1641 lines
53 KiB
C++

//===- llvm/unittests/Transforms/Vectorize/VPlanTest.cpp - VPlan tests ----===//
//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "../lib/Transforms/Vectorize/VPlan.h"
#include "../lib/Transforms/Vectorize/VPlanCFG.h"
#include "../lib/Transforms/Vectorize/VPlanHelpers.h"
#include "VPlanTestBase.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "gtest/gtest.h"
#include <string>
namespace llvm {
namespace {
#define CHECK_ITERATOR(Range1, ...) \
do { \
std::vector<VPInstruction *> Tmp = {__VA_ARGS__}; \
EXPECT_EQ((size_t)std::distance(Range1.begin(), Range1.end()), \
Tmp.size()); \
for (auto Pair : zip(Range1, make_range(Tmp.begin(), Tmp.end()))) \
EXPECT_EQ(&std::get<0>(Pair), std::get<1>(Pair)); \
} while (0)
using VPInstructionTest = VPlanTestBase;
TEST_F(VPInstructionTest, insertBefore) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock &VPBB1 = *getPlan().createVPBasicBlock("");
VPBB1.appendRecipe(I1);
I2->insertBefore(I1);
CHECK_ITERATOR(VPBB1, I2, I1);
I3->insertBefore(I2);
CHECK_ITERATOR(VPBB1, I3, I2, I1);
}
TEST_F(VPInstructionTest, eraseFromParent) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock &VPBB1 = *getPlan().createVPBasicBlock("");
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I2->eraseFromParent();
CHECK_ITERATOR(VPBB1, I1, I3);
I1->eraseFromParent();
CHECK_ITERATOR(VPBB1, I3);
I3->eraseFromParent();
EXPECT_TRUE(VPBB1.empty());
}
TEST_F(VPInstructionTest, moveAfter) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock &VPBB1 = *getPlan().createVPBasicBlock("");
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I1->moveAfter(I2);
CHECK_ITERATOR(VPBB1, I2, I1, I3);
VPInstruction *I4 = new VPInstruction(4, {});
VPInstruction *I5 = new VPInstruction(5, {});
VPBasicBlock &VPBB2 = *getPlan().createVPBasicBlock("");
VPBB2.appendRecipe(I4);
VPBB2.appendRecipe(I5);
I3->moveAfter(I4);
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I4, I3, I5);
EXPECT_EQ(I3->getParent(), I4->getParent());
}
TEST_F(VPInstructionTest, moveBefore) {
VPInstruction *I1 = new VPInstruction(0, {});
VPInstruction *I2 = new VPInstruction(1, {});
VPInstruction *I3 = new VPInstruction(2, {});
VPBasicBlock &VPBB1 = *getPlan().createVPBasicBlock("");
VPBB1.appendRecipe(I1);
VPBB1.appendRecipe(I2);
VPBB1.appendRecipe(I3);
I1->moveBefore(VPBB1, I3->getIterator());
CHECK_ITERATOR(VPBB1, I2, I1, I3);
VPInstruction *I4 = new VPInstruction(4, {});
VPInstruction *I5 = new VPInstruction(5, {});
VPBasicBlock &VPBB2 = *getPlan().createVPBasicBlock("");
VPBB2.appendRecipe(I4);
VPBB2.appendRecipe(I5);
I3->moveBefore(VPBB2, I4->getIterator());
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I3, I4, I5);
EXPECT_EQ(I3->getParent(), I4->getParent());
VPBasicBlock &VPBB3 = *getPlan().createVPBasicBlock("");
I4->moveBefore(VPBB3, VPBB3.end());
CHECK_ITERATOR(VPBB1, I2, I1);
CHECK_ITERATOR(VPBB2, I3, I5);
CHECK_ITERATOR(VPBB3, I4);
EXPECT_EQ(&VPBB3, I4->getParent());
}
TEST_F(VPInstructionTest, setOperand) {
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *VPV1 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VPV2 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(1u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
// Replace operand 0 (VPV1) with VPV3.
VPValue *VPV3 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 3));
I1->setOperand(0, VPV3);
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace operand 1 (VPV2) with VPV3.
I1->setOperand(1, VPV3);
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(2u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
EXPECT_EQ(I1, *std::next(VPV3->user_begin()));
// Replace operand 0 (VPV3) with VPV4.
VPValue *VPV4 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 4));
I1->setOperand(0, VPV4);
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
EXPECT_EQ(I1, *VPV4->user_begin());
// Replace operand 1 (VPV3) with VPV4.
I1->setOperand(1, VPV4);
EXPECT_EQ(0u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV4->user_begin());
EXPECT_EQ(I1, *std::next(VPV4->user_begin()));
delete I1;
}
TEST_F(VPInstructionTest, replaceAllUsesWith) {
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *VPV1 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VPV2 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
// Replace all uses of VPV1 with VPV3.
VPValue *VPV3 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPV1->replaceAllUsesWith(VPV3);
EXPECT_EQ(VPV3, I1->getOperand(0));
EXPECT_EQ(VPV2, I1->getOperand(1));
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
EXPECT_EQ(1u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace all uses of VPV2 with VPV3.
VPV2->replaceAllUsesWith(VPV3);
EXPECT_EQ(VPV3, I1->getOperand(0));
EXPECT_EQ(VPV3, I1->getOperand(1));
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(2u, VPV3->getNumUsers());
EXPECT_EQ(I1, *VPV3->user_begin());
// Replace all uses of VPV3 with VPV1.
VPV3->replaceAllUsesWith(VPV1);
EXPECT_EQ(VPV1, I1->getOperand(0));
EXPECT_EQ(VPV1, I1->getOperand(1));
EXPECT_EQ(2u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(0u, VPV2->getNumUsers());
EXPECT_EQ(0u, VPV3->getNumUsers());
VPInstruction *I2 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(3u, VPV1->getNumUsers());
VPV1->replaceAllUsesWith(VPV3);
EXPECT_EQ(3u, VPV3->getNumUsers());
delete I1;
delete I2;
}
TEST_F(VPInstructionTest, releaseOperandsAtDeletion) {
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *VPV1 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VPV2 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPInstruction *I1 = new VPInstruction(0, {VPV1, VPV2});
EXPECT_EQ(1u, VPV1->getNumUsers());
EXPECT_EQ(I1, *VPV1->user_begin());
EXPECT_EQ(1u, VPV2->getNumUsers());
EXPECT_EQ(I1, *VPV2->user_begin());
delete I1;
EXPECT_EQ(0u, VPV1->getNumUsers());
EXPECT_EQ(0u, VPV2->getNumUsers());
}
using VPBasicBlockTest = VPlanTestBase;
TEST_F(VPBasicBlockTest, getPlan) {
{
VPlan &Plan = getPlan();
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("");
VPBasicBlock *VPBB3 = Plan.createVPBasicBlock("");
VPBasicBlock *VPBB4 = Plan.createVPBasicBlock("");
// VPBB1
// / \
// VPBB2 VPBB3
// \ /
// VPBB4
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
VPBlockUtils::connectBlocks(VPBB1, VPBB3);
VPBlockUtils::connectBlocks(VPBB2, VPBB4);
VPBlockUtils::connectBlocks(VPBB3, VPBB4);
VPBlockUtils::connectBlocks(VPBB4, Plan.getScalarHeader());
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, VPBB2->getPlan());
EXPECT_EQ(&Plan, VPBB3->getPlan());
EXPECT_EQ(&Plan, VPBB4->getPlan());
}
{
VPlan &Plan = getPlan();
VPBasicBlock *VPBB1 = Plan.getEntry();
// VPBasicBlock is the entry into the VPlan, followed by a region.
VPBasicBlock *R1BB1 = Plan.createVPBasicBlock("");
VPBasicBlock *R1BB2 = Plan.createVPBasicBlock("");
VPRegionBlock *R1 = Plan.createVPRegionBlock(R1BB1, R1BB2, "R1");
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBlockUtils::connectBlocks(VPBB1, R1);
VPBlockUtils::connectBlocks(R1, Plan.getScalarHeader());
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, R1->getPlan());
EXPECT_EQ(&Plan, R1BB1->getPlan());
EXPECT_EQ(&Plan, R1BB2->getPlan());
}
{
VPlan &Plan = getPlan();
VPBasicBlock *R1BB1 = Plan.createVPBasicBlock("");
VPBasicBlock *R1BB2 = Plan.createVPBasicBlock("");
VPRegionBlock *R1 = Plan.createVPRegionBlock(R1BB1, R1BB2, "R1");
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBasicBlock *R2BB1 = Plan.createVPBasicBlock("");
VPBasicBlock *R2BB2 = Plan.createVPBasicBlock("");
VPRegionBlock *R2 = Plan.createVPRegionBlock(R2BB1, R2BB2, "R2");
VPBlockUtils::connectBlocks(R2BB1, R2BB2);
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBlockUtils::connectBlocks(VPBB1, R1);
VPBlockUtils::connectBlocks(VPBB1, R2);
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("");
VPBlockUtils::connectBlocks(R1, VPBB2);
VPBlockUtils::connectBlocks(R2, VPBB2);
VPBlockUtils::connectBlocks(R2, Plan.getScalarHeader());
EXPECT_EQ(&Plan, VPBB1->getPlan());
EXPECT_EQ(&Plan, R1->getPlan());
EXPECT_EQ(&Plan, R1BB1->getPlan());
EXPECT_EQ(&Plan, R1BB2->getPlan());
EXPECT_EQ(&Plan, R2->getPlan());
EXPECT_EQ(&Plan, R2BB1->getPlan());
EXPECT_EQ(&Plan, R2BB2->getPlan());
EXPECT_EQ(&Plan, VPBB2->getPlan());
}
}
TEST_F(VPBasicBlockTest, TraversingIteratorTest) {
{
// VPBasicBlocks only
// VPBB1
// / \
// VPBB2 VPBB3
// \ /
// VPBB4
//
VPlan &Plan = getPlan();
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("");
VPBasicBlock *VPBB3 = Plan.createVPBasicBlock("");
VPBasicBlock *VPBB4 = Plan.createVPBasicBlock("");
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
VPBlockUtils::connectBlocks(VPBB1, VPBB3);
VPBlockUtils::connectBlocks(VPBB2, VPBB4);
VPBlockUtils::connectBlocks(VPBB3, VPBB4);
VPBlockDeepTraversalWrapper<const VPBlockBase *> Start(VPBB1);
SmallVector<const VPBlockBase *> FromIterator(depth_first(Start));
EXPECT_EQ(4u, FromIterator.size());
EXPECT_EQ(VPBB1, FromIterator[0]);
EXPECT_EQ(VPBB2, FromIterator[1]);
VPBlockUtils::connectBlocks(VPBB4, Plan.getScalarHeader());
}
{
// 2 consecutive regions.
// VPBB0
// |
// R1 {
// \
// R1BB1
// / \ |--|
// R1BB2 R1BB3 -|
// \ /
// R1BB4
// }
// |
// R2 {
// \
// R2BB1
// |
// R2BB2
//
VPlan &Plan = getPlan();
VPBasicBlock *VPBB0 = Plan.getEntry();
VPBasicBlock *R1BB1 = Plan.createVPBasicBlock("");
VPBasicBlock *R1BB2 = Plan.createVPBasicBlock("");
VPBasicBlock *R1BB3 = Plan.createVPBasicBlock("");
VPBasicBlock *R1BB4 = Plan.createVPBasicBlock("");
VPRegionBlock *R1 = Plan.createVPRegionBlock(R1BB1, R1BB4, "R1");
R1BB2->setParent(R1);
R1BB3->setParent(R1);
VPBlockUtils::connectBlocks(VPBB0, R1);
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBlockUtils::connectBlocks(R1BB1, R1BB3);
VPBlockUtils::connectBlocks(R1BB2, R1BB4);
VPBlockUtils::connectBlocks(R1BB3, R1BB4);
// Cycle.
VPBlockUtils::connectBlocks(R1BB3, R1BB3);
VPBasicBlock *R2BB1 = Plan.createVPBasicBlock("");
VPBasicBlock *R2BB2 = Plan.createVPBasicBlock("");
VPRegionBlock *R2 = Plan.createVPRegionBlock(R2BB1, R2BB2, "R2");
VPBlockUtils::connectBlocks(R2BB1, R2BB2);
VPBlockUtils::connectBlocks(R1, R2);
// Successors of R1.
SmallVector<const VPBlockBase *> FromIterator(
VPAllSuccessorsIterator<VPBlockBase *>(R1),
VPAllSuccessorsIterator<VPBlockBase *>::end(R1));
EXPECT_EQ(1u, FromIterator.size());
EXPECT_EQ(R1BB1, FromIterator[0]);
// Depth-first.
VPBlockDeepTraversalWrapper<VPBlockBase *> Start(R1);
FromIterator.clear();
copy(df_begin(Start), df_end(Start), std::back_inserter(FromIterator));
EXPECT_EQ(8u, FromIterator.size());
EXPECT_EQ(R1, FromIterator[0]);
EXPECT_EQ(R1BB1, FromIterator[1]);
EXPECT_EQ(R1BB2, FromIterator[2]);
EXPECT_EQ(R1BB4, FromIterator[3]);
EXPECT_EQ(R2, FromIterator[4]);
EXPECT_EQ(R2BB1, FromIterator[5]);
EXPECT_EQ(R2BB2, FromIterator[6]);
EXPECT_EQ(R1BB3, FromIterator[7]);
// const VPBasicBlocks only.
FromIterator.clear();
copy(VPBlockUtils::blocksOnly<const VPBasicBlock>(depth_first(Start)),
std::back_inserter(FromIterator));
EXPECT_EQ(6u, FromIterator.size());
EXPECT_EQ(R1BB1, FromIterator[0]);
EXPECT_EQ(R1BB2, FromIterator[1]);
EXPECT_EQ(R1BB4, FromIterator[2]);
EXPECT_EQ(R2BB1, FromIterator[3]);
EXPECT_EQ(R2BB2, FromIterator[4]);
EXPECT_EQ(R1BB3, FromIterator[5]);
// VPRegionBlocks only.
SmallVector<VPRegionBlock *> FromIteratorVPRegion(
VPBlockUtils::blocksOnly<VPRegionBlock>(depth_first(Start)));
EXPECT_EQ(2u, FromIteratorVPRegion.size());
EXPECT_EQ(R1, FromIteratorVPRegion[0]);
EXPECT_EQ(R2, FromIteratorVPRegion[1]);
// Post-order.
FromIterator.clear();
copy(post_order(Start), std::back_inserter(FromIterator));
EXPECT_EQ(8u, FromIterator.size());
EXPECT_EQ(R2BB2, FromIterator[0]);
EXPECT_EQ(R2BB1, FromIterator[1]);
EXPECT_EQ(R2, FromIterator[2]);
EXPECT_EQ(R1BB4, FromIterator[3]);
EXPECT_EQ(R1BB2, FromIterator[4]);
EXPECT_EQ(R1BB3, FromIterator[5]);
EXPECT_EQ(R1BB1, FromIterator[6]);
EXPECT_EQ(R1, FromIterator[7]);
VPBlockUtils::connectBlocks(R2, Plan.getScalarHeader());
}
{
// 2 nested regions.
// VPBB1
// |
// R1 {
// R1BB1
// / \
// R2 { |
// \ |
// R2BB1 |
// | \ R1BB2
// R2BB2-| |
// \ |
// R2BB3 |
// } /
// \ /
// R1BB3
// }
// |
// VPBB2
//
VPlan &Plan = getPlan();
VPBasicBlock *R1BB1 = Plan.createVPBasicBlock("R1BB1");
VPBasicBlock *R1BB2 = Plan.createVPBasicBlock("R1BB2");
VPBasicBlock *R1BB3 = Plan.createVPBasicBlock("R1BB3");
VPRegionBlock *R1 = Plan.createVPRegionBlock(R1BB1, R1BB3, "R1");
VPBasicBlock *R2BB1 = Plan.createVPBasicBlock("R2BB1");
VPBasicBlock *R2BB2 = Plan.createVPBasicBlock("R2BB2");
VPBasicBlock *R2BB3 = Plan.createVPBasicBlock("R2BB3");
VPRegionBlock *R2 = Plan.createVPRegionBlock(R2BB1, R2BB3, "R2");
R2BB2->setParent(R2);
VPBlockUtils::connectBlocks(R2BB1, R2BB2);
VPBlockUtils::connectBlocks(R2BB2, R2BB1);
VPBlockUtils::connectBlocks(R2BB2, R2BB3);
R2->setParent(R1);
VPBlockUtils::connectBlocks(R1BB1, R2);
R1BB2->setParent(R1);
VPBlockUtils::connectBlocks(R1BB1, R1BB2);
VPBlockUtils::connectBlocks(R1BB2, R1BB3);
VPBlockUtils::connectBlocks(R2, R1BB3);
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBlockUtils::connectBlocks(VPBB1, R1);
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("VPBB2");
VPBlockUtils::connectBlocks(R1, VPBB2);
// Depth-first.
VPBlockDeepTraversalWrapper<VPBlockBase *> Start(VPBB1);
SmallVector<VPBlockBase *> FromIterator(depth_first(Start));
EXPECT_EQ(10u, FromIterator.size());
EXPECT_EQ(VPBB1, FromIterator[0]);
EXPECT_EQ(R1, FromIterator[1]);
EXPECT_EQ(R1BB1, FromIterator[2]);
EXPECT_EQ(R2, FromIterator[3]);
EXPECT_EQ(R2BB1, FromIterator[4]);
EXPECT_EQ(R2BB2, FromIterator[5]);
EXPECT_EQ(R2BB3, FromIterator[6]);
EXPECT_EQ(R1BB3, FromIterator[7]);
EXPECT_EQ(VPBB2, FromIterator[8]);
EXPECT_EQ(R1BB2, FromIterator[9]);
// Post-order.
FromIterator.clear();
FromIterator.append(po_begin(Start), po_end(Start));
EXPECT_EQ(10u, FromIterator.size());
EXPECT_EQ(VPBB2, FromIterator[0]);
EXPECT_EQ(R1BB3, FromIterator[1]);
EXPECT_EQ(R2BB3, FromIterator[2]);
EXPECT_EQ(R2BB2, FromIterator[3]);
EXPECT_EQ(R2BB1, FromIterator[4]);
EXPECT_EQ(R2, FromIterator[5]);
EXPECT_EQ(R1BB2, FromIterator[6]);
EXPECT_EQ(R1BB1, FromIterator[7]);
EXPECT_EQ(R1, FromIterator[8]);
EXPECT_EQ(VPBB1, FromIterator[9]);
VPBlockUtils::connectBlocks(VPBB2, Plan.getScalarHeader());
}
{
// VPBB1
// |
// R1 {
// \
// R2 {
// R2BB1
// |
// R2BB2
// }
//
VPlan &Plan = getPlan();
VPBasicBlock *R2BB1 = Plan.createVPBasicBlock("R2BB1");
VPBasicBlock *R2BB2 = Plan.createVPBasicBlock("R2BB2");
VPRegionBlock *R2 = Plan.createVPRegionBlock(R2BB1, R2BB2, "R2");
VPBlockUtils::connectBlocks(R2BB1, R2BB2);
VPRegionBlock *R1 = Plan.createVPRegionBlock(R2, R2, "R1");
R2->setParent(R1);
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBlockUtils::connectBlocks(VPBB1, R1);
// Depth-first.
VPBlockDeepTraversalWrapper<VPBlockBase *> Start(VPBB1);
SmallVector<VPBlockBase *> FromIterator(depth_first(Start));
EXPECT_EQ(5u, FromIterator.size());
EXPECT_EQ(VPBB1, FromIterator[0]);
EXPECT_EQ(R1, FromIterator[1]);
EXPECT_EQ(R2, FromIterator[2]);
EXPECT_EQ(R2BB1, FromIterator[3]);
EXPECT_EQ(R2BB2, FromIterator[4]);
// Post-order.
FromIterator.clear();
FromIterator.append(po_begin(Start), po_end(Start));
EXPECT_EQ(5u, FromIterator.size());
EXPECT_EQ(R2BB2, FromIterator[0]);
EXPECT_EQ(R2BB1, FromIterator[1]);
EXPECT_EQ(R2, FromIterator[2]);
EXPECT_EQ(R1, FromIterator[3]);
EXPECT_EQ(VPBB1, FromIterator[4]);
VPBlockUtils::connectBlocks(R1, Plan.getScalarHeader());
}
{
// Nested regions with both R3 and R2 being exit nodes without successors.
// The successors of R1 should be used.
//
// VPBB1
// |
// R1 {
// \
// R2 {
// \
// R2BB1
// |
// R3 {
// R3BB1
// }
// }
// |
// VPBB2
//
VPlan &Plan = getPlan();
VPBasicBlock *R3BB1 = Plan.createVPBasicBlock("R3BB1");
VPRegionBlock *R3 = Plan.createVPRegionBlock(R3BB1, R3BB1, "R3");
VPBasicBlock *R2BB1 = Plan.createVPBasicBlock("R2BB1");
VPRegionBlock *R2 = Plan.createVPRegionBlock(R2BB1, R3, "R2");
R3->setParent(R2);
VPBlockUtils::connectBlocks(R2BB1, R3);
VPRegionBlock *R1 = Plan.createVPRegionBlock(R2, R2, "R1");
R2->setParent(R1);
VPBasicBlock *VPBB1 = Plan.getEntry();
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("VPBB2");
VPBlockUtils::connectBlocks(VPBB1, R1);
VPBlockUtils::connectBlocks(R1, VPBB2);
// Depth-first.
VPBlockDeepTraversalWrapper<VPBlockBase *> Start(VPBB1);
SmallVector<VPBlockBase *> FromIterator(depth_first(Start));
EXPECT_EQ(7u, FromIterator.size());
EXPECT_EQ(VPBB1, FromIterator[0]);
EXPECT_EQ(R1, FromIterator[1]);
EXPECT_EQ(R2, FromIterator[2]);
EXPECT_EQ(R2BB1, FromIterator[3]);
EXPECT_EQ(R3, FromIterator[4]);
EXPECT_EQ(R3BB1, FromIterator[5]);
EXPECT_EQ(VPBB2, FromIterator[6]);
SmallVector<VPBlockBase *> FromIteratorVPBB;
copy(VPBlockUtils::blocksOnly<VPBasicBlock>(depth_first(Start)),
std::back_inserter(FromIteratorVPBB));
EXPECT_EQ(VPBB1, FromIteratorVPBB[0]);
EXPECT_EQ(R2BB1, FromIteratorVPBB[1]);
EXPECT_EQ(R3BB1, FromIteratorVPBB[2]);
EXPECT_EQ(VPBB2, FromIteratorVPBB[3]);
// Post-order.
FromIterator.clear();
copy(post_order(Start), std::back_inserter(FromIterator));
EXPECT_EQ(7u, FromIterator.size());
EXPECT_EQ(VPBB2, FromIterator[0]);
EXPECT_EQ(R3BB1, FromIterator[1]);
EXPECT_EQ(R3, FromIterator[2]);
EXPECT_EQ(R2BB1, FromIterator[3]);
EXPECT_EQ(R2, FromIterator[4]);
EXPECT_EQ(R1, FromIterator[5]);
EXPECT_EQ(VPBB1, FromIterator[6]);
// Post-order, const VPRegionBlocks only.
VPBlockDeepTraversalWrapper<const VPBlockBase *> StartConst(VPBB1);
SmallVector<const VPRegionBlock *> FromIteratorVPRegion(
VPBlockUtils::blocksOnly<const VPRegionBlock>(post_order(StartConst)));
EXPECT_EQ(3u, FromIteratorVPRegion.size());
EXPECT_EQ(R3, FromIteratorVPRegion[0]);
EXPECT_EQ(R2, FromIteratorVPRegion[1]);
EXPECT_EQ(R1, FromIteratorVPRegion[2]);
// Post-order, VPBasicBlocks only.
FromIterator.clear();
copy(VPBlockUtils::blocksOnly<VPBasicBlock>(post_order(Start)),
std::back_inserter(FromIterator));
EXPECT_EQ(FromIterator.size(), 4u);
EXPECT_EQ(VPBB2, FromIterator[0]);
EXPECT_EQ(R3BB1, FromIterator[1]);
EXPECT_EQ(R2BB1, FromIterator[2]);
EXPECT_EQ(VPBB1, FromIterator[3]);
VPBlockUtils::connectBlocks(VPBB2, Plan.getScalarHeader());
}
}
TEST_F(VPBasicBlockTest, reassociateBlocks) {
{
// Ensure that when we reassociate a basic block, we make sure to update any
// references to it in VPWidenPHIRecipes' incoming blocks.
VPlan &Plan = getPlan();
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("VPBB1");
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("VPBB2");
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
auto *WidenPhi = new VPWidenPHIRecipe(nullptr);
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Val = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
WidenPhi->addOperand(Val);
VPBB2->appendRecipe(WidenPhi);
VPBasicBlock *VPBBNew = Plan.createVPBasicBlock("VPBBNew");
VPBlockUtils::reassociateBlocks(VPBB1, VPBBNew);
EXPECT_EQ(VPBB2->getSinglePredecessor(), VPBBNew);
EXPECT_EQ(WidenPhi->getIncomingBlock(0), VPBBNew);
}
{
// Ensure that we update VPWidenPHIRecipes that are nested inside a
// VPRegionBlock.
VPlan &Plan = getPlan();
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("VPBB1");
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("VPBB2");
VPRegionBlock *R1 = Plan.createVPRegionBlock(VPBB2, VPBB2, "R1");
VPBlockUtils::connectBlocks(VPBB1, R1);
auto *WidenPhi = new VPWidenPHIRecipe(nullptr);
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Val = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
WidenPhi->addOperand(Val);
WidenPhi->addOperand(Val);
VPBB2->appendRecipe(WidenPhi);
VPBasicBlock *VPBBNew = Plan.createVPBasicBlock("VPBBNew");
VPBlockUtils::reassociateBlocks(VPBB1, VPBBNew);
EXPECT_EQ(R1->getSinglePredecessor(), VPBBNew);
EXPECT_EQ(WidenPhi->getIncomingBlock(0), VPBBNew);
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
TEST_F(VPBasicBlockTest, print) {
VPInstruction *TC = new VPInstruction(Instruction::Add, {});
VPlan &Plan = getPlan(TC);
VPBasicBlock *VPBB0 = Plan.getEntry();
VPBB0->appendRecipe(TC);
VPInstruction *I1 = new VPInstruction(Instruction::Add, {});
VPInstruction *I2 = new VPInstruction(Instruction::Sub, {I1});
VPInstruction *I3 = new VPInstruction(Instruction::Br, {I1, I2});
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("");
VPBB1->appendRecipe(I1);
VPBB1->appendRecipe(I2);
VPBB1->appendRecipe(I3);
VPBB1->setName("bb1");
VPInstruction *I4 = new VPInstruction(Instruction::Mul, {I2, I1});
VPInstruction *I5 = new VPInstruction(Instruction::Ret, {I4});
VPBasicBlock *VPBB2 = Plan.createVPBasicBlock("");
VPBB2->appendRecipe(I4);
VPBB2->appendRecipe(I5);
VPBB2->setName("bb2");
VPBlockUtils::connectBlocks(VPBB1, VPBB2);
// Check printing an instruction without associated VPlan.
{
std::string I3Dump;
raw_string_ostream OS(I3Dump);
VPSlotTracker SlotTracker;
I3->print(OS, "", SlotTracker);
EXPECT_EQ("EMIT br <badref>, <badref>", I3Dump);
}
VPBlockUtils::connectBlocks(VPBB2, Plan.getScalarHeader());
VPBlockUtils::connectBlocks(VPBB0, VPBB1);
std::string FullDump;
raw_string_ostream OS(FullDump);
Plan.printDOT(OS);
const char *ExpectedStr = R"(digraph VPlan {
graph [labelloc=t, fontsize=30; label="Vectorization Plan\n for UF\>=1\nvp\<%1\> = original trip-count\n"]
node [shape=rect, fontname=Courier, fontsize=30]
edge [fontname=Courier, fontsize=30]
compound=true
N0 [label =
"preheader:\l" +
" EMIT vp\<%1\> = add\l" +
"Successor(s): bb1\l"
]
N0 -> N1 [ label=""]
N1 [label =
"bb1:\l" +
" EMIT vp\<%2\> = add\l" +
" EMIT vp\<%3\> = sub vp\<%2\>\l" +
" EMIT br vp\<%2\>, vp\<%3\>\l" +
"Successor(s): bb2\l"
]
N1 -> N2 [ label=""]
N2 [label =
"bb2:\l" +
" EMIT vp\<%5\> = mul vp\<%3\>, vp\<%2\>\l" +
" EMIT ret vp\<%5\>\l" +
"Successor(s): ir-bb\<scalar.header\>\l"
]
N2 -> N3 [ label=""]
N3 [label =
"ir-bb\<scalar.header\>:\l" +
"No successors\l"
]
}
)";
EXPECT_EQ(ExpectedStr, FullDump);
const char *ExpectedBlock1Str = R"(bb1:
EMIT vp<%2> = add
EMIT vp<%3> = sub vp<%2>
EMIT br vp<%2>, vp<%3>
Successor(s): bb2
)";
std::string Block1Dump;
raw_string_ostream OS1(Block1Dump);
VPBB1->print(OS1);
EXPECT_EQ(ExpectedBlock1Str, Block1Dump);
// Ensure that numbering is good when dumping the second block in isolation.
const char *ExpectedBlock2Str = R"(bb2:
EMIT vp<%5> = mul vp<%3>, vp<%2>
EMIT ret vp<%5>
Successor(s): ir-bb<scalar.header>
)";
std::string Block2Dump;
raw_string_ostream OS2(Block2Dump);
VPBB2->print(OS2);
EXPECT_EQ(ExpectedBlock2Str, Block2Dump);
{
std::string I3Dump;
raw_string_ostream OS(I3Dump);
VPSlotTracker SlotTracker(&Plan);
I3->print(OS, "", SlotTracker);
EXPECT_EQ("EMIT br vp<%2>, vp<%3>", I3Dump);
}
{
std::string I4Dump;
raw_string_ostream OS(I4Dump);
OS << *I4;
EXPECT_EQ("EMIT vp<%5> = mul vp<%3>, vp<%2>", I4Dump);
}
}
TEST_F(VPBasicBlockTest, printPlanWithVFsAndUFs) {
VPInstruction *TC = new VPInstruction(Instruction::Sub, {});
VPlan &Plan = getPlan(TC);
VPBasicBlock *VPBB0 = Plan.getEntry();
VPBB0->appendRecipe(TC);
VPInstruction *I1 = new VPInstruction(Instruction::Add, {});
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("");
VPBB1->appendRecipe(I1);
VPBB1->setName("bb1");
VPBlockUtils::connectBlocks(VPBB1, Plan.getScalarHeader());
VPBlockUtils::connectBlocks(VPBB0, VPBB1);
Plan.setName("TestPlan");
Plan.addVF(ElementCount::getFixed(4));
{
std::string FullDump;
raw_string_ostream OS(FullDump);
Plan.print(OS);
const char *ExpectedStr = R"(VPlan 'TestPlan for VF={4},UF>=1' {
vp<%1> = original trip-count
preheader:
EMIT vp<%1> = sub
Successor(s): bb1
bb1:
EMIT vp<%2> = add
Successor(s): ir-bb<scalar.header>
ir-bb<scalar.header>:
No successors
}
)";
EXPECT_EQ(ExpectedStr, FullDump);
}
{
Plan.addVF(ElementCount::getScalable(8));
std::string FullDump;
raw_string_ostream OS(FullDump);
Plan.print(OS);
const char *ExpectedStr = R"(VPlan 'TestPlan for VF={4,vscale x 8},UF>=1' {
vp<%1> = original trip-count
preheader:
EMIT vp<%1> = sub
Successor(s): bb1
bb1:
EMIT vp<%2> = add
Successor(s): ir-bb<scalar.header>
ir-bb<scalar.header>:
No successors
}
)";
EXPECT_EQ(ExpectedStr, FullDump);
}
{
Plan.setUF(4);
std::string FullDump;
raw_string_ostream OS(FullDump);
Plan.print(OS);
const char *ExpectedStr = R"(VPlan 'TestPlan for VF={4,vscale x 8},UF={4}' {
vp<%1> = original trip-count
preheader:
EMIT vp<%1> = sub
Successor(s): bb1
bb1:
EMIT vp<%2> = add
Successor(s): ir-bb<scalar.header>
ir-bb<scalar.header>:
No successors
}
)";
EXPECT_EQ(ExpectedStr, FullDump);
}
}
#endif
using VPRecipeTest = VPlanTestBase;
TEST_F(VPRecipeTest, CastVPInstructionToVPUser) {
IntegerType *Int32 = IntegerType::get(C, 32);
VPlan &Plan = getPlan();
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPInstruction Recipe(Instruction::Add, {Op1, Op2});
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST_F(VPRecipeTest, CastVPWidenRecipeToVPUser) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
SmallVector<VPValue *, 2> Args;
Args.push_back(Op1);
Args.push_back(Op2);
VPWidenRecipe WidenR(*AI, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&WidenR));
VPRecipeBase *WidenRBase = &WidenR;
EXPECT_TRUE(isa<VPUser>(WidenRBase));
EXPECT_EQ(&WidenR, WidenRBase);
delete AI;
}
TEST_F(VPRecipeTest, CastVPWidenCallRecipeToVPUserAndVPDef) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
FunctionType *FTy = FunctionType::get(Int32, false);
Function *Fn = Function::Create(FTy, GlobalValue::ExternalLinkage, 0);
auto *Call = CallInst::Create(FTy, Fn);
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CalledFn = Plan.getOrAddLiveIn(Call->getCalledFunction());
SmallVector<VPValue *, 2> Args;
Args.push_back(Op1);
Args.push_back(Op2);
Args.push_back(CalledFn);
VPWidenCallRecipe Recipe(Call, Fn, Args);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = &Recipe;
EXPECT_TRUE(VPV->getDefiningRecipe());
EXPECT_EQ(&Recipe, VPV->getDefiningRecipe());
delete Call;
delete Fn;
}
TEST_F(VPRecipeTest, CastVPWidenSelectRecipeToVPUserAndVPDef) {
VPlan &Plan = getPlan();
IntegerType *Int1 = IntegerType::get(C, 1);
IntegerType *Int32 = IntegerType::get(C, 32);
auto *SelectI = SelectInst::Create(
PoisonValue::get(Int1), PoisonValue::get(Int32), PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *Op3 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
SmallVector<VPValue *, 4> Args;
Args.push_back(Op1);
Args.push_back(Op2);
Args.push_back(Op3);
VPWidenSelectRecipe WidenSelectR(*SelectI,
make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&WidenSelectR));
VPRecipeBase *BaseR = &WidenSelectR;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&WidenSelectR, BaseR);
VPValue *VPV = &WidenSelectR;
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDefiningRecipe()));
EXPECT_EQ(&WidenSelectR, VPV->getDefiningRecipe());
delete SelectI;
}
TEST_F(VPRecipeTest, CastVPWidenGEPRecipeToVPUserAndVPDef) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(C, 0);
auto *GEP = GetElementPtrInst::Create(Int32, PoisonValue::get(Int32Ptr),
PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
SmallVector<VPValue *, 4> Args;
Args.push_back(Op1);
Args.push_back(Op2);
VPWidenGEPRecipe Recipe(GEP, make_range(Args.begin(), Args.end()));
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = &Recipe;
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDefiningRecipe()));
EXPECT_EQ(&Recipe, VPV->getDefiningRecipe());
delete GEP;
}
TEST_F(VPRecipeTest, CastVPBlendRecipeToVPUser) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
auto *Phi = PHINode::Create(Int32, 1);
VPValue *I1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *I2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *M2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
SmallVector<VPValue *, 4> Args;
Args.push_back(I1);
Args.push_back(I2);
Args.push_back(M2);
VPBlendRecipe Recipe(Phi, Args);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
delete Phi;
}
TEST_F(VPRecipeTest, CastVPInterleaveRecipeToVPUser) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Addr = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
InterleaveGroup<Instruction> IG(4, false, Align(4));
VPInterleaveRecipe Recipe(&IG, Addr, {}, Mask, false, DebugLoc());
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST_F(VPRecipeTest, CastVPReplicateRecipeToVPUser) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
SmallVector<VPValue *, 4> Args;
Args.push_back(Op1);
Args.push_back(Op2);
FunctionType *FTy = FunctionType::get(Int32, false);
auto *Call = CallInst::Create(FTy, PoisonValue::get(FTy));
VPReplicateRecipe Recipe(Call, make_range(Args.begin(), Args.end()), true);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
delete Call;
}
TEST_F(VPRecipeTest, CastVPBranchOnMaskRecipeToVPUser) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPBranchOnMaskRecipe Recipe(Mask, {});
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
}
TEST_F(VPRecipeTest, CastVPWidenMemoryRecipeToVPUserAndVPDef) {
VPlan &Plan = getPlan();
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(C, 0);
auto *Load =
new LoadInst(Int32, PoisonValue::get(Int32Ptr), "", false, Align(1));
VPValue *Addr = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPWidenLoadRecipe Recipe(*Load, Addr, Mask, true, false, {});
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
EXPECT_EQ(&Recipe, BaseR);
VPValue *VPV = Recipe.getVPSingleValue();
EXPECT_TRUE(isa<VPRecipeBase>(VPV->getDefiningRecipe()));
EXPECT_EQ(&Recipe, VPV->getDefiningRecipe());
delete Load;
}
TEST_F(VPRecipeTest, MayHaveSideEffectsAndMayReadWriteMemory) {
IntegerType *Int1 = IntegerType::get(C, 1);
IntegerType *Int32 = IntegerType::get(C, 32);
PointerType *Int32Ptr = PointerType::get(C, 0);
VPlan &Plan = getPlan();
{
auto *AI = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
SmallVector<VPValue *, 2> Args;
Args.push_back(Op1);
Args.push_back(Op2);
VPWidenRecipe Recipe(*AI, make_range(Args.begin(), Args.end()));
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
delete AI;
}
{
auto *SelectI =
SelectInst::Create(PoisonValue::get(Int1), PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *Op3 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
SmallVector<VPValue *, 4> Args;
Args.push_back(Op1);
Args.push_back(Op2);
Args.push_back(Op3);
VPWidenSelectRecipe Recipe(*SelectI, make_range(Args.begin(), Args.end()));
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
delete SelectI;
}
{
auto *GEP = GetElementPtrInst::Create(Int32, PoisonValue::get(Int32Ptr),
PoisonValue::get(Int32));
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
SmallVector<VPValue *, 4> Args;
Args.push_back(Op1);
Args.push_back(Op2);
VPWidenGEPRecipe Recipe(GEP, make_range(Args.begin(), Args.end()));
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
delete GEP;
}
{
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPBranchOnMaskRecipe Recipe(Mask, {});
EXPECT_TRUE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
}
{
auto *Add = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *ChainOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VecOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CondOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPReductionRecipe Recipe(RecurKind::Add, FastMathFlags(), Add, ChainOp,
CondOp, VecOp, false);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
delete Add;
}
{
auto *Add = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *ChainOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VecOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CondOp = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPReductionRecipe Recipe(RecurKind::Add, FastMathFlags(), Add, ChainOp,
CondOp, VecOp, false);
VPValue *EVL = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 4));
VPReductionEVLRecipe EVLRecipe(Recipe, *EVL, CondOp);
EXPECT_FALSE(EVLRecipe.mayHaveSideEffects());
EXPECT_FALSE(EVLRecipe.mayReadFromMemory());
EXPECT_FALSE(EVLRecipe.mayWriteToMemory());
EXPECT_FALSE(EVLRecipe.mayReadOrWriteMemory());
delete Add;
}
{
auto *Load =
new LoadInst(Int32, PoisonValue::get(Int32Ptr), "", false, Align(1));
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Addr = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPWidenLoadRecipe Recipe(*Load, Addr, Mask, true, false, {});
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_TRUE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_TRUE(Recipe.mayReadOrWriteMemory());
delete Load;
}
{
auto *Store = new StoreInst(PoisonValue::get(Int32),
PoisonValue::get(Int32Ptr), false, Align(1));
VPValue *Mask = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Addr = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *StoredV = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPWidenStoreRecipe Recipe(*Store, Addr, StoredV, Mask, false, false, {});
EXPECT_TRUE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_TRUE(Recipe.mayWriteToMemory());
EXPECT_TRUE(Recipe.mayReadOrWriteMemory());
delete Store;
}
{
FunctionType *FTy = FunctionType::get(Int32, false);
Function *Fn = Function::Create(FTy, GlobalValue::ExternalLinkage, 0);
auto *Call = CallInst::Create(FTy, Fn);
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CalledFn = Plan.getOrAddLiveIn(Call->getCalledFunction());
SmallVector<VPValue *, 3> Args;
Args.push_back(Op1);
Args.push_back(Op2);
Args.push_back(CalledFn);
VPWidenCallRecipe Recipe(Call, Fn, Args);
EXPECT_TRUE(Recipe.mayHaveSideEffects());
EXPECT_TRUE(Recipe.mayReadFromMemory());
EXPECT_TRUE(Recipe.mayWriteToMemory());
EXPECT_TRUE(Recipe.mayReadOrWriteMemory());
delete Call;
delete Fn;
}
{
// Test for a call to a function without side-effects.
Module M("", C);
Function *TheFn =
Intrinsic::getOrInsertDeclaration(&M, Intrinsic::thread_pointer);
auto *Call = CallInst::Create(TheFn->getFunctionType(), TheFn);
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CalledFn = Plan.getOrAddLiveIn(Call->getCalledFunction());
SmallVector<VPValue *, 3> Args;
Args.push_back(Op1);
Args.push_back(Op2);
Args.push_back(CalledFn);
VPWidenCallRecipe Recipe(Call, TheFn, Args);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
delete Call;
}
{
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
InductionDescriptor IndDesc;
VPScalarIVStepsRecipe Recipe(IndDesc, Op1, Op2, Op2);
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
}
{
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *Op2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPInstruction VPInst(Instruction::Add, {Op1, Op2});
VPRecipeBase &Recipe = VPInst;
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
}
{
VPValue *Op1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPPredInstPHIRecipe Recipe(Op1, {});
EXPECT_FALSE(Recipe.mayHaveSideEffects());
EXPECT_FALSE(Recipe.mayReadFromMemory());
EXPECT_FALSE(Recipe.mayWriteToMemory());
EXPECT_FALSE(Recipe.mayReadOrWriteMemory());
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
TEST_F(VPRecipeTest, dumpRecipeInPlan) {
VPlan &Plan = getPlan();
VPBasicBlock *VPBB0 = Plan.getEntry();
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("");
VPBlockUtils::connectBlocks(VPBB1, Plan.getScalarHeader());
VPBlockUtils::connectBlocks(VPBB0, VPBB1);
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
AI->setName("a");
SmallVector<VPValue *, 2> Args;
VPValue *ExtVPV1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *ExtVPV2 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 2));
Args.push_back(ExtVPV1);
Args.push_back(ExtVPV2);
VPWidenRecipe *WidenR =
new VPWidenRecipe(*AI, make_range(Args.begin(), Args.end()));
VPBB1->appendRecipe(WidenR);
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = WidenR;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add ir<1>, ir<2>");
VPDef *Def = WidenR;
EXPECT_EXIT(
{
Def->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add ir<1>, ir<2>");
EXPECT_EXIT(
{
WidenR->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add ir<1>, ir<2>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = WidenR;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add ir<1>, ir<2>");
// Test VPDef::dump().
VPDef *D = WidenR;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "WIDEN ir<%a> = add ir<1>, ir<2>");
}
delete AI;
}
TEST_F(VPRecipeTest, dumpRecipeUnnamedVPValuesInPlan) {
VPlan &Plan = getPlan();
VPBasicBlock *VPBB0 = Plan.getEntry();
VPBasicBlock *VPBB1 = Plan.createVPBasicBlock("");
VPBlockUtils::connectBlocks(VPBB1, Plan.getScalarHeader());
VPBlockUtils::connectBlocks(VPBB0, VPBB1);
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
AI->setName("a");
SmallVector<VPValue *, 2> Args;
VPValue *ExtVPV1 = Plan.getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *ExtVPV2 = Plan.getOrAddLiveIn(AI);
Args.push_back(ExtVPV1);
Args.push_back(ExtVPV2);
VPInstruction *I1 = new VPInstruction(Instruction::Add, {ExtVPV1, ExtVPV2});
VPInstruction *I2 = new VPInstruction(Instruction::Mul, {I1, I1});
VPBB1->appendRecipe(I1);
VPBB1->appendRecipe(I2);
// Check printing I1.
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = I1;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%1> = add ir<1>, ir<%a>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = I1;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%1> = add ir<1>, ir<%a>");
// Test VPDef::dump().
VPDef *D = I1;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%1> = add ir<1>, ir<%a>");
}
// Check printing I2.
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = I2;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%2> = mul vp<%1>, vp<%1>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = I2;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%2> = mul vp<%1>, vp<%1>");
// Test VPDef::dump().
VPDef *D = I2;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT vp<%2> = mul vp<%1>, vp<%1>");
}
delete AI;
}
TEST_F(VPRecipeTest, dumpRecipeUnnamedVPValuesNotInPlanOrBlock) {
IntegerType *Int32 = IntegerType::get(C, 32);
auto *AI = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
AI->setName("a");
VPValue *ExtVPV1 = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *ExtVPV2 = getPlan().getOrAddLiveIn(AI);
VPInstruction *I1 = new VPInstruction(Instruction::Add, {ExtVPV1, ExtVPV2});
VPInstruction *I2 = new VPInstruction(Instruction::Mul, {I1, I1});
// Check printing I1.
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = I1;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = add ir<1>, ir<%a>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = I1;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = add ir<1>, ir<%a>");
// Test VPDef::dump().
VPDef *D = I1;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = add ir<1>, ir<%a>");
}
// Check printing I2.
{
// Use EXPECT_EXIT to capture stderr and compare against expected output.
//
// Test VPValue::dump().
VPValue *VPV = I2;
EXPECT_EXIT(
{
VPV->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = mul <badref>, <badref>");
// Test VPRecipeBase::dump().
VPRecipeBase *R = I2;
EXPECT_EXIT(
{
R->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = mul <badref>, <badref>");
// Test VPDef::dump().
VPDef *D = I2;
EXPECT_EXIT(
{
D->dump();
exit(0);
},
testing::ExitedWithCode(0), "EMIT <badref> = mul <badref>, <badref>");
}
delete I2;
delete I1;
delete AI;
}
#endif
TEST_F(VPRecipeTest, CastVPReductionRecipeToVPUser) {
IntegerType *Int32 = IntegerType::get(C, 32);
auto *Add = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *ChainOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VecOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CondOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPReductionRecipe Recipe(RecurKind::Add, FastMathFlags(), Add, ChainOp,
CondOp, VecOp, false);
EXPECT_TRUE(isa<VPUser>(&Recipe));
VPRecipeBase *BaseR = &Recipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
delete Add;
}
TEST_F(VPRecipeTest, CastVPReductionEVLRecipeToVPUser) {
IntegerType *Int32 = IntegerType::get(C, 32);
auto *Add = BinaryOperator::CreateAdd(PoisonValue::get(Int32),
PoisonValue::get(Int32));
VPValue *ChainOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 1));
VPValue *VecOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 2));
VPValue *CondOp = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 3));
VPReductionRecipe Recipe(RecurKind::Add, FastMathFlags(), Add, ChainOp,
CondOp, VecOp, false);
VPValue *EVL = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 0));
VPReductionEVLRecipe EVLRecipe(Recipe, *EVL, CondOp);
EXPECT_TRUE(isa<VPUser>(&EVLRecipe));
VPRecipeBase *BaseR = &EVLRecipe;
EXPECT_TRUE(isa<VPUser>(BaseR));
delete Add;
}
} // namespace
struct VPDoubleValueDef : public VPRecipeBase {
VPDoubleValueDef(ArrayRef<VPValue *> Operands) : VPRecipeBase(99, Operands) {
new VPValue(nullptr, this);
new VPValue(nullptr, this);
}
VPRecipeBase *clone() override { return nullptr; }
void execute(struct VPTransformState &State) override {}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override {}
#endif
};
namespace {
TEST(VPDoubleValueDefTest, traverseUseLists) {
// Check that the def-use chains of a multi-def can be traversed in both
// directions.
// Create a new VPDef which defines 2 values and has 2 operands.
VPInstruction Op0(20, {});
VPInstruction Op1(30, {});
VPDoubleValueDef DoubleValueDef({&Op0, &Op1});
// Create a new users of the defined values.
VPInstruction I1(
1, {DoubleValueDef.getVPValue(0), DoubleValueDef.getVPValue(1)});
VPInstruction I2(2, {DoubleValueDef.getVPValue(0)});
VPInstruction I3(3, {DoubleValueDef.getVPValue(1)});
// Check operands of the VPDef (traversing upwards).
SmallVector<VPValue *, 4> DoubleOperands(DoubleValueDef.op_begin(),
DoubleValueDef.op_end());
EXPECT_EQ(2u, DoubleOperands.size());
EXPECT_EQ(&Op0, DoubleOperands[0]);
EXPECT_EQ(&Op1, DoubleOperands[1]);
// Check users of the defined values (traversing downwards).
SmallVector<VPUser *, 4> DoubleValueDefV0Users(
DoubleValueDef.getVPValue(0)->user_begin(),
DoubleValueDef.getVPValue(0)->user_end());
EXPECT_EQ(2u, DoubleValueDefV0Users.size());
EXPECT_EQ(&I1, DoubleValueDefV0Users[0]);
EXPECT_EQ(&I2, DoubleValueDefV0Users[1]);
SmallVector<VPUser *, 4> DoubleValueDefV1Users(
DoubleValueDef.getVPValue(1)->user_begin(),
DoubleValueDef.getVPValue(1)->user_end());
EXPECT_EQ(2u, DoubleValueDefV1Users.size());
EXPECT_EQ(&I1, DoubleValueDefV1Users[0]);
EXPECT_EQ(&I3, DoubleValueDefV1Users[1]);
// Now check that we can get the right VPDef for each defined value.
EXPECT_EQ(&DoubleValueDef, I1.getOperand(0)->getDefiningRecipe());
EXPECT_EQ(&DoubleValueDef, I1.getOperand(1)->getDefiningRecipe());
EXPECT_EQ(&DoubleValueDef, I2.getOperand(0)->getDefiningRecipe());
EXPECT_EQ(&DoubleValueDef, I3.getOperand(0)->getDefiningRecipe());
}
TEST_F(VPRecipeTest, CastToVPSingleDefRecipe) {
IntegerType *Int32 = IntegerType::get(C, 32);
VPValue *Start = getPlan().getOrAddLiveIn(ConstantInt::get(Int32, 0));
VPEVLBasedIVPHIRecipe R(Start, {});
VPRecipeBase *B = &R;
EXPECT_TRUE(isa<VPSingleDefRecipe>(B));
// TODO: check other VPSingleDefRecipes.
}
} // namespace
} // namespace llvm