LocationSize V1Size,
const Value *V2, LocationSize V2Size,
AAQueryInfo &AAQI, const Value *O1, const Value *O2) {
if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) {
AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI);
Result.swap();
if (Result != AliasResult::MayAlias)
return Result;
}
if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const PHINode *PN = dyn_cast<PHINode>(V2)) {
AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI);
Result.swap();
if (Result != AliasResult::MayAlias)
return Result;
}
if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI);
if (Result != AliasResult::MayAlias)
return Result;
} else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) {
AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI);
Result.swap();
if (Result != AliasResult::MayAlias)
return Result;
}
// If both pointers are pointing into the same object and one of them
// accesses the entire object, then the accesses must overlap in some way.
if (O1 == O2) {
bool NullIsValidLocation = NullPointerIsDefined(&F);
if (V1Size.isPrecise() && V2Size.isPrecise() &&
(isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) ||
isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation)))
return AliasResult::PartialAlias;
}
return AliasResult::MayAlias;
}
/// Check whether two Values can be considered equivalent.
///
/// If the values may come from different cycle iterations, this will also
/// check that the values are not part of cycle. We have to do this because we
/// are looking through phi nodes, that is we say
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
const Value *V2,
const AAQueryInfo &AAQI) {
if (V != V2)
return false;
if (!AAQI.MayBeCrossIteration)
return true;
// Non-instructions and instructions in the entry block cannot be part of
// a loop.
const Instruction *Inst = dyn_cast<Instruction>(V);
if (!Inst || Inst->getParent()->isEntryBlock())
return true;
return isNotInCycle(Inst, getDT(AAQI), /*LI*/ nullptr);
}
/// Computes the symbolic difference between two de-composed GEPs.
void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP,
const DecomposedGEP &SrcGEP,
const AAQueryInfo &AAQI) {
// Drop nuw flag from GEP if subtraction of constant offsets overflows in an
// unsigned sense.
if (DestGEP.Offset.ult(SrcGEP.Offset))
DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
DestGEP.Offset -= SrcGEP.Offset;
for (const VariableGEPIndex &Src : SrcGEP.VarIndices) {
// Find V in Dest. This is N^2, but pointer indices almost never have more
// than a few variable indexes.
bool Found = false;
for (auto I : enumerate(DestGEP.VarIndices)) {
VariableGEPIndex &Dest = I.value();
if ((!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) &&
!areBothVScale(Dest.Val.V, Src.Val.V)) ||
!Dest.Val.hasSameCastsAs(Src.Val))
continue;
// Normalize IsNegated if we're going to lose the NSW flag anyway.
if (Dest.IsNegated) {
Dest.Scale = -Dest.Scale;
Dest.IsNegated = false;
Dest.IsNSW = false;
}
// If we found it, subtract off Scale V's from the entry in Dest. If it
// goes to zero, remove the entry.
if (Dest.Scale != Src.Scale) {
// Drop nuw flag from GEP if subtraction of V's Scale overflows in an
// unsigned sense.
if (Dest.Scale.ult(Src.Scale))
DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
Dest.Scale -= Src.Scale;
Dest.IsNSW = false;
} else {
DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index());
}
Found = true;
break;
}
// If we didn't consume this entry, add it to the end of the Dest list.
if (!Found) {
VariableGEPIndex Entry = {Src.Val, Src.Scale, Src.CxtI, Src.IsNSW,
/* IsNegated */ true};
DestGEP.VarIndices.push_back(Entry);
// Drop nuw flag when we have unconsumed variable indices from SrcGEP.
DestGEP.NWFlags = DestGEP.NWFlags.withoutNoUnsignedWrap();
}
}
}
bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP,
LocationSize MaybeV1Size,
LocationSize MaybeV2Size,
AssumptionCache *AC,
DominatorTree *DT,
const AAQueryInfo &AAQI) {
if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() ||
!MaybeV2Size.hasValue())
return false;
const uint64_t V1Size = MaybeV1Size.getValue();
const uint64_t V2Size = MaybeV2Size.getValue();
const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1];
if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) ||
!Var0.hasNegatedScaleOf(Var1) ||
Var0.Val.V->getType() != Var1.Val.V->getType())
return false;
// We'll strip off the Extensions of Var0 and Var1 and do another round
// of GetLinearExpression decomposition. In the example above, if Var0
// is zext(%x + 1) we should get V1 == %x and V1Offset == 1.
LinearExpression E0 =
GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT);
LinearExpression E1 =
GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT);
if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) ||
!isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI))
return false;
// We have a hit - Var0 and Var1 only differ by a constant offset!
// If we've been sext'ed then zext'd the maximum difference between Var0 and
// Var1 is possible to calculate, but we're just interested in the absolute
// minimum difference between the two. The minimum distance may occur due to
// wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
// the minimum distance between %i and %i + 5 is 3.
APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff;
MinDiff = APIntOps::umin(MinDiff, Wrapped);
APInt MinDiffBytes =
MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs();
// We can't definitely say whether GEP1 is before or after V2 due to wrapping
// arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
// values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
// V2Size can fit in the MinDiffBytes gap.
return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) &&
MinDiffBytes.uge(V2Size + GEP.Offset.abs());
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//
AnalysisKey BasicAA::Key;
BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
return BasicAAResult(F.getDataLayout(), F, TLI, AC, DT);
}
BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {}
char BasicAAWrapperPass::ID = 0;
void BasicAAWrapperPass::anchor() {}
INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",
"Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",
"Basic Alias Analysis (stateless AA impl)", true, true)
FunctionPass *llvm::createBasicAAWrapperPass() {
return new BasicAAWrapperPass();
}
bool BasicAAWrapperPass::runOnFunction(Function &F) {
auto &ACT = getAnalysis<AssumptionCacheTracker>();
auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
Result.reset(new BasicAAResult(F.getDataLayout(), F,
TLIWP.getTLI(F), ACT.getAssumptionCache(F),
&DTWP.getDomTree()));
return false;
}
void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AssumptionCacheTracker>();
AU.addRequiredTransitive<DominatorTreeWrapperPass>();
AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
}