
After outputting block scalar string, the indent will be wrong. This patch fixes Padding after block scalar string to ensure the correct format of yaml. The new added ut will fail in main. ```diff @@ -3,4 +3,4 @@ Just a block scalar doc -scalar: a + scalar: a ...\n ```
1165 lines
31 KiB
C++
1165 lines
31 KiB
C++
//===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Support/YAMLTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/LineIterator.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/VersionTuple.h"
|
|
#include "llvm/Support/YAMLParser.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace yaml;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// IO
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
IO::IO(void *Context) : Ctxt(Context) {}
|
|
|
|
IO::~IO() = default;
|
|
|
|
void *IO::getContext() const {
|
|
return Ctxt;
|
|
}
|
|
|
|
void IO::setContext(void *Context) {
|
|
Ctxt = Context;
|
|
}
|
|
|
|
void IO::setAllowUnknownKeys(bool Allow) {
|
|
llvm_unreachable("Only supported for Input");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Input
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Input::Input(StringRef InputContent, void *Ctxt,
|
|
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
|
|
: IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
|
|
if (DiagHandler)
|
|
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
|
|
DocIterator = Strm->begin();
|
|
}
|
|
|
|
Input::Input(MemoryBufferRef Input, void *Ctxt,
|
|
SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
|
|
: IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
|
|
if (DiagHandler)
|
|
SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
|
|
DocIterator = Strm->begin();
|
|
}
|
|
|
|
Input::~Input() = default;
|
|
|
|
std::error_code Input::error() { return EC; }
|
|
|
|
bool Input::outputting() const {
|
|
return false;
|
|
}
|
|
|
|
bool Input::setCurrentDocument() {
|
|
if (DocIterator != Strm->end()) {
|
|
Node *N = DocIterator->getRoot();
|
|
if (!N) {
|
|
EC = make_error_code(errc::invalid_argument);
|
|
return false;
|
|
}
|
|
|
|
if (isa<NullNode>(N)) {
|
|
// Empty files are allowed and ignored
|
|
++DocIterator;
|
|
return setCurrentDocument();
|
|
}
|
|
releaseHNodeBuffers();
|
|
TopNode = createHNodes(N);
|
|
CurrentNode = TopNode;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Input::nextDocument() {
|
|
return ++DocIterator != Strm->end();
|
|
}
|
|
|
|
const Node *Input::getCurrentNode() const {
|
|
return CurrentNode ? CurrentNode->_node : nullptr;
|
|
}
|
|
|
|
bool Input::mapTag(StringRef Tag, bool Default) {
|
|
// CurrentNode can be null if setCurrentDocument() was unable to
|
|
// parse the document because it was invalid or empty.
|
|
if (!CurrentNode)
|
|
return false;
|
|
|
|
std::string foundTag = CurrentNode->_node->getVerbatimTag();
|
|
if (foundTag.empty()) {
|
|
// If no tag found and 'Tag' is the default, say it was found.
|
|
return Default;
|
|
}
|
|
// Return true iff found tag matches supplied tag.
|
|
return Tag == foundTag;
|
|
}
|
|
|
|
void Input::beginMapping() {
|
|
if (EC)
|
|
return;
|
|
// CurrentNode can be null if the document is empty.
|
|
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
|
|
if (MN) {
|
|
MN->ValidKeys.clear();
|
|
}
|
|
}
|
|
|
|
std::vector<StringRef> Input::keys() {
|
|
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
|
|
std::vector<StringRef> Ret;
|
|
if (!MN) {
|
|
setError(CurrentNode, "not a mapping");
|
|
return Ret;
|
|
}
|
|
for (auto &P : MN->Mapping)
|
|
Ret.push_back(P.first());
|
|
return Ret;
|
|
}
|
|
|
|
bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
|
|
void *&SaveInfo) {
|
|
UseDefault = false;
|
|
if (EC)
|
|
return false;
|
|
|
|
// CurrentNode is null for empty documents, which is an error in case required
|
|
// nodes are present.
|
|
if (!CurrentNode) {
|
|
if (Required)
|
|
EC = make_error_code(errc::invalid_argument);
|
|
else
|
|
UseDefault = true;
|
|
return false;
|
|
}
|
|
|
|
MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
|
|
if (!MN) {
|
|
if (Required || !isa<EmptyHNode>(CurrentNode))
|
|
setError(CurrentNode, "not a mapping");
|
|
else
|
|
UseDefault = true;
|
|
return false;
|
|
}
|
|
MN->ValidKeys.push_back(Key);
|
|
HNode *Value = MN->Mapping[Key].first;
|
|
if (!Value) {
|
|
if (Required)
|
|
setError(CurrentNode, Twine("missing required key '") + Key + "'");
|
|
else
|
|
UseDefault = true;
|
|
return false;
|
|
}
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = Value;
|
|
return true;
|
|
}
|
|
|
|
void Input::postflightKey(void *saveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(saveInfo);
|
|
}
|
|
|
|
void Input::endMapping() {
|
|
if (EC)
|
|
return;
|
|
// CurrentNode can be null if the document is empty.
|
|
MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
|
|
if (!MN)
|
|
return;
|
|
for (const auto &NN : MN->Mapping) {
|
|
if (!is_contained(MN->ValidKeys, NN.first())) {
|
|
const SMRange &ReportLoc = NN.second.second;
|
|
if (!AllowUnknownKeys) {
|
|
setError(ReportLoc, Twine("unknown key '") + NN.first() + "'");
|
|
break;
|
|
} else
|
|
reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'");
|
|
}
|
|
}
|
|
}
|
|
|
|
void Input::beginFlowMapping() { beginMapping(); }
|
|
|
|
void Input::endFlowMapping() { endMapping(); }
|
|
|
|
unsigned Input::beginSequence() {
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
|
|
return SQ->Entries.size();
|
|
if (isa<EmptyHNode>(CurrentNode))
|
|
return 0;
|
|
// Treat case where there's a scalar "null" value as an empty sequence.
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
if (isNull(SN->value()))
|
|
return 0;
|
|
}
|
|
// Any other type of HNode is an error.
|
|
setError(CurrentNode, "not a sequence");
|
|
return 0;
|
|
}
|
|
|
|
void Input::endSequence() {
|
|
}
|
|
|
|
bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = SQ->Entries[Index];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::postflightElement(void *SaveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
|
|
}
|
|
|
|
unsigned Input::beginFlowSequence() { return beginSequence(); }
|
|
|
|
bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
SaveInfo = CurrentNode;
|
|
CurrentNode = SQ->Entries[index];
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::postflightFlowElement(void *SaveInfo) {
|
|
CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
|
|
}
|
|
|
|
void Input::endFlowSequence() {
|
|
}
|
|
|
|
void Input::beginEnumScalar() {
|
|
ScalarMatchFound = false;
|
|
}
|
|
|
|
bool Input::matchEnumScalar(const char *Str, bool) {
|
|
if (ScalarMatchFound)
|
|
return false;
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
if (SN->value() == Str) {
|
|
ScalarMatchFound = true;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Input::matchEnumFallback() {
|
|
if (ScalarMatchFound)
|
|
return false;
|
|
ScalarMatchFound = true;
|
|
return true;
|
|
}
|
|
|
|
void Input::endEnumScalar() {
|
|
if (!ScalarMatchFound) {
|
|
setError(CurrentNode, "unknown enumerated scalar");
|
|
}
|
|
}
|
|
|
|
bool Input::beginBitSetScalar(bool &DoClear) {
|
|
BitValuesUsed.clear();
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
BitValuesUsed.resize(SQ->Entries.size());
|
|
} else {
|
|
setError(CurrentNode, "expected sequence of bit values");
|
|
}
|
|
DoClear = true;
|
|
return true;
|
|
}
|
|
|
|
bool Input::bitSetMatch(const char *Str, bool) {
|
|
if (EC)
|
|
return false;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
unsigned Index = 0;
|
|
for (auto &N : SQ->Entries) {
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N)) {
|
|
if (SN->value() == Str) {
|
|
BitValuesUsed[Index] = true;
|
|
return true;
|
|
}
|
|
} else {
|
|
setError(CurrentNode, "unexpected scalar in sequence of bit values");
|
|
}
|
|
++Index;
|
|
}
|
|
} else {
|
|
setError(CurrentNode, "expected sequence of bit values");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Input::endBitSetScalar() {
|
|
if (EC)
|
|
return;
|
|
if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
|
|
assert(BitValuesUsed.size() == SQ->Entries.size());
|
|
for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
|
|
if (!BitValuesUsed[i]) {
|
|
setError(SQ->Entries[i], "unknown bit value");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Input::scalarString(StringRef &S, QuotingType) {
|
|
if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
|
|
S = SN->value();
|
|
} else {
|
|
setError(CurrentNode, "unexpected scalar");
|
|
}
|
|
}
|
|
|
|
void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
|
|
|
|
void Input::scalarTag(std::string &Tag) {
|
|
Tag = CurrentNode->_node->getVerbatimTag();
|
|
}
|
|
|
|
void Input::setError(HNode *hnode, const Twine &message) {
|
|
assert(hnode && "HNode must not be NULL");
|
|
setError(hnode->_node, message);
|
|
}
|
|
|
|
NodeKind Input::getNodeKind() {
|
|
if (isa<ScalarHNode>(CurrentNode))
|
|
return NodeKind::Scalar;
|
|
else if (isa<MapHNode>(CurrentNode))
|
|
return NodeKind::Map;
|
|
else if (isa<SequenceHNode>(CurrentNode))
|
|
return NodeKind::Sequence;
|
|
llvm_unreachable("Unsupported node kind");
|
|
}
|
|
|
|
void Input::setError(Node *node, const Twine &message) {
|
|
Strm->printError(node, message);
|
|
EC = make_error_code(errc::invalid_argument);
|
|
}
|
|
|
|
void Input::setError(const SMRange &range, const Twine &message) {
|
|
Strm->printError(range, message);
|
|
EC = make_error_code(errc::invalid_argument);
|
|
}
|
|
|
|
void Input::reportWarning(HNode *hnode, const Twine &message) {
|
|
assert(hnode && "HNode must not be NULL");
|
|
Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
void Input::reportWarning(Node *node, const Twine &message) {
|
|
Strm->printError(node, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
void Input::reportWarning(const SMRange &range, const Twine &message) {
|
|
Strm->printError(range, message, SourceMgr::DK_Warning);
|
|
}
|
|
|
|
void Input::releaseHNodeBuffers() {
|
|
EmptyHNodeAllocator.DestroyAll();
|
|
ScalarHNodeAllocator.DestroyAll();
|
|
SequenceHNodeAllocator.DestroyAll();
|
|
MapHNodeAllocator.DestroyAll();
|
|
}
|
|
|
|
Input::HNode *Input::createHNodes(Node *N) {
|
|
SmallString<128> StringStorage;
|
|
switch (N->getType()) {
|
|
case Node::NK_Scalar: {
|
|
ScalarNode *SN = dyn_cast<ScalarNode>(N);
|
|
StringRef KeyStr = SN->getValue(StringStorage);
|
|
if (!StringStorage.empty()) {
|
|
// Copy string to permanent storage
|
|
KeyStr = StringStorage.str().copy(StringAllocator);
|
|
}
|
|
return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, KeyStr);
|
|
}
|
|
case Node::NK_BlockScalar: {
|
|
BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N);
|
|
StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
|
|
return new (ScalarHNodeAllocator.Allocate()) ScalarHNode(N, ValueCopy);
|
|
}
|
|
case Node::NK_Sequence: {
|
|
SequenceNode *SQ = dyn_cast<SequenceNode>(N);
|
|
auto SQHNode = new (SequenceHNodeAllocator.Allocate()) SequenceHNode(N);
|
|
for (Node &SN : *SQ) {
|
|
auto Entry = createHNodes(&SN);
|
|
if (EC)
|
|
break;
|
|
SQHNode->Entries.push_back(Entry);
|
|
}
|
|
return SQHNode;
|
|
}
|
|
case Node::NK_Mapping: {
|
|
MappingNode *Map = dyn_cast<MappingNode>(N);
|
|
auto mapHNode = new (MapHNodeAllocator.Allocate()) MapHNode(N);
|
|
for (KeyValueNode &KVN : *Map) {
|
|
Node *KeyNode = KVN.getKey();
|
|
ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
|
|
Node *Value = KVN.getValue();
|
|
if (!Key || !Value) {
|
|
if (!Key)
|
|
setError(KeyNode, "Map key must be a scalar");
|
|
if (!Value)
|
|
setError(KeyNode, "Map value must not be empty");
|
|
break;
|
|
}
|
|
StringStorage.clear();
|
|
StringRef KeyStr = Key->getValue(StringStorage);
|
|
if (!StringStorage.empty()) {
|
|
// Copy string to permanent storage
|
|
KeyStr = StringStorage.str().copy(StringAllocator);
|
|
}
|
|
if (mapHNode->Mapping.count(KeyStr))
|
|
// From YAML spec: "The content of a mapping node is an unordered set of
|
|
// key/value node pairs, with the restriction that each of the keys is
|
|
// unique."
|
|
setError(KeyNode, Twine("duplicated mapping key '") + KeyStr + "'");
|
|
auto ValueHNode = createHNodes(Value);
|
|
if (EC)
|
|
break;
|
|
mapHNode->Mapping[KeyStr] =
|
|
std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange());
|
|
}
|
|
return std::move(mapHNode);
|
|
}
|
|
case Node::NK_Null:
|
|
return new (EmptyHNodeAllocator.Allocate()) EmptyHNode(N);
|
|
default:
|
|
setError(N, "unknown node kind");
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
void Input::setError(const Twine &Message) {
|
|
setError(CurrentNode, Message);
|
|
}
|
|
|
|
void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
|
|
|
|
bool Input::canElideEmptySequence() {
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Output
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Output::Output(raw_ostream &yout, void *context, int WrapColumn)
|
|
: IO(context), Out(yout), WrapColumn(WrapColumn) {}
|
|
|
|
Output::~Output() = default;
|
|
|
|
bool Output::outputting() const {
|
|
return true;
|
|
}
|
|
|
|
void Output::beginMapping() {
|
|
StateStack.push_back(inMapFirstKey);
|
|
PaddingBeforeContainer = Padding;
|
|
Padding = "\n";
|
|
}
|
|
|
|
bool Output::mapTag(StringRef Tag, bool Use) {
|
|
if (Use) {
|
|
// If this tag is being written inside a sequence we should write the start
|
|
// of the sequence before writing the tag, otherwise the tag won't be
|
|
// attached to the element in the sequence, but rather the sequence itself.
|
|
bool SequenceElement = false;
|
|
if (StateStack.size() > 1) {
|
|
auto &E = StateStack[StateStack.size() - 2];
|
|
SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
|
|
}
|
|
if (SequenceElement && StateStack.back() == inMapFirstKey) {
|
|
newLineCheck();
|
|
} else {
|
|
output(" ");
|
|
}
|
|
output(Tag);
|
|
if (SequenceElement) {
|
|
// If we're writing the tag during the first element of a map, the tag
|
|
// takes the place of the first element in the sequence.
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inMapOtherKey);
|
|
}
|
|
// Tags inside maps in sequences should act as keys in the map from a
|
|
// formatting perspective, so we always want a newline in a sequence.
|
|
Padding = "\n";
|
|
}
|
|
}
|
|
return Use;
|
|
}
|
|
|
|
void Output::endMapping() {
|
|
// If we did not map anything, we should explicitly emit an empty map
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
Padding = PaddingBeforeContainer;
|
|
newLineCheck();
|
|
output("{}");
|
|
Padding = "\n";
|
|
}
|
|
StateStack.pop_back();
|
|
}
|
|
|
|
std::vector<StringRef> Output::keys() {
|
|
report_fatal_error("invalid call");
|
|
}
|
|
|
|
bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
|
|
bool &UseDefault, void *&SaveInfo) {
|
|
UseDefault = false;
|
|
SaveInfo = nullptr;
|
|
if (Required || !SameAsDefault || WriteDefaultValues) {
|
|
auto State = StateStack.back();
|
|
if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
|
|
flowKey(Key);
|
|
} else {
|
|
newLineCheck();
|
|
paddedKey(Key);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Output::postflightKey(void *) {
|
|
if (StateStack.back() == inMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inMapOtherKey);
|
|
} else if (StateStack.back() == inFlowMapFirstKey) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inFlowMapOtherKey);
|
|
}
|
|
}
|
|
|
|
void Output::beginFlowMapping() {
|
|
StateStack.push_back(inFlowMapFirstKey);
|
|
newLineCheck();
|
|
ColumnAtMapFlowStart = Column;
|
|
output("{ ");
|
|
}
|
|
|
|
void Output::endFlowMapping() {
|
|
StateStack.pop_back();
|
|
outputUpToEndOfLine(" }");
|
|
}
|
|
|
|
void Output::beginDocuments() {
|
|
outputUpToEndOfLine("---");
|
|
}
|
|
|
|
bool Output::preflightDocument(unsigned index) {
|
|
if (index > 0)
|
|
outputUpToEndOfLine("\n---");
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightDocument() {
|
|
}
|
|
|
|
void Output::endDocuments() {
|
|
output("\n...\n");
|
|
}
|
|
|
|
unsigned Output::beginSequence() {
|
|
StateStack.push_back(inSeqFirstElement);
|
|
PaddingBeforeContainer = Padding;
|
|
Padding = "\n";
|
|
return 0;
|
|
}
|
|
|
|
void Output::endSequence() {
|
|
// If we did not emit anything, we should explicitly emit an empty sequence
|
|
if (StateStack.back() == inSeqFirstElement) {
|
|
Padding = PaddingBeforeContainer;
|
|
newLineCheck(/*EmptySequence=*/true);
|
|
output("[]");
|
|
Padding = "\n";
|
|
}
|
|
StateStack.pop_back();
|
|
}
|
|
|
|
bool Output::preflightElement(unsigned, void *&SaveInfo) {
|
|
SaveInfo = nullptr;
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightElement(void *) {
|
|
if (StateStack.back() == inSeqFirstElement) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inSeqOtherElement);
|
|
} else if (StateStack.back() == inFlowSeqFirstElement) {
|
|
StateStack.pop_back();
|
|
StateStack.push_back(inFlowSeqOtherElement);
|
|
}
|
|
}
|
|
|
|
unsigned Output::beginFlowSequence() {
|
|
StateStack.push_back(inFlowSeqFirstElement);
|
|
newLineCheck();
|
|
ColumnAtFlowStart = Column;
|
|
output("[ ");
|
|
NeedFlowSequenceComma = false;
|
|
return 0;
|
|
}
|
|
|
|
void Output::endFlowSequence() {
|
|
StateStack.pop_back();
|
|
outputUpToEndOfLine(" ]");
|
|
}
|
|
|
|
bool Output::preflightFlowElement(unsigned, void *&SaveInfo) {
|
|
if (NeedFlowSequenceComma)
|
|
output(", ");
|
|
if (WrapColumn && Column > WrapColumn) {
|
|
output("\n");
|
|
for (int i = 0; i < ColumnAtFlowStart; ++i)
|
|
output(" ");
|
|
Column = ColumnAtFlowStart;
|
|
output(" ");
|
|
}
|
|
SaveInfo = nullptr;
|
|
return true;
|
|
}
|
|
|
|
void Output::postflightFlowElement(void *) {
|
|
NeedFlowSequenceComma = true;
|
|
}
|
|
|
|
void Output::beginEnumScalar() {
|
|
EnumerationMatchFound = false;
|
|
}
|
|
|
|
bool Output::matchEnumScalar(const char *Str, bool Match) {
|
|
if (Match && !EnumerationMatchFound) {
|
|
newLineCheck();
|
|
outputUpToEndOfLine(Str);
|
|
EnumerationMatchFound = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Output::matchEnumFallback() {
|
|
if (EnumerationMatchFound)
|
|
return false;
|
|
EnumerationMatchFound = true;
|
|
return true;
|
|
}
|
|
|
|
void Output::endEnumScalar() {
|
|
if (!EnumerationMatchFound)
|
|
llvm_unreachable("bad runtime enum value");
|
|
}
|
|
|
|
bool Output::beginBitSetScalar(bool &DoClear) {
|
|
newLineCheck();
|
|
output("[ ");
|
|
NeedBitValueComma = false;
|
|
DoClear = false;
|
|
return true;
|
|
}
|
|
|
|
bool Output::bitSetMatch(const char *Str, bool Matches) {
|
|
if (Matches) {
|
|
if (NeedBitValueComma)
|
|
output(", ");
|
|
output(Str);
|
|
NeedBitValueComma = true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Output::endBitSetScalar() {
|
|
outputUpToEndOfLine(" ]");
|
|
}
|
|
|
|
void Output::scalarString(StringRef &S, QuotingType MustQuote) {
|
|
newLineCheck();
|
|
if (S.empty()) {
|
|
// Print '' for the empty string because leaving the field empty is not
|
|
// allowed.
|
|
outputUpToEndOfLine("''");
|
|
return;
|
|
}
|
|
output(S, MustQuote);
|
|
outputUpToEndOfLine("");
|
|
}
|
|
|
|
void Output::blockScalarString(StringRef &S) {
|
|
if (!StateStack.empty())
|
|
newLineCheck();
|
|
output(" |");
|
|
|
|
unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
|
|
|
|
auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
|
|
for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
|
|
outputNewLine();
|
|
for (unsigned I = 0; I < Indent; ++I) {
|
|
output(" ");
|
|
}
|
|
output(*Lines);
|
|
}
|
|
outputUpToEndOfLine("");
|
|
}
|
|
|
|
void Output::scalarTag(std::string &Tag) {
|
|
if (Tag.empty())
|
|
return;
|
|
newLineCheck();
|
|
output(Tag);
|
|
output(" ");
|
|
}
|
|
|
|
void Output::setError(const Twine &message) {
|
|
}
|
|
|
|
std::error_code Output::error() { return {}; }
|
|
|
|
bool Output::canElideEmptySequence() {
|
|
// Normally, with an optional key/value where the value is an empty sequence,
|
|
// the whole key/value can be not written. But, that produces wrong yaml
|
|
// if the key/value is the only thing in the map and the map is used in
|
|
// a sequence. This detects if the this sequence is the first key/value
|
|
// in map that itself is embedded in a sequence.
|
|
if (StateStack.size() < 2)
|
|
return true;
|
|
if (StateStack.back() != inMapFirstKey)
|
|
return true;
|
|
return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
|
|
}
|
|
|
|
void Output::output(StringRef s) {
|
|
Column += s.size();
|
|
Out << s;
|
|
}
|
|
|
|
void Output::output(StringRef S, QuotingType MustQuote) {
|
|
if (MustQuote == QuotingType::None) {
|
|
// Only quote if we must.
|
|
output(S);
|
|
return;
|
|
}
|
|
|
|
StringLiteral Quote = MustQuote == QuotingType::Single ? StringLiteral("'")
|
|
: StringLiteral("\"");
|
|
output(Quote); // Starting quote.
|
|
|
|
// When using double-quoted strings (and only in that case), non-printable
|
|
// characters may be present, and will be escaped using a variety of
|
|
// unicode-scalar and special short-form escapes. This is handled in
|
|
// yaml::escape.
|
|
if (MustQuote == QuotingType::Double) {
|
|
output(yaml::escape(S, /* EscapePrintable= */ false));
|
|
output(Quote);
|
|
return;
|
|
}
|
|
|
|
unsigned i = 0;
|
|
unsigned j = 0;
|
|
unsigned End = S.size();
|
|
const char *Base = S.data();
|
|
|
|
// When using single-quoted strings, any single quote ' must be doubled to be
|
|
// escaped.
|
|
while (j < End) {
|
|
if (S[j] == '\'') { // Escape quotes.
|
|
output(StringRef(&Base[i], j - i)); // "flush".
|
|
output(StringLiteral("''")); // Print it as ''
|
|
i = j + 1;
|
|
}
|
|
++j;
|
|
}
|
|
output(StringRef(&Base[i], j - i));
|
|
output(Quote); // Ending quote.
|
|
}
|
|
|
|
void Output::outputUpToEndOfLine(StringRef s) {
|
|
output(s);
|
|
if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
|
|
!inFlowMapAnyKey(StateStack.back())))
|
|
Padding = "\n";
|
|
}
|
|
|
|
void Output::outputNewLine() {
|
|
Out << "\n";
|
|
Column = 0;
|
|
}
|
|
|
|
// if seq at top, indent as if map, then add "- "
|
|
// if seq in middle, use "- " if firstKey, else use " "
|
|
//
|
|
|
|
void Output::newLineCheck(bool EmptySequence) {
|
|
if (Padding != "\n") {
|
|
output(Padding);
|
|
Padding = {};
|
|
return;
|
|
}
|
|
outputNewLine();
|
|
Padding = {};
|
|
|
|
if (StateStack.size() == 0 || EmptySequence)
|
|
return;
|
|
|
|
unsigned Indent = StateStack.size() - 1;
|
|
bool PossiblyNestedSeq = false;
|
|
auto I = StateStack.rbegin(), E = StateStack.rend();
|
|
|
|
if (inSeqAnyElement(*I)) {
|
|
PossiblyNestedSeq = true; // Not possibly but always.
|
|
++Indent;
|
|
} else if (*I == inMapFirstKey || *I == inFlowMapFirstKey ||
|
|
inFlowSeqAnyElement(*I)) {
|
|
PossiblyNestedSeq = true;
|
|
++I; // Skip back().
|
|
}
|
|
|
|
unsigned OutputDashCount = 0;
|
|
if (PossiblyNestedSeq) {
|
|
// Count up consecutive inSeqFirstElement from the end, unless
|
|
// inSeqFirstElement is the top of nested sequence.
|
|
while (I != E) {
|
|
// Don't count the top of nested sequence.
|
|
if (!inSeqAnyElement(*I))
|
|
break;
|
|
|
|
++OutputDashCount;
|
|
|
|
// Stop counting if consecutive inSeqFirstElement ends.
|
|
if (*I++ != inSeqFirstElement)
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (unsigned I = OutputDashCount; I < Indent; ++I)
|
|
output(" ");
|
|
|
|
for (unsigned I = 0; I < OutputDashCount; ++I)
|
|
output("- ");
|
|
}
|
|
|
|
void Output::paddedKey(StringRef key) {
|
|
output(key, needsQuotes(key, false));
|
|
output(":");
|
|
const char *spaces = " ";
|
|
if (key.size() < strlen(spaces))
|
|
Padding = &spaces[key.size()];
|
|
else
|
|
Padding = " ";
|
|
}
|
|
|
|
void Output::flowKey(StringRef Key) {
|
|
if (StateStack.back() == inFlowMapOtherKey)
|
|
output(", ");
|
|
if (WrapColumn && Column > WrapColumn) {
|
|
output("\n");
|
|
for (int I = 0; I < ColumnAtMapFlowStart; ++I)
|
|
output(" ");
|
|
Column = ColumnAtMapFlowStart;
|
|
output(" ");
|
|
}
|
|
output(Key, needsQuotes(Key, false));
|
|
output(": ");
|
|
}
|
|
|
|
NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
|
|
|
|
bool Output::inSeqAnyElement(InState State) {
|
|
return State == inSeqFirstElement || State == inSeqOtherElement;
|
|
}
|
|
|
|
bool Output::inFlowSeqAnyElement(InState State) {
|
|
return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
|
|
}
|
|
|
|
bool Output::inMapAnyKey(InState State) {
|
|
return State == inMapFirstKey || State == inMapOtherKey;
|
|
}
|
|
|
|
bool Output::inFlowMapAnyKey(InState State) {
|
|
return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// traits for built-in types
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
|
|
Out << (Val ? "true" : "false");
|
|
}
|
|
|
|
StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
|
|
if (std::optional<bool> Parsed = parseBool(Scalar)) {
|
|
Val = *Parsed;
|
|
return StringRef();
|
|
}
|
|
return "invalid boolean";
|
|
}
|
|
|
|
void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
|
|
StringRef &Val) {
|
|
Val = Scalar;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<std::string>::output(const std::string &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
|
|
std::string &Val) {
|
|
Val = Scalar.str();
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
// use temp uin32_t because ostream thinks uint8_t is a character
|
|
uint32_t Num = Val;
|
|
Out << Num;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFF)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
|
|
uint16_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFFFF)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
|
|
uint32_t &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid number";
|
|
if (n > 0xFFFFFFFFUL)
|
|
return "out of range number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
|
|
uint64_t &Val) {
|
|
unsigned long long N;
|
|
if (getAsUnsignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
|
|
// use temp in32_t because ostream thinks int8_t is a character
|
|
int32_t Num = Val;
|
|
Out << Num;
|
|
}
|
|
|
|
StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > 127) || (N < -128))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > INT16_MAX) || (N < INT16_MIN))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
if ((N > INT32_MAX) || (N < INT32_MIN))
|
|
return "out of range number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
|
|
raw_ostream &Out) {
|
|
Out << Val;
|
|
}
|
|
|
|
StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
|
|
long long N;
|
|
if (getAsSignedInteger(Scalar, 0, N))
|
|
return "invalid number";
|
|
Val = N;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
|
|
Out << format("%g", Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
|
|
if (to_float(Scalar, Val))
|
|
return StringRef();
|
|
return "invalid floating point number";
|
|
}
|
|
|
|
void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
|
|
Out << format("%g", Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
|
|
if (to_float(Scalar, Val))
|
|
return StringRef();
|
|
return "invalid floating point number";
|
|
}
|
|
|
|
void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX8, (uint8_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex8 number";
|
|
if (n > 0xFF)
|
|
return "out of range hex8 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX16, (uint16_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex16 number";
|
|
if (n > 0xFFFF)
|
|
return "out of range hex16 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX32, (uint32_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
|
|
unsigned long long n;
|
|
if (getAsUnsignedInteger(Scalar, 0, n))
|
|
return "invalid hex32 number";
|
|
if (n > 0xFFFFFFFFUL)
|
|
return "out of range hex32 number";
|
|
Val = n;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
|
|
Out << format("0x%" PRIX64, (uint64_t)Val);
|
|
}
|
|
|
|
StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
|
|
unsigned long long Num;
|
|
if (getAsUnsignedInteger(Scalar, 0, Num))
|
|
return "invalid hex64 number";
|
|
Val = Num;
|
|
return StringRef();
|
|
}
|
|
|
|
void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
|
|
llvm::raw_ostream &Out) {
|
|
Out << Val.getAsString();
|
|
}
|
|
|
|
StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
|
|
VersionTuple &Val) {
|
|
if (Val.tryParse(Scalar))
|
|
return "invalid version format";
|
|
return StringRef();
|
|
}
|