llvm-project/llvm/lib/Analysis/ConstraintSystem.cpp
Lee Wei f7cc213d58
[ConstraintSystem] Update comments (#127351)
It took me some time to fully understand the implementation of
Fourier–Motzkin elimination in the Constraint System, so I added an
example in the comments. Hopefully future developers can understand the
algorithm more easily with the example.
2025-04-08 00:22:47 +08:00

231 lines
7.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <string>
using namespace llvm;
#define DEBUG_TYPE "constraint-system"
bool ConstraintSystem::eliminateUsingFM() {
// Implementation of FourierMotzkin elimination, with some tricks from the
// paper Pugh, William. "The Omega test: a fast and practical integer
// programming algorithm for dependence
// analysis."
// Supercomputing'91: Proceedings of the 1991 ACM/
// IEEE conference on Supercomputing. IEEE, 1991.
assert(!Constraints.empty() &&
"should only be called for non-empty constraint systems");
unsigned LastIdx = NumVariables - 1;
// First, either remove the variable in place if it is 0 or add the row to
// RemainingRows and remove it from the system.
SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
for (unsigned R1 = 0; R1 < Constraints.size();) {
SmallVector<Entry, 8> &Row1 = Constraints[R1];
if (getLastCoefficient(Row1, LastIdx) == 0) {
if (Row1.size() > 0 && Row1.back().Id == LastIdx)
Row1.pop_back();
R1++;
} else {
std::swap(Constraints[R1], Constraints.back());
RemainingRows.push_back(std::move(Constraints.back()));
Constraints.pop_back();
}
}
// Process rows where the variable is != 0.
unsigned NumRemainingConstraints = RemainingRows.size();
for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
// FIXME do not use copy
for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
// Examples of constraints stored as {Constant, Coeff_x, Coeff_y}
// R1: 0 >= 1 * x + (-2) * y => { 0, 1, -2 }
// R2: 3 >= 2 * x + 3 * y => { 3, 2, 3 }
// LastIdx = 2 (tracking coefficient of y)
// UpperLast: 3
// LowerLast: -2
int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
assert(
UpperLast != 0 && LowerLast != 0 &&
"RemainingRows should only contain rows where the variable is != 0");
if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
continue;
unsigned LowerR = R1;
unsigned UpperR = R2;
if (UpperLast < 0) {
std::swap(LowerR, UpperR);
std::swap(LowerLast, UpperLast);
}
SmallVector<Entry, 8> NR;
unsigned IdxUpper = 0;
unsigned IdxLower = 0;
auto &LowerRow = RemainingRows[LowerR];
auto &UpperRow = RemainingRows[UpperR];
// Update constant and coefficients of both constraints.
// Stops until every coefficient is updated or overflows.
while (true) {
if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
break;
int64_t M1, M2, N;
// Starts with index 0 and updates every coefficients.
int64_t UpperV = 0;
int64_t LowerV = 0;
uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
if (IdxUpper < UpperRow.size()) {
CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
}
if (IdxLower < LowerRow.size()) {
CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
}
if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
UpperV = UpperRow[IdxUpper].Coefficient;
IdxUpper++;
}
if (MulOverflow(UpperV, -1 * LowerLast, M1))
return false;
if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
LowerV = LowerRow[IdxLower].Coefficient;
IdxLower++;
}
if (MulOverflow(LowerV, UpperLast, M2))
return false;
// This algorithm is a variant of sparse Gaussian elimination.
//
// The new coefficient for CurrentId is
// N = UpperV * (-1) * LowerLast + LowerV * UpperLast
//
// UpperRow: { 3, 2, 3 }, LowerLast: -2
// LowerRow: { 0, 1, -2 }, UpperLast: 3
//
// After multiplication:
// UpperRow: { 6, 4, 6 }
// LowerRow: { 0, 3, -6 }
//
// Eliminates y after addition:
// N: { 6, 7, 0 } => 6 >= 7 * x
if (AddOverflow(M1, M2, N))
return false;
// Skip variable that is completely eliminated.
if (N == 0)
continue;
NR.emplace_back(N, CurrentId);
}
if (NR.empty())
continue;
Constraints.push_back(std::move(NR));
// Give up if the new system gets too big.
if (Constraints.size() > 500)
return false;
}
}
NumVariables -= 1;
return true;
}
bool ConstraintSystem::mayHaveSolutionImpl() {
while (!Constraints.empty() && NumVariables > 1) {
if (!eliminateUsingFM())
return true;
}
if (Constraints.empty() || NumVariables > 1)
return true;
return all_of(Constraints, [](auto &R) {
if (R.empty())
return true;
if (R[0].Id == 0)
return R[0].Coefficient >= 0;
return true;
});
}
SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
SmallVector<std::string> Names(Value2Index.size(), "");
#ifndef NDEBUG
for (auto &[V, Index] : Value2Index) {
std::string OperandName;
if (V->getName().empty())
OperandName = V->getNameOrAsOperand();
else
OperandName = std::string("%") + V->getName().str();
Names[Index - 1] = OperandName;
}
#endif
return Names;
}
void ConstraintSystem::dump() const {
#ifndef NDEBUG
if (Constraints.empty())
return;
SmallVector<std::string> Names = getVarNamesList();
for (const auto &Row : Constraints) {
SmallVector<std::string, 16> Parts;
for (const Entry &E : Row) {
if (E.Id >= NumVariables)
break;
if (E.Id == 0)
continue;
std::string Coefficient;
if (E.Coefficient != 1)
Coefficient = std::to_string(E.Coefficient) + " * ";
Parts.push_back(Coefficient + Names[E.Id - 1]);
}
// assert(!Parts.empty() && "need to have at least some parts");
int64_t ConstPart = 0;
if (Row[0].Id == 0)
ConstPart = Row[0].Coefficient;
LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
<< " <= " << std::to_string(ConstPart) << "\n");
}
#endif
}
bool ConstraintSystem::mayHaveSolution() {
LLVM_DEBUG(dbgs() << "---\n");
LLVM_DEBUG(dump());
bool HasSolution = mayHaveSolutionImpl();
LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
return HasSolution;
}
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
// If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
// 0, R is always true, regardless of the system.
if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
return R[0] >= 0;
// If there is no solution with the negation of R added to the system, the
// condition must hold based on the existing constraints.
R = ConstraintSystem::negate(R);
if (R.empty())
return false;
auto NewSystem = *this;
NewSystem.addVariableRow(R);
return !NewSystem.mayHaveSolution();
}