
Require that all Instructions in the Loop are visited by ValueEvolution, as any stray instructions would complicate life for the optimization.
749 lines
28 KiB
C++
749 lines
28 KiB
C++
//===- HashRecognize.cpp ----------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The HashRecognize analysis recognizes unoptimized polynomial hash functions
|
|
// with operations over a Galois field of characteristic 2, also called binary
|
|
// fields, or GF(2^n): this class of hash functions can be optimized using a
|
|
// lookup-table-driven implementation, or with target-specific instructions.
|
|
// Examples:
|
|
//
|
|
// 1. Cyclic redundancy check (CRC), which is a polynomial division in GF(2).
|
|
// 2. Rabin fingerprint, a component of the Rabin-Karp algorithm, which is a
|
|
// rolling hash polynomial division in GF(2).
|
|
// 3. Rijndael MixColumns, a step in AES computation, which is a polynomial
|
|
// multiplication in GF(2^3).
|
|
// 4. GHASH, the authentication mechanism in AES Galois/Counter Mode (GCM),
|
|
// which is a polynomial evaluation in GF(2^128).
|
|
//
|
|
// All of them use an irreducible generating polynomial of degree m,
|
|
//
|
|
// c_m * x^m + c_(m-1) * x^(m-1) + ... + c_0 * x^0
|
|
//
|
|
// where each coefficient c is can take values in GF(2^n), where 2^n is termed
|
|
// the order of the Galois field. For GF(2), each coefficient can take values
|
|
// either 0 or 1, and the polynomial is simply represented by m+1 bits,
|
|
// corresponding to the coefficients. The different variants of CRC are named by
|
|
// degree of generating polynomial used: so CRC-32 would use a polynomial of
|
|
// degree 32.
|
|
//
|
|
// The reason algorithms on GF(2^n) can be optimized with a lookup-table is the
|
|
// following: in such fields, polynomial addition and subtraction are identical
|
|
// and equivalent to XOR, polynomial multiplication is an AND, and polynomial
|
|
// division is identity: the XOR and AND operations in unoptimized
|
|
// implementations are performed bit-wise, and can be optimized to be performed
|
|
// chunk-wise, by interleaving copies of the generating polynomial, and storing
|
|
// the pre-computed values in a table.
|
|
//
|
|
// A generating polynomial of m bits always has the MSB set, so we usually
|
|
// omit it. An example of a 16-bit polynomial is the CRC-16-CCITT polynomial:
|
|
//
|
|
// (x^16) + x^12 + x^5 + 1 = (1) 0001 0000 0010 0001 = 0x1021
|
|
//
|
|
// Transmissions are either in big-endian or little-endian form, and hash
|
|
// algorithms are written according to this. For example, IEEE 802 and RS-232
|
|
// specify little-endian transmission.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// At the moment, we only recognize the CRC algorithm.
|
|
// Documentation on CRC32 from the kernel:
|
|
// https://www.kernel.org/doc/Documentation/crc32.txt
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/HashRecognize.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Analysis/LoopAnalysisManager.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionPatternMatch.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
using namespace SCEVPatternMatch;
|
|
|
|
#define DEBUG_TYPE "hash-recognize"
|
|
|
|
// KnownBits for a PHI node. There are at most two PHI nodes, corresponding to
|
|
// the Simple Recurrence and Conditional Recurrence. The IndVar PHI is not
|
|
// relevant.
|
|
using KnownPhiMap = SmallDenseMap<const PHINode *, KnownBits, 2>;
|
|
|
|
// A pair of a PHI node along with its incoming value from within a loop.
|
|
using PhiStepPair = std::pair<const PHINode *, const Instruction *>;
|
|
|
|
/// A much simpler version of ValueTracking, in that it computes KnownBits of
|
|
/// values, except that it computes the evolution of KnownBits in a loop with a
|
|
/// given trip count, and predication is specialized for a significant-bit
|
|
/// check.
|
|
class ValueEvolution {
|
|
const unsigned TripCount;
|
|
const bool ByteOrderSwapped;
|
|
APInt GenPoly;
|
|
StringRef ErrStr;
|
|
|
|
// Compute the KnownBits of a BinaryOperator.
|
|
KnownBits computeBinOp(const BinaryOperator *I);
|
|
|
|
// Compute the KnownBits of an Instruction.
|
|
KnownBits computeInstr(const Instruction *I);
|
|
|
|
// Compute the KnownBits of a Value.
|
|
KnownBits compute(const Value *V);
|
|
|
|
public:
|
|
// ValueEvolution is meant to be constructed with the TripCount of the loop,
|
|
// and a boolean indicating whether the polynomial algorithm is big-endian
|
|
// (for the significant-bit check).
|
|
ValueEvolution(unsigned TripCount, bool ByteOrderSwapped);
|
|
|
|
// Given a list of PHI nodes along with their incoming value from within the
|
|
// loop, computeEvolutions computes the KnownBits of each of the PHI nodes on
|
|
// the final iteration. Returns true on success and false on error.
|
|
bool computeEvolutions(ArrayRef<PhiStepPair> PhiEvolutions);
|
|
|
|
// In case ValueEvolution encounters an error, this is meant to be used for a
|
|
// precise error message.
|
|
StringRef getError() const { return ErrStr; }
|
|
|
|
// A set of Instructions visited by ValueEvolution. The only unvisited
|
|
// instructions will be ones not on the use-def chain of the PHIs' evolutions.
|
|
SmallPtrSet<const Instruction *, 16> Visited;
|
|
|
|
// The computed KnownBits for each PHI node, which is populated after
|
|
// computeEvolutions is called.
|
|
KnownPhiMap KnownPhis;
|
|
};
|
|
|
|
ValueEvolution::ValueEvolution(unsigned TripCount, bool ByteOrderSwapped)
|
|
: TripCount(TripCount), ByteOrderSwapped(ByteOrderSwapped) {}
|
|
|
|
KnownBits ValueEvolution::computeBinOp(const BinaryOperator *I) {
|
|
KnownBits KnownL(compute(I->getOperand(0)));
|
|
KnownBits KnownR(compute(I->getOperand(1)));
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::BinaryOps::And:
|
|
return KnownL & KnownR;
|
|
case Instruction::BinaryOps::Or:
|
|
return KnownL | KnownR;
|
|
case Instruction::BinaryOps::Xor:
|
|
return KnownL ^ KnownR;
|
|
case Instruction::BinaryOps::Shl: {
|
|
auto *OBO = cast<OverflowingBinaryOperator>(I);
|
|
return KnownBits::shl(KnownL, KnownR, OBO->hasNoUnsignedWrap(),
|
|
OBO->hasNoSignedWrap());
|
|
}
|
|
case Instruction::BinaryOps::LShr:
|
|
return KnownBits::lshr(KnownL, KnownR);
|
|
case Instruction::BinaryOps::AShr:
|
|
return KnownBits::ashr(KnownL, KnownR);
|
|
case Instruction::BinaryOps::Add: {
|
|
auto *OBO = cast<OverflowingBinaryOperator>(I);
|
|
return KnownBits::add(KnownL, KnownR, OBO->hasNoUnsignedWrap(),
|
|
OBO->hasNoSignedWrap());
|
|
}
|
|
case Instruction::BinaryOps::Sub: {
|
|
auto *OBO = cast<OverflowingBinaryOperator>(I);
|
|
return KnownBits::sub(KnownL, KnownR, OBO->hasNoUnsignedWrap(),
|
|
OBO->hasNoSignedWrap());
|
|
}
|
|
case Instruction::BinaryOps::Mul: {
|
|
Value *Op0 = I->getOperand(0);
|
|
Value *Op1 = I->getOperand(1);
|
|
bool SelfMultiply = Op0 == Op1 && isGuaranteedNotToBeUndef(Op0);
|
|
return KnownBits::mul(KnownL, KnownR, SelfMultiply);
|
|
}
|
|
case Instruction::BinaryOps::UDiv:
|
|
return KnownBits::udiv(KnownL, KnownR);
|
|
case Instruction::BinaryOps::SDiv:
|
|
return KnownBits::sdiv(KnownL, KnownR);
|
|
case Instruction::BinaryOps::URem:
|
|
return KnownBits::urem(KnownL, KnownR);
|
|
case Instruction::BinaryOps::SRem:
|
|
return KnownBits::srem(KnownL, KnownR);
|
|
default:
|
|
ErrStr = "Unknown BinaryOperator";
|
|
unsigned BitWidth = I->getType()->getScalarSizeInBits();
|
|
return {BitWidth};
|
|
}
|
|
}
|
|
|
|
KnownBits ValueEvolution::computeInstr(const Instruction *I) {
|
|
unsigned BitWidth = I->getType()->getScalarSizeInBits();
|
|
|
|
// computeInstr is the only entry-point that needs to update the Visited set.
|
|
Visited.insert(I);
|
|
|
|
// We look up in the map that contains the KnownBits of the PHI from the
|
|
// previous iteration.
|
|
if (const PHINode *P = dyn_cast<PHINode>(I))
|
|
return KnownPhis.lookup_or(P, BitWidth);
|
|
|
|
// Compute the KnownBits for a Select(Cmp()), forcing it to take the branch
|
|
// that is predicated on the (least|most)-significant-bit check.
|
|
CmpPredicate Pred;
|
|
Value *L, *R;
|
|
Instruction *TV, *FV;
|
|
if (match(I, m_Select(m_ICmp(Pred, m_Value(L), m_Value(R)), m_Instruction(TV),
|
|
m_Instruction(FV)))) {
|
|
Visited.insert(cast<Instruction>(I->getOperand(0)));
|
|
|
|
// We need to check LCR against [0, 2) in the little-endian case, because
|
|
// the RCR check is insufficient: it is simply [0, 1).
|
|
if (!ByteOrderSwapped) {
|
|
KnownBits KnownL = compute(L);
|
|
unsigned ICmpBW = KnownL.getBitWidth();
|
|
auto LCR = ConstantRange::fromKnownBits(KnownL, false);
|
|
auto CheckLCR = ConstantRange(APInt::getZero(ICmpBW), APInt(ICmpBW, 2));
|
|
if (LCR != CheckLCR) {
|
|
ErrStr = "Bad LHS of significant-bit-check";
|
|
return {BitWidth};
|
|
}
|
|
}
|
|
|
|
// Check that the predication is on (most|least) significant bit.
|
|
KnownBits KnownR = compute(R);
|
|
unsigned ICmpBW = KnownR.getBitWidth();
|
|
auto RCR = ConstantRange::fromKnownBits(KnownR, false);
|
|
auto AllowedR = ConstantRange::makeAllowedICmpRegion(Pred, RCR);
|
|
ConstantRange CheckRCR(APInt::getZero(ICmpBW),
|
|
ByteOrderSwapped ? APInt::getSignedMinValue(ICmpBW)
|
|
: APInt(ICmpBW, 1));
|
|
|
|
// We only compute KnownBits of either TV or FV, as the other value would
|
|
// just be a bit-shift as checked by isBigEndianBitShift.
|
|
if (AllowedR == CheckRCR) {
|
|
Visited.insert(FV);
|
|
return compute(TV);
|
|
}
|
|
if (AllowedR.inverse() == CheckRCR) {
|
|
Visited.insert(TV);
|
|
return compute(FV);
|
|
}
|
|
|
|
ErrStr = "Bad RHS of significant-bit-check";
|
|
return {BitWidth};
|
|
}
|
|
|
|
if (auto *BO = dyn_cast<BinaryOperator>(I))
|
|
return computeBinOp(BO);
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::CastOps::Trunc:
|
|
return compute(I->getOperand(0)).trunc(BitWidth);
|
|
case Instruction::CastOps::ZExt:
|
|
return compute(I->getOperand(0)).zext(BitWidth);
|
|
case Instruction::CastOps::SExt:
|
|
return compute(I->getOperand(0)).sext(BitWidth);
|
|
default:
|
|
ErrStr = "Unknown Instruction";
|
|
return {BitWidth};
|
|
}
|
|
}
|
|
|
|
KnownBits ValueEvolution::compute(const Value *V) {
|
|
if (auto *CI = dyn_cast<ConstantInt>(V))
|
|
return KnownBits::makeConstant(CI->getValue());
|
|
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
return computeInstr(I);
|
|
|
|
ErrStr = "Unknown Value";
|
|
unsigned BitWidth = V->getType()->getScalarSizeInBits();
|
|
return {BitWidth};
|
|
}
|
|
|
|
bool ValueEvolution::computeEvolutions(ArrayRef<PhiStepPair> PhiEvolutions) {
|
|
for (unsigned I = 0; I < TripCount; ++I)
|
|
for (auto [Phi, Step] : PhiEvolutions)
|
|
KnownPhis.emplace_or_assign(Phi, computeInstr(Step));
|
|
|
|
return ErrStr.empty();
|
|
}
|
|
|
|
/// A structure that can hold either a Simple Recurrence or a Conditional
|
|
/// Recurrence. Note that in the case of a Simple Recurrence, Step is an operand
|
|
/// of the BO, while in a Conditional Recurrence, it is a SelectInst.
|
|
struct RecurrenceInfo {
|
|
const Loop &L;
|
|
const PHINode *Phi = nullptr;
|
|
BinaryOperator *BO = nullptr;
|
|
Value *Start = nullptr;
|
|
Value *Step = nullptr;
|
|
std::optional<APInt> ExtraConst;
|
|
|
|
RecurrenceInfo(const Loop &L) : L(L) {}
|
|
operator bool() const { return BO; }
|
|
|
|
void print(raw_ostream &OS, unsigned Indent = 0) const {
|
|
OS.indent(Indent) << "Phi: ";
|
|
Phi->print(OS);
|
|
OS << "\n";
|
|
OS.indent(Indent) << "BinaryOperator: ";
|
|
BO->print(OS);
|
|
OS << "\n";
|
|
OS.indent(Indent) << "Start: ";
|
|
Start->print(OS);
|
|
OS << "\n";
|
|
OS.indent(Indent) << "Step: ";
|
|
Step->print(OS);
|
|
OS << "\n";
|
|
if (ExtraConst) {
|
|
OS.indent(Indent) << "ExtraConst: ";
|
|
ExtraConst->print(OS, false);
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
bool matchSimpleRecurrence(const PHINode *P);
|
|
bool matchConditionalRecurrence(
|
|
const PHINode *P,
|
|
Instruction::BinaryOps BOWithConstOpToMatch = Instruction::BinaryOpsEnd);
|
|
|
|
private:
|
|
BinaryOperator *digRecurrence(
|
|
Instruction *V,
|
|
Instruction::BinaryOps BOWithConstOpToMatch = Instruction::BinaryOpsEnd);
|
|
};
|
|
|
|
/// Wraps llvm::matchSimpleRecurrence. Match a simple first order recurrence
|
|
/// cycle of the form:
|
|
///
|
|
/// loop:
|
|
/// %rec = phi [%start, %entry], [%BO, %loop]
|
|
/// ...
|
|
/// %BO = binop %rec, %step
|
|
///
|
|
/// or
|
|
///
|
|
/// loop:
|
|
/// %rec = phi [%start, %entry], [%BO, %loop]
|
|
/// ...
|
|
/// %BO = binop %step, %rec
|
|
///
|
|
bool RecurrenceInfo::matchSimpleRecurrence(const PHINode *P) {
|
|
Phi = P;
|
|
return llvm::matchSimpleRecurrence(Phi, BO, Start, Step);
|
|
}
|
|
|
|
/// Digs for a recurrence starting with \p V hitting the PHI node in a use-def
|
|
/// chain. Used by matchConditionalRecurrence.
|
|
BinaryOperator *
|
|
RecurrenceInfo::digRecurrence(Instruction *V,
|
|
Instruction::BinaryOps BOWithConstOpToMatch) {
|
|
SmallVector<Instruction *> Worklist;
|
|
Worklist.push_back(V);
|
|
while (!Worklist.empty()) {
|
|
Instruction *I = Worklist.pop_back_val();
|
|
|
|
// Don't add a PHI's operands to the Worklist.
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
// Find a recurrence over a BinOp, by matching either of its operands
|
|
// with with the PHINode.
|
|
if (match(I, m_c_BinOp(m_Value(), m_Specific(Phi))))
|
|
return cast<BinaryOperator>(I);
|
|
|
|
// Bind to ExtraConst, if we match exactly one.
|
|
if (I->getOpcode() == BOWithConstOpToMatch) {
|
|
if (ExtraConst)
|
|
return nullptr;
|
|
const APInt *C = nullptr;
|
|
if (match(I, m_c_BinOp(m_APInt(C), m_Value())))
|
|
ExtraConst = *C;
|
|
}
|
|
|
|
// Continue along the use-def chain.
|
|
for (Use &U : I->operands())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
if (L.contains(UI))
|
|
Worklist.push_back(UI);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// A Conditional Recurrence is a recurrence of the form:
|
|
///
|
|
/// loop:
|
|
/// %rec = phi [%start, %entry], [%step, %loop]
|
|
/// ...
|
|
/// %step = select _, %tv, %fv
|
|
///
|
|
/// where %tv and %fv ultimately end up using %rec via the same %BO instruction,
|
|
/// after digging through the use-def chain.
|
|
///
|
|
/// ExtraConst is relevant if \p BOWithConstOpToMatch is supplied: when digging
|
|
/// the use-def chain, a BinOp with opcode \p BOWithConstOpToMatch is matched,
|
|
/// and ExtraConst is a constant operand of that BinOp. This peculiarity exists,
|
|
/// because in a CRC algorithm, the \p BOWithConstOpToMatch is an XOR, and the
|
|
/// ExtraConst ends up being the generating polynomial.
|
|
bool RecurrenceInfo::matchConditionalRecurrence(
|
|
const PHINode *P, Instruction::BinaryOps BOWithConstOpToMatch) {
|
|
Phi = P;
|
|
if (Phi->getNumIncomingValues() != 2)
|
|
return false;
|
|
|
|
for (unsigned Idx = 0; Idx != 2; ++Idx) {
|
|
Value *FoundStep = Phi->getIncomingValue(Idx);
|
|
Value *FoundStart = Phi->getIncomingValue(!Idx);
|
|
|
|
Instruction *TV, *FV;
|
|
if (!match(FoundStep,
|
|
m_Select(m_Cmp(), m_Instruction(TV), m_Instruction(FV))))
|
|
continue;
|
|
|
|
// For a conditional recurrence, both the true and false values of the
|
|
// select must ultimately end up in the same recurrent BinOp.
|
|
BinaryOperator *FoundBO = digRecurrence(TV, BOWithConstOpToMatch);
|
|
BinaryOperator *AltBO = digRecurrence(FV, BOWithConstOpToMatch);
|
|
if (!FoundBO || FoundBO != AltBO)
|
|
return false;
|
|
|
|
if (BOWithConstOpToMatch != Instruction::BinaryOpsEnd && !ExtraConst) {
|
|
LLVM_DEBUG(dbgs() << "HashRecognize: Unable to match single BinaryOp "
|
|
"with constant in conditional recurrence\n");
|
|
return false;
|
|
}
|
|
|
|
BO = FoundBO;
|
|
Start = FoundStart;
|
|
Step = FoundStep;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Iterates over all the phis in \p LoopLatch, and attempts to extract a
|
|
/// Conditional Recurrence and an optional Simple Recurrence.
|
|
static std::optional<std::pair<RecurrenceInfo, RecurrenceInfo>>
|
|
getRecurrences(BasicBlock *LoopLatch, const PHINode *IndVar, const Loop &L) {
|
|
auto Phis = LoopLatch->phis();
|
|
unsigned NumPhis = std::distance(Phis.begin(), Phis.end());
|
|
if (NumPhis != 2 && NumPhis != 3)
|
|
return {};
|
|
|
|
RecurrenceInfo SimpleRecurrence(L);
|
|
RecurrenceInfo ConditionalRecurrence(L);
|
|
for (PHINode &P : Phis) {
|
|
if (&P == IndVar)
|
|
continue;
|
|
if (!SimpleRecurrence)
|
|
SimpleRecurrence.matchSimpleRecurrence(&P);
|
|
if (!ConditionalRecurrence)
|
|
ConditionalRecurrence.matchConditionalRecurrence(
|
|
&P, Instruction::BinaryOps::Xor);
|
|
}
|
|
if (NumPhis == 3 && (!SimpleRecurrence || !ConditionalRecurrence))
|
|
return {};
|
|
return std::make_pair(SimpleRecurrence, ConditionalRecurrence);
|
|
}
|
|
|
|
PolynomialInfo::PolynomialInfo(unsigned TripCount, Value *LHS, const APInt &RHS,
|
|
Value *ComputedValue, bool ByteOrderSwapped,
|
|
Value *LHSAux)
|
|
: TripCount(TripCount), LHS(LHS), RHS(RHS), ComputedValue(ComputedValue),
|
|
ByteOrderSwapped(ByteOrderSwapped), LHSAux(LHSAux) {}
|
|
|
|
/// In the big-endian case, checks the bottom N bits against CheckFn, and that
|
|
/// the rest are unknown. In the little-endian case, checks the top N bits
|
|
/// against CheckFn, and that the rest are unknown. Callers usually call this
|
|
/// function with N = TripCount, and CheckFn checking that the remainder bits of
|
|
/// the CRC polynomial division are zero.
|
|
static bool checkExtractBits(const KnownBits &Known, unsigned N,
|
|
function_ref<bool(const KnownBits &)> CheckFn,
|
|
bool ByteOrderSwapped) {
|
|
// Check that the entire thing is a constant.
|
|
if (N == Known.getBitWidth())
|
|
return CheckFn(Known.extractBits(N, 0));
|
|
|
|
// Check that the {top, bottom} N bits are not unknown and that the {bottom,
|
|
// top} N bits are known.
|
|
unsigned BitPos = ByteOrderSwapped ? 0 : Known.getBitWidth() - N;
|
|
unsigned SwappedBitPos = ByteOrderSwapped ? N : 0;
|
|
return CheckFn(Known.extractBits(N, BitPos)) &&
|
|
Known.extractBits(Known.getBitWidth() - N, SwappedBitPos).isUnknown();
|
|
}
|
|
|
|
/// Generate a lookup table of 256 entries by interleaving the generating
|
|
/// polynomial. The optimization technique of table-lookup for CRC is also
|
|
/// called the Sarwate algorithm.
|
|
CRCTable HashRecognize::genSarwateTable(const APInt &GenPoly,
|
|
bool ByteOrderSwapped) {
|
|
unsigned BW = GenPoly.getBitWidth();
|
|
CRCTable Table;
|
|
Table[0] = APInt::getZero(BW);
|
|
|
|
if (ByteOrderSwapped) {
|
|
APInt CRCInit = APInt::getSignedMinValue(BW);
|
|
for (unsigned I = 1; I < 256; I <<= 1) {
|
|
CRCInit = CRCInit.shl(1) ^
|
|
(CRCInit.isSignBitSet() ? GenPoly : APInt::getZero(BW));
|
|
for (unsigned J = 0; J < I; ++J)
|
|
Table[I + J] = CRCInit ^ Table[J];
|
|
}
|
|
return Table;
|
|
}
|
|
|
|
APInt CRCInit(BW, 1);
|
|
for (unsigned I = 128; I; I >>= 1) {
|
|
CRCInit = CRCInit.lshr(1) ^ (CRCInit[0] ? GenPoly : APInt::getZero(BW));
|
|
for (unsigned J = 0; J < 256; J += (I << 1))
|
|
Table[I + J] = CRCInit ^ Table[J];
|
|
}
|
|
return Table;
|
|
}
|
|
|
|
/// Checks that \p P1 and \p P2 are used together in an XOR in the use-def chain
|
|
/// of \p SI's condition, ignoring any casts. The purpose of this function is to
|
|
/// ensure that LHSAux from the SimpleRecurrence is used correctly in the CRC
|
|
/// computation. We cannot check the correctness of casts at this point, and
|
|
/// rely on the KnownBits propagation to check correctness of the CRC
|
|
/// computation.
|
|
///
|
|
/// In other words, it checks for the following pattern:
|
|
///
|
|
/// loop:
|
|
/// %P1 = phi [_, %entry], [%P1.next, %loop]
|
|
/// %P2 = phi [_, %entry], [%P2.next, %loop]
|
|
/// ...
|
|
/// %xor = xor (CastOrSelf %P1), (CastOrSelf %P2)
|
|
///
|
|
/// where %xor is in the use-def chain of \p SI's condition.
|
|
static bool isConditionalOnXorOfPHIs(const SelectInst *SI, const PHINode *P1,
|
|
const PHINode *P2, const Loop &L) {
|
|
SmallVector<const Instruction *> Worklist;
|
|
|
|
// matchConditionalRecurrence has already ensured that the SelectInst's
|
|
// condition is an Instruction.
|
|
Worklist.push_back(cast<Instruction>(SI->getCondition()));
|
|
|
|
while (!Worklist.empty()) {
|
|
const Instruction *I = Worklist.pop_back_val();
|
|
|
|
// Don't add a PHI's operands to the Worklist.
|
|
if (isa<PHINode>(I))
|
|
continue;
|
|
|
|
// If we match an XOR of the two PHIs ignoring casts, we're done.
|
|
if (match(I, m_c_Xor(m_CastOrSelf(m_Specific(P1)),
|
|
m_CastOrSelf(m_Specific(P2)))))
|
|
return true;
|
|
|
|
// Continue along the use-def chain.
|
|
for (const Use &U : I->operands())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
if (L.contains(UI))
|
|
Worklist.push_back(UI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Recognizes a multiplication or division by the constant two, using SCEV. By
|
|
// doing this, we're immune to whether the IR expression is mul/udiv or
|
|
// equivalently shl/lshr. Return false when it is a UDiv, true when it is a Mul,
|
|
// and std::nullopt otherwise.
|
|
static std::optional<bool> isBigEndianBitShift(Value *V, ScalarEvolution &SE) {
|
|
if (!V->getType()->isIntegerTy())
|
|
return {};
|
|
|
|
const SCEV *E = SE.getSCEV(V);
|
|
if (match(E, m_scev_UDiv(m_SCEV(), m_scev_SpecificInt(2))))
|
|
return false;
|
|
if (match(E, m_scev_Mul(m_scev_SpecificInt(2), m_SCEV())))
|
|
return true;
|
|
return {};
|
|
}
|
|
|
|
/// The main entry point for analyzing a loop and recognizing the CRC algorithm.
|
|
/// Returns a PolynomialInfo on success, and either an ErrBits or a StringRef on
|
|
/// failure.
|
|
std::variant<PolynomialInfo, ErrBits, StringRef>
|
|
HashRecognize::recognizeCRC() const {
|
|
if (!L.isInnermost())
|
|
return "Loop is not innermost";
|
|
BasicBlock *Latch = L.getLoopLatch();
|
|
BasicBlock *Exit = L.getExitBlock();
|
|
const PHINode *IndVar = L.getCanonicalInductionVariable();
|
|
if (!Latch || !Exit || !IndVar || L.getNumBlocks() != 1)
|
|
return "Loop not in canonical form";
|
|
unsigned TC = SE.getSmallConstantTripCount(&L);
|
|
if (!TC || TC > 256 || TC % 8)
|
|
return "Unable to find a small constant byte-multiple trip count";
|
|
|
|
auto R = getRecurrences(Latch, IndVar, L);
|
|
if (!R)
|
|
return "Found stray PHI";
|
|
auto [SimpleRecurrence, ConditionalRecurrence] = *R;
|
|
if (!ConditionalRecurrence)
|
|
return "Unable to find conditional recurrence";
|
|
|
|
// Make sure that all recurrences are either all SCEVMul with two or SCEVDiv
|
|
// with two, or in other words, that they're single bit-shifts.
|
|
std::optional<bool> ByteOrderSwapped =
|
|
isBigEndianBitShift(ConditionalRecurrence.BO, SE);
|
|
if (!ByteOrderSwapped)
|
|
return "Loop with non-unit bitshifts";
|
|
if (SimpleRecurrence) {
|
|
if (isBigEndianBitShift(SimpleRecurrence.BO, SE) != ByteOrderSwapped)
|
|
return "Loop with non-unit bitshifts";
|
|
|
|
// Ensure that the PHIs have exactly two uses:
|
|
// the bit-shift, and the XOR (or a cast feeding into the XOR).
|
|
if (!ConditionalRecurrence.Phi->hasNUses(2) ||
|
|
!SimpleRecurrence.Phi->hasNUses(2))
|
|
return "Recurrences have stray uses";
|
|
|
|
// Check that the SelectInst ConditionalRecurrence.Step is conditional on
|
|
// the XOR of SimpleRecurrence.Phi and ConditionalRecurrence.Phi.
|
|
if (!isConditionalOnXorOfPHIs(cast<SelectInst>(ConditionalRecurrence.Step),
|
|
SimpleRecurrence.Phi,
|
|
ConditionalRecurrence.Phi, L))
|
|
return "Recurrences not intertwined with XOR";
|
|
}
|
|
|
|
// Make sure that the TC doesn't exceed the bitwidth of LHSAux, or LHS.
|
|
Value *LHS = ConditionalRecurrence.Start;
|
|
Value *LHSAux = SimpleRecurrence ? SimpleRecurrence.Start : nullptr;
|
|
if (TC > (LHSAux ? LHSAux->getType()->getIntegerBitWidth()
|
|
: LHS->getType()->getIntegerBitWidth()))
|
|
return "Loop iterations exceed bitwidth of data";
|
|
|
|
// Make sure that the computed value is used in the exit block: this should be
|
|
// true even if it is only really used in an outer loop's exit block, since
|
|
// the loop is in LCSSA form.
|
|
auto *ComputedValue = cast<SelectInst>(ConditionalRecurrence.Step);
|
|
if (none_of(ComputedValue->users(), [Exit](User *U) {
|
|
auto *UI = dyn_cast<Instruction>(U);
|
|
return UI && UI->getParent() == Exit;
|
|
}))
|
|
return "Unable to find use of computed value in loop exit block";
|
|
|
|
assert(ConditionalRecurrence.ExtraConst &&
|
|
"Expected ExtraConst in conditional recurrence");
|
|
const APInt &GenPoly = *ConditionalRecurrence.ExtraConst;
|
|
|
|
// PhiEvolutions are pairs of PHINodes along with their incoming value from
|
|
// within the loop, which we term as their step. Note that in the case of a
|
|
// Simple Recurrence, Step is an operand of the BO, while in a Conditional
|
|
// Recurrence, it is a SelectInst.
|
|
SmallVector<PhiStepPair, 2> PhiEvolutions;
|
|
PhiEvolutions.emplace_back(ConditionalRecurrence.Phi, ComputedValue);
|
|
if (SimpleRecurrence)
|
|
PhiEvolutions.emplace_back(SimpleRecurrence.Phi, SimpleRecurrence.BO);
|
|
|
|
ValueEvolution VE(TC, *ByteOrderSwapped);
|
|
if (!VE.computeEvolutions(PhiEvolutions))
|
|
return VE.getError();
|
|
KnownBits ResultBits = VE.KnownPhis.at(ConditionalRecurrence.Phi);
|
|
|
|
// There must be exactly four unvisited instructions, corresponding to the
|
|
// IndVar PHI. Any other unvisited instructions from the KnownBits propagation
|
|
// can complicate the optimization, which replaces the entire loop with the
|
|
// table-lookup version of the hash algorithm.
|
|
std::initializer_list<const Instruction *> AugmentVisited = {
|
|
IndVar, Latch->getTerminator(), L.getLatchCmpInst(),
|
|
cast<Instruction>(IndVar->getIncomingValueForBlock(Latch))};
|
|
VE.Visited.insert_range(AugmentVisited);
|
|
if (std::distance(Latch->begin(), Latch->end()) != VE.Visited.size())
|
|
return "Found stray unvisited instructions";
|
|
|
|
unsigned N = std::min(TC, ResultBits.getBitWidth());
|
|
auto IsZero = [](const KnownBits &K) { return K.isZero(); };
|
|
if (!checkExtractBits(ResultBits, N, IsZero, *ByteOrderSwapped))
|
|
return ErrBits(ResultBits, TC, *ByteOrderSwapped);
|
|
|
|
return PolynomialInfo(TC, LHS, GenPoly, ComputedValue, *ByteOrderSwapped,
|
|
LHSAux);
|
|
}
|
|
|
|
void CRCTable::print(raw_ostream &OS) const {
|
|
for (unsigned I = 0; I < 256; I++) {
|
|
(*this)[I].print(OS, false);
|
|
OS << (I % 16 == 15 ? '\n' : ' ');
|
|
}
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void CRCTable::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
void HashRecognize::print(raw_ostream &OS) const {
|
|
if (!L.isInnermost())
|
|
return;
|
|
OS << "HashRecognize: Checking a loop in '"
|
|
<< L.getHeader()->getParent()->getName() << "' from " << L.getLocStr()
|
|
<< "\n";
|
|
auto Ret = recognizeCRC();
|
|
if (!std::holds_alternative<PolynomialInfo>(Ret)) {
|
|
OS << "Did not find a hash algorithm\n";
|
|
if (std::holds_alternative<StringRef>(Ret))
|
|
OS << "Reason: " << std::get<StringRef>(Ret) << "\n";
|
|
if (std::holds_alternative<ErrBits>(Ret)) {
|
|
auto [Actual, Iter, ByteOrderSwapped] = std::get<ErrBits>(Ret);
|
|
OS << "Reason: Expected " << (ByteOrderSwapped ? "bottom " : "top ")
|
|
<< Iter << " bits zero (";
|
|
Actual.print(OS);
|
|
OS << ")\n";
|
|
}
|
|
return;
|
|
}
|
|
|
|
auto Info = std::get<PolynomialInfo>(Ret);
|
|
OS << "Found" << (Info.ByteOrderSwapped ? " big-endian " : " little-endian ")
|
|
<< "CRC-" << Info.RHS.getBitWidth() << " loop with trip count "
|
|
<< Info.TripCount << "\n";
|
|
OS.indent(2) << "Initial CRC: ";
|
|
Info.LHS->print(OS);
|
|
OS << "\n";
|
|
OS.indent(2) << "Generating polynomial: ";
|
|
Info.RHS.print(OS, false);
|
|
OS << "\n";
|
|
OS.indent(2) << "Computed CRC: ";
|
|
Info.ComputedValue->print(OS);
|
|
OS << "\n";
|
|
if (Info.LHSAux) {
|
|
OS.indent(2) << "Auxiliary data: ";
|
|
Info.LHSAux->print(OS);
|
|
OS << "\n";
|
|
}
|
|
OS.indent(2) << "Computed CRC lookup table:\n";
|
|
genSarwateTable(Info.RHS, Info.ByteOrderSwapped).print(OS);
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void HashRecognize::dump() const { print(dbgs()); }
|
|
#endif
|
|
|
|
std::optional<PolynomialInfo> HashRecognize::getResult() const {
|
|
auto Res = HashRecognize(L, SE).recognizeCRC();
|
|
if (std::holds_alternative<PolynomialInfo>(Res))
|
|
return std::get<PolynomialInfo>(Res);
|
|
return std::nullopt;
|
|
}
|
|
|
|
HashRecognize::HashRecognize(const Loop &L, ScalarEvolution &SE)
|
|
: L(L), SE(SE) {}
|
|
|
|
PreservedAnalyses HashRecognizePrinterPass::run(Loop &L,
|
|
LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &) {
|
|
HashRecognize(L, AR.SE).print(OS);
|
|
return PreservedAnalyses::all();
|
|
}
|